Noticias
La investigación profunda de Openai tiene más resistencia de investigación que tú, pero todavía está mal la mitad del tiempo

Lo último en inteligencia artificial generativa incluye agentes de IA que pueden acceder a la web para encontrar respuestas a las preguntas. Si bien es prometedora, la tecnología de agente es en gran medida un trabajo en progreso.
En un artículo publicado la semana pasada, los investigadores de Operai relatan cómo la tecnología de investigación profunda de la compañía, que se construyó para usar la web, funciona mucho mejor que los otros modelos de Openai al responder preguntas web. También lo hace mucho mejor que los humanos en tareas que requieren horas de búsqueda.
También: ¿Qué son los agentes de IA? Cómo acceder a un equipo de asistentes personalizados
Pero la investigación profunda todavía tropieza casi la mitad del tiempo.
La nueva prueba de OpenAI sugiere que la investigación profunda puede ser más tenaz y obstinada en la búsqueda de una respuesta que los investigadores humanos para algunas tareas, pero aún no se le ocurre una respuesta a menudo.
Llamada Browsecomp, la prueba es descrita por los autores Jason Wei y el equipo como “un punto de referencia simple pero desafiante para medir la capacidad de los agentes para navegar por la web”.
La premisa es que los agentes de IA, lo que significa, modelos de IA que pueden navegar por “miles de páginas web”, podrían ser mucho más ingeniosos que los humanos, que tienen memoria limitada, se fatigan navegando por la red y “solo pueden atender una cosa a la vez y no pueden ser paralelizadas,” significa que no pueden dirigir sus cerebros a operar en datos en transmisiones paralelos de pensamiento.
“La inteligencia de máquinas, por otro lado, tiene un retiro mucho más extenso y puede operar incansablemente sin distraerse”, escribe Wei y equipo.
También: La investigación profunda de Openai puede ahorrarle horas de trabajo, y ahora es mucho más barato acceder
Wei y el equipo se basaron en su trabajo anterior del año pasado, “Simpleq & A”, que prueba la capacidad de los modelos de IA para responder “preguntas cortas y de búsqueda de hechos”. Las preguntas cubrieron trivia de televisión y película, ciencia, historia, música, videojuegos, política y otros temas.
El conjunto de browsecomp de 1.266 preguntas está diseñado para ir más allá de la recuperación de información simple, relacionan los autores. En cambio, son preguntas para las cuales es difícil encontrar las respuestas, o, como lo expresan, “desafiantes porque requieren buscar a través de un gran espacio de posibles respuestas y igualarlas con limitaciones planteadas en la pregunta” e “información difícil de encontrar y profundamente entrelazada en la web”.
Por ejemplo, un par de preguntas y respuestas es el siguiente:
Identifique el título de una publicación de investigación publicada antes de junio de 2023, que menciona tradiciones culturales, procesos científicos e innovaciones culinarias. Es coautor de tres individuos: uno de ellos fue profesor asistente en Bengala Occidental y otro tiene un Ph.D.
(Respuesta: Los fundamentos de la fabricación de pan: la ciencia del pan)
Hacen hincapié en que tal pregunta es fácil de verificar porque la respuesta está contenida en una sola frase que es “autónoma”.
Las preguntas y respuestas fueron desarrolladas por “entrenadores” humanos, y fueron seleccionados como imposibles de resolver con solo el chatgpt de Openai, con o sin habilidades de navegación. Las preguntas también eran imposibles para una “versión temprana” de una investigación profunda.
Demostrando cuán débiles son los humanos para buscar en la web, primero probaron a los humanos que estaban “familiarizados con el conjunto de datos” para responder las preguntas.
Los resultados no fueron buenos para los humanos. Para el 70% de las preguntas, los humanos se rindieron después de dos horas de esfuerzo. Solo respondieron alrededor del 30% de las preguntas, y por el 14% de sus respuestas propuestas, las sugerencias de los humanos no coincidir con la respuesta real.
Wei y el equipo plantean la hipótesis de que los humanos con mayores habilidades de búsqueda podrían hacerlo mejor: “Es posible que muchos de los problemas que renunciaran sean solucionables por profesionales experimentados (por ejemplo, detectives o periodistas de investigación) con tiempo suficiente”.
Después de los humanos, probaron una investigación profunda contra el GPT-4O de Openai (con y sin habilidades de navegación), GPT-4.5 y el modelo O1.
Los resultados fueron abismales. “GPT-4O y GPT-4.5 alcanzaron la precisión cercana a cero, destacando la dificultad del punto de referencia”, escriben. “Sin un razonamiento sólido o un uso de herramientas, los modelos no pueden recuperar los tipos de objetivos oscuros y múltiples hechos de navegación”.
O1 le fue mejor, lo cual “[suggests] que algunas respuestas de Browsecomps pueden aparecer a través de la inferencia sobre el conocimiento interno “.
También: AI desata estafas más avanzadas. Esto es lo que debe tener en cuenta (y cómo mantenerse protegido)
Con un puntaje del 51.5%, la investigación profunda fue “significativamente mejor” y “es particularmente efectivo para responder a las preguntas nicho y no intuitivas que requieren navegar por numerosos sitios web”, escriben Wei y Team.
Sin embargo, también encontraron que GPT-4O que usa navegación e investigación profunda podría errar al estar “demasiado confiado” sobre las respuestas incorrectas, que se conoce como un error de calibración.
“Los modelos con capacidades de navegación como GPT-4O con navegación e investigación profunda exhiben un error de calibración más alto”, escriben, “, lo que sugiere que el acceso a las herramientas web puede aumentar la confianza del modelo en respuestas incorrectas. Esto se alinea con las observaciones de que la investigación profunda lucha con la calibración de confianza y, a menudo, no puede transmitir la incertidumbre con precisión en el presente”.
Para corregir el error de calibración, hicieron otra prueba con una investigación profunda, en la que el modelo tuvo que generar hasta 64 respuestas a cada pregunta. Luego, hicieron que el modelo eligiera lo mejor de ellos. Cuando lo hizo, la investigación profunda fue bastante buena para elegir la respuesta correcta entre todas las propuestas.
Eso, escriba Wei y Team, sugiere que “el modelo con frecuencia ‘sabe’ cuando es correcto, incluso si lucha por expresar esa certeza como una probabilidad calibrada”.
También: El último chip de Google se trata de reducir un gran costo oculto en AI
También señalan que el éxito de la investigación profunda mejora con más computación agregada cuando busca la web. Dicho de otra manera, “el rendimiento escala suavemente en función de la cantidad de cómputo de tiempo de prueba utilizado”. Eso se cuadraba con una tendencia creciente de lanzar más chips de GPU a la tarea de inferencia.
Wei y el equipo no ofrecen directamente ninguna hipótesis sobre por qué la investigación profunda falla casi la mitad del tiempo, pero la respuesta implícita está en la escala de su capacidad con más cálculo. A medida que ejecutan tareas más paralelas y solicitan al modelo que evalúe múltiples respuestas, la precisión escala más allá del 75% de las preguntas respondidas.
La implicación es que es esencial elegir estrategias que obligen al modelo a evaluar sus propios esfuerzos en lugar de simplemente perseguir una sola respuesta. Sin esa etapa de evaluación, el modelo lucha una buena parte del tiempo.
Además: con los modelos de IA que se golpean cada punto de referencia, es hora de la evaluación humana
Un gran agujero en Browsecomps, reconocen los autores, es que se limita a preguntas que son fáciles de analizar para la computadora y cuyas respuestas son fáciles de verificar. Ninguna de las 1.266 preguntas incluyó “respuestas largas o capacidad para resolver la ambigüedad en las consultas de los usuarios”.
Como resultado, el browsecompl, argumentan, prueba las funciones “centrales” de los agentes de IA, pero no es integral. “El modelo debe ser muy competente para localizar piezas de información difíciles de encontrar, pero no está garantizado que esto se generalice a todas las tareas que requieren navegación”.
La investigación profunda está disponible para los usuarios de las suscripciones PLUS y Pro Operai.
¿Quieres más historias sobre AI? Regístrese para la innovaciónnuestro boletín semanal.