Noticias
Korl lanza una plataforma que orquestan agentes de IA de OpenAi, Gemini y Anthrope para hipercustomizar la mensajería de los clientes
Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información
Es un enigma: los equipos de clientes tienen más datos de los que pueden comenzar a usar, desde las notas de Salesforce, los boletos JIRA, los paneles de proyectos, los documentos de Google, pero tienen dificultades para reunirlo todo al elaborar mensajes de clientes que realmente resuenan.
Las herramientas existentes a menudo dependen de plantillas o diapositivas genéricas y no pueden proporcionar una imagen completa de viajes de clientes, hojas de ruta, objetivos del proyecto y objetivos comerciales.
Korl, una startup lanzada hoy, espera superar estos desafíos con una nueva plataforma que funciona en múltiples sistemas para ayudar a crear comunicaciones altamente personalizadas. La herramienta multimodal múltiple utiliza una mezcla de modelos de OpenAI, Géminis y antrópico para obtener datos y contextualizar los datos.
“Los ingenieros tienen herramientas de IA potentes, pero los equipos orientados al cliente están atrapados con soluciones poco profundas y desconectadas”, dijo Berit Hoffmann, CEO y cofundador de Korl, a VentureBeat en una entrevista exclusiva. “La innovación central de Korl se basa en nuestras tuberías avanzadas de múltiples agentes diseñados para construir el contexto del cliente y el producto que carecen las herramientas genéricas de presentación”.
Creación de materiales de cliente personalizados a través de una vista de múltiples fuentes
Los agentes de AI de Korl agregan información de diferentes sistemas, como la documentación de ingeniería de JIRA, contornos de Google Docs, diseños de Figma y datos de proyectos de Salesforce, para construir una vista de múltiples fuentes.

Por ejemplo, una vez que un cliente conecta a Korl con JIRA, su agente estudia las capacidades de productos existentes y planificadas para descubrir cómo mapear datos e importar nuevas capacidades de productos, explicó Hoffmann. La plataforma coincide con los datos del producto con la información del cliente, como el historial de uso, las prioridades comerciales y la etapa del ciclo de vida, que llena los vacíos con el uso de la IA.
“Los agentes de datos de Korl recopilan, enriquecen y estructuran diversos conjuntos de datos de fuentes internas y datos públicos externas”, dijo Hoffmann.
Luego, la plataforma genera automáticamente revisiones comerciales trimestrales (QBR) personalizadas, lanzamientos de renovación, presentaciones a medida y otros materiales para su uso en hitos importantes del cliente.
Hoffmann dijo que el diferenciador central de la compañía es su capacidad para ofrecer “materiales pulidos listos para el cliente”, como diapositivas, narraciones y correos electrónicos, “en lugar de simplemente análisis o ideas crudas”.
“Creemos que esto ofrece un nivel de valor operativo que los equipos orientados al cliente necesitan hoy dadas las presiones para hacer más con menos”, dijo.
Cambiar entre OpenAi, Géminis, Anthrope, basado en el rendimiento
Korl orquesta un “conjunto de modelos” en OpenAi, Gemini y Anthrope, seleccionando el mejor modelo para el trabajo en el momento basado en la velocidad, la precisión y el costo, explicó Hoffmann. Korl necesita realizar tareas complejas y diversas (narraciones matizadas, computación de datos, imágenes), por lo que cada caso de uso coincide con el modelo más desempeñado. La compañía ha implementado “mecanismos sofisticados de respaldo” para mitigar las fallas; Al principio, observaron altas tasas de falla al confiar en un solo proveedor, informó Hoffman.
La startup desarrolló un aplazamiento de automóviles patentado para manejar diversos esquemas de datos empresariales en JIRA, Salesforce y otros sistemas. La plataforma se asigna automáticamente a los campos relevantes en Korl.
“En lugar de solo una coincidencia semántica o de nombre de campo, nuestro enfoque evalúa factores adicionales como la escasez de datos para obtener y predecir coincidencias de campo”, dijo Hoffmann.
Para acelerar el proceso, Korl combina modelos de baja latencia y alto rendimiento (como GPT-4O para respuestas rápidas de construcción de contexto) con modelos analíticos más profundos (Claude 3.7 para comunicaciones más complejas y orientadas al cliente).
“Esto garantiza que optimizemos para la mejor experiencia del usuario final, haciendo compensaciones basadas en el contexto entre inmediatez y precisión”, explicó Hoffmann.
Debido a que “la seguridad es primordial”, Korl busca garantías de privacidad de grado empresarial de los proveedores para garantizar que los datos del cliente estén excluidos de los conjuntos de datos de capacitación. Hoffmann señaló que su orquestación múltiple y contextual, lo que impulsa adicional limita la exposición inadvertida y las fugas de datos.
Lidiar con datos que son ‘demasiado desordenados’ o ‘incompletos’
Hoffman señaló que, al principio, Korl escuchó de los clientes que les preocupaba que sus datos fueran “demasiado desordenados” o “incompletos” para ser aprovechados. En respuesta, la compañía construyó tuberías para comprender las relaciones de los objetos comerciales y llenar los vacíos, como cómo posicionar las características externamente o cómo alinear los valores en torno a los resultados deseados.
“Nuestro agente de presentación es lo que aprovecha esos datos para generar diapositivas de clientes y pista de conversación [guide conversations with potential customers or leads] dinámicamente cuando sea necesario ”, dijo Hoffmann.
También dijo que Korl presenta “verdadera multimodalidad”. La plataforma no es solo extraer datos de varias fuentes; Está interpretando diferentes tipos de información, como texto, datos estructurados, gráficos o diagramas.
“El paso crítico es ir más allá de los datos sin procesar para responder: ¿Qué historia cuenta este gráfico? ¿Cuáles son las implicaciones más profundas aquí, y realmente resonarán con este cliente específico?”, Dijo. “Hemos creado nuestro proceso para realizar esa diligencia debida crucial, asegurando que la producción no sea solo datos agregados, sino un contenido genuinamente rico entregado con un contexto significativo”.
Dos de los competidores cercanos de Korl incluyen Gainsight y Clari; Sin embargo, Hoffmann dijo que Korl se diferencia al incorporar un contexto profundo de productos y hoja de ruta. Las estrategias efectivas de renovación y expansión del cliente requieren una comprensión profunda de lo que hace un producto, y esto debe combinarse con el análisis de los datos y el comportamiento del cliente.
Además, Hoffmann dijo que Korl aborda dos “deficiencias fundamentales” de las plataformas existentes: contexto comercial profundo y precisión de la marca. Los agentes de Korl recopilan el contexto comercial de múltiples sistemas. “Sin esta inteligencia integral de datos, las cubiertas automatizadas carecen de valor comercial estratégico”, dijo.
Cuando se trata de la marca, la tecnología patentada de Korl extrae y replica las pautas de los materiales existentes.
Reducir el tiempo de preparación de la cubierta de ‘varias horas a minutos’
Las primeras indicaciones sugieren que Korl puede desbloquear al menos una mejora de 1 punto en la retención de ingresos netos (NRR) para las compañías de software del mercado medio, dijo Hoffmann. Esto se debe a que descubre el valor del producto previamente no realizado y facilita la comunicación de los clientes antes de que se conviertan o toman decisiones de renovación o expansión.
La plataforma también mejora la eficiencia, reduciendo el tiempo de preparación de la plataforma para cada llamada del cliente de “varias horas a minutos”, según Hoffman.
Los primeros clientes incluyen la plataforma de construcción de habilidades Datacamp y Gifting y Direct Mail Company Sendoso.
“Abordan un desafío crítico y pasado por alto: con demasiada frecuencia, las características del producto se lanzan mientras que los equipos de mercado (GTM) no están preparados para venderlas, apoyarlas o comunicarlas de manera efectiva”, dijo Amir Younes, director de clientes de Sendoso. “Con la IA de Korl, [go-to-market] La habilitación de GTM y la creación de activos podrían estar a solo un clic de distancia, sin agregar sobrecarga para los equipos de I + D “.
Korl ingresó hoy al mercado con $ 5 millones en fondos iniciales en una ronda co-liderada por Mac Venture Capital y subrayado VC, con la participación de Perceptive Ventures y Diane Greene (fundador de VMware y ex CEO de Google Cloud).