Noticias
OpenAI Deep Research Explains Itself

If you will be in San Francisco on February 13th, consider attending my reader dinner, New World Dinner 4.
I asked OpenAI Deep Research to explain itself. The result is impressively factual, at least at an initial read-through. I did catch a few errors, which are identified in footnotes, but it is impressively few errors.
More specifically, I asked for “a thorough report on the technical breakthrough in hardware, algorithm design, product engineering, and logistics necessary to create OpenAI Deep Research.” I have edited it briefly to reduce redundancy, but the factual content is largely unchanged.
The reports generated by ODR can be heavily repetitive and seen artificially long. Ideas spill out of their designated section and are repeated (sometimes in ways that are not relevant) in other sections. The excessive use of brackets for examples in run-on sentences also bothers me. Both these elements remain to some degree in the edited version, but are heavily edited out. There was some amount of topic drift outside of the specified topics.
Enjoy the following, informative of ODR in both form and content!
Early AI Hardware (Pre-GPU/TPU): Before GPUs and TPUs became dominant, researchers experimented with various specialized hardware for AI. Early vector processors and co-processors were used to accelerate linear algebra operations central to neural networks. Intel’s ETANN in the late 1980s used analog circuits for neural computations. By the early 1990s, all-digital neural network chips (e.g. the Nestor/Intel Ni1000) appeared, and digital signal processors (DSPs) were repurposed to speed up tasks like optical character recognition. Field-programmable gate arrays (FPGAs) were also explored for neural network acceleration as early as the 1990s, offering customizable hardware pipelines, though they often traded off maximum throughput for flexibility. These pre-GPU advances established the principle that domain-specific hardware could dramatically boost AI workloads by exploiting parallelism and low-precision arithmetic, a lesson that paved the way for later GPU and TPU innovations.
Graphics Processing Units (GPUs): Originally designed for rendering graphics, GPUs in the 2000s were retrofitted for general-purpose computing, excelling in the matrix and vector operations needed for machine learning. A modern GPU contains thousands of smaller cores arranged for massive parallelism, a large on-board memory (VRAM), and a fast memory hierarchy optimized for throughput. GPU manufacturers introduced AI-specific architectural features. For example, NVIDIA’s Volta architecture (2017) added Tensor Cores that perform mixed-precision matrix multiply-accumulate operations, delivering up to ~125 TFLOPS on 16-bit calculations in a single chip. These innovations dramatically increased training speed by performing many multiply-adds in hardware concurrently. GPUs also leverage high-bandwidth memory (HBM in newer models) to feed data to the cores quickly, and use programming models like CUDA to let developers optimize memory access patterns and parallel execution. Thanks to their programmability and an existing ecosystem from the graphics world, GPUs became the workhorse for neural networks.
Tensor Processing Units (TPUs) and ASICs: TPUs are application-specific integrated circuits (ASICs) developed by Google specifically for neural network workloads. First deployed in Google’s data centers in 2015, the TPU v1 was tailored for the inference phase of deep learning. Its core was a 65,536-unit systolic array (matrix multiply unit) operating on 8-bit integers, achieving a peak of 92 trillion operations per second, backed by 28 MiB of on-chip SRAM for fast data access. By stripping out general-purpose features (caches, branch prediction, etc.), TPUs sacrificed versatility in favor of determinism and efficiency. The initial TPU proved to be “about 15×–30× faster at inference than the contemporary GPU or CPU” (Nvidia K80 and Intel Haswell), while delivering 30×–80× higher performance per watt. Such gains came partly from the TPU’s streamlined dataflow design and aggressive low-precision computing. Subsequent TPU generations (v2, v3, v4) incorporated support for training (using bfloat16/FP16 for higher numeric range), much larger on-chip memory and high-bandwidth off-chip memory (HBM), and massive scalability via specialized interconnects between chips in a TPU pod. TPUs are cloud-hosted and optimized for Google’s software stack (TensorFlow XLA compiler). They are essentially hardware-as-a-service for AI. Other companies have similarly built AI ASICs – e.g. Amazon’s Inferentia for inference and Trainium for training in AWS data centers – aiming to outperform general GPUs by focusing on the matrix/tensor operations common to deep learning. These ASICs exemplify the trend of vertical integration, where the hardware is co-designed with machine learning algorithms for maximum efficiency.
GPU vs. TPU – Performance, Cost, and Scalability: GPUs and TPUs represent two different approaches to AI hardware:
-
Raw Performance: TPUs tend to have an edge in raw throughput for dense tensor operations. For example, a single TPU v3 core can deliver 123 TFLOPs for BF16 multiply-add, comparable to or higher than a high-end GPU, and Google reported order-of-magnitude gains in throughput per dollar for TPUs on large neural workloads (infoq.com). However, GPUs have narrowed the gap by introducing similar tensor accelerators and by excelling at tasks requiring flexibility or high precision (e.g. scientific computing or custom operations). For many models, modern GPUs achieve training speeds on par with TPU pods when using optimized libraries.
-
Cost & Ecosystem: GPUs benefit from economies of scale and a broad market. They can be deployed from a single desktop up to supercomputer clusters, and the GPU software ecosystem (CUDA, PyTorch, etc.) is very mature. This makes GPUs highly adaptable – researchers can experiment with new model types without waiting for new hardware. TPUs can offer lower cost-per-training for large production workloads, but they are less accessible for small-scale use and require using Google’s platform. Cost also depends on utilization – a TPU pod is cost-effective when fully utilized for large training jobs, whereas idle time or smaller jobs might waste its capacity.
-
Scalability: Both GPUs and TPUs scale to massive clusters, but the strategies differ. GPU clusters often use high-speed interconnects like NVLink and InfiniBand to connect dozens or hundreds of GPUs; Nvidia’s DGX SuperPOD, for instance, uses InfiniBand to ensure 1600+ GB/s cross-node bandwidth for scaling to thousands of GPUs. Google’s TPU pods, on the other hand, have an ultra-fast custom mesh network connecting up to thousands of TPU chips, allowing near-linear scaling on training jobs designed for TPU infrastructure. In practice, TPUs can be easier to scale for very large training runs because the hardware and software are designed together. GPU clusters can also scale well but may require more engineering by the user.
-
Adaptability: GPUs are general-purpose processors. Aside from neural nets, they can accelerate graphics, physics simulations, or data analytics. This versatility means a GPU investment can be repurposed across different workloads and GPUs readily accommodate new model architectures or dynamic neural network operations that weren’t anticipated by hardware designers. TPUs, in contrast, are more specialized for matrix-heavy neural network patterns. Within their domain TPUs are programmable. They support many network architectures via high-level TensorFlow/XLA code. Moreover, Google continues to broaden their capabilities each generation. In summary, GPUs offer broad adaptability and a huge community/stack, while TPUs offer brute-force efficiency for mainstream deep learning tasks.
From Early AI Algorithms to Transformers: The evolution of AI algorithms has been marked by a series of breakthroughs that increased model expressiveness and scalability. Early AI models in the mid-20th century were limited by computational power and algorithmic understanding. The introduction of backpropagation in the 1980s enabled multi-layer neural networks to learn complex functions, leading to the first wave of deep learning (e.g. LeCun’s CNN for handwriting in 1989). Recurrent neural networks (RNNs) and their gated variants (LSTMs, GRUs in the 1990s) brought sequence modeling to the forefront, proving effective for speech and language by maintaining state across time steps. However, RNNs suffered from sequential processing constraints – they process one token at a time, making it hard to parallelize and capturing long-range dependencies was tricky even with gating mechanisms (mchromiak.github.io).
In the mid-2010s, the attention mechanism emerged as a game-changer. First used alongside RNNs in machine translation (Bahdanau et al., 2015) to allow models to focus on relevant parts of the input sequence, attention opened the door to better context handling. The culmination of these ideas was the Transformer architecture (Vaswani et al., 2017), which eschewed recurrence entirely and relied solely on attention to model global relationships in sequences. By encoding the position of tokens and using multi-head self-attention, Transformers can attend to different parts of a sequence in parallel, overcoming the bottlenecks of RNNs. This parallelism meant that Transformers could be trained much faster on GPUs/TPUs than RNN-based models for the same sequence lengths (mchromiak.github.io).
Within just a couple of years, transformers became the foundation of most state-of-the-art models in NLP, vision, and beyond, owing to their scalability and superior performance on long-range dependencies. They made major algorithmic breakthroughs: Multi-head attention allows the model to learn different types of relationships simultaneously. Positional encoding injects order information without recurrence. These were key enablers for this transformer revolution. These innovations, along with techniques like layer normalization and residual connections, allowed training extremely deep networks that converge faster and generalize better, setting the stage for today’s large-scale models.
Key Components Enabling Transformers: A few specific innovations were crucial for modern transformer-based networks.
(1) Scaled Dot-Product Attention – a mechanism that lets the model weigh the relevance of different tokens to each other, with a scaling factor to keep gradients stable. This idea, combined with multi-head attention, means the model effectively has multiple attention “subspaces” to capture different aspects of similarity in the data.
(2) Positional Encoding – since transformers have no built-in notion of word order (unlike RNNs which process sequentially), Vaswani et al. introduced adding sinusoidal position embeddings to token representations, giving the model awareness of sequence positions. This allowed the attention mechanism to consider relative positions.
(3) Feed-Forward and Residual Layers – each transformer layer includes a position-wise feed-forward network and uses residual connections and layer normalization, which help train very deep architectures by mitigating vanishing gradients and stabilizing learning.
(4) Parallelization Strategies – transformers significantly reduce the number of sequential operations needed to relate two distant positions in a sequence. In RNN-based models, the number of steps to connect tokens grows linearly with their distance. Transformers reduce this to one attention pass regardless of distance. This property, combined with parallel computation of sequence elements, means training time can be dramatically shorter for long sequences. Replacing recurrence with self-attention “leads to significantly shorter training time” due to the ability to parallelize sequence processing (mchromiak.github.io) .
Additionally, researchers developed better optimization techniques (like Adam optimizer, learning rate schedulers) and training tricks (dropout, initialization schemes). While not specific to transformers, they enabled stable training of very large models that would have been unstable before. The transformer architecture’s success is a prime example of algorithm design co-evolving with hardware capabilities. It trades off some computational intensity (O(n²) attention) for much greater parallelism, which is a good trade in the era of abundant GPU/TPU compute.
Evolution of “Chain of Thought” Reasoning: A recent algorithmic development in AI is the concept of chain-of-thought (CoT) reasoning, particularly in large language models. Instead of providing an answer directly, the model is encouraged to generate a sequence of intermediate reasoning steps – essentially, to “think out loud.” Wei et al. (2022) demonstrated that simply by prompting a sufficiently large language model to output a step-by-step solution, one can significantly boost its problem-solving capabilities. This was surprising because it did not require changing the model’s architecture – it leveraged the model’s latent knowledge when guided properly.
The CoT approach improves problem-solving efficiency because the model can break a tough problem into smaller chunks, reducing errors at each step and allowing backtracking if needed. It’s an active research area, with work showing that chain-of-thought methods can lead to emergent abilities in very large models that smaller models do not exhibit.
Best Practices for Large-Scale AI Software: Engineering around large AI models (such as GPT-3-scale transformers) requires disciplined software practices to ensure reliability and efficiency. Teams now adopt MLOps practices – an extension of DevOps for machine learning – to streamline the model lifecycle from development to deployment. MLOps involves automation of data pipelines, reproducible training runs, model versioning, CI/CD for model deployment, and continuous monitoring of models in production (developer.harness.io).
Challenges in Training and Tuning at Scale: Training large AI models brings unique engineering challenges. The sheer scale of data and parameters means that distributed training is often necessary – no single machine has enough memory or compute. This requires strategies like data parallelism (split batches across GPUs), model parallelism (split the model itself across devices), or pipeline parallelism (chaining model segments on different hardware) – often all three in hybrid forms for trillion-parameter models. Sophisticated frameworks have been developed to automate these sharding strategies, but engineering oversight is needed to handle issues like synchronization, communication overhead, and fault tolerance. Google’s GPipe (2019) demonstrated how pipeline parallelism can train giant models by partitioning layers across accelerators and using micro-batches to keep all partitions busy. Such techniques require careful orchestration to ensure that each batch of data and the model partitions are in the right place at the right time. Engineers must also optimize the training throughput by tuning things like batch size (too small and GPUs underutilize, too large and convergence might slow or memory overflows).
Deployment, Inference, and MLOps: Once a model is trained, serving it to end-users at scale is another engineering feat. Large models often need to run on clusters of machines with accelerators to handle high query volumes with low latency. Best practices here include efficient serving architectures and model compression. The latter uses techniques like knowledge distillation, quantization, or sparse pruning to reduce model size and speed up inference.
Inference optimizations like using half-precision or INT8 quantized models can dramatically cut costs. Many industry deployments now run neural nets in INT8 where accuracy permits, since it doubles the throughput on compatible hardware. From a software engineering standpoint, deploying AI models involves a robust CI/CD pipeline: new model versions should go through automated integration tests.
MLOps also covers monitoring and maintenance: models in production need continuous monitoring for data drift, performance drift, and even adversarial or unexpected inputs. If anomalies are detected, an automated pipeline might trigger a model retraining or fallback to a safe model. Automation is key – leading AI firms have continuous training systems where models are periodically retrained on fresh data and redeployed, much like how software is continuously integrated and deployed (ml-ops.org, developer.harness.io). All these engineering practices ensure that large-scale AI models remain reliable, accurate, and efficient as they move from research to real-world products.
AI Hardware Supply Chain Challenges: The rapid growth of AI has put enormous strain on the global hardware supply chain. Cutting-edge AI training and inference rely on advanced semiconductors (GPUs, TPUs, ASICs), which in turn depend on a complex, global semiconductor manufacturing pipeline. In recent years, demand for AI chips has surged – Deloitte projected AI chip sales would account for 11% of a $576B semiconductor market in 2024, with generative AI and LLMs driving many enterprises to acquire GPUs by the thousands. This surge (over 20% increase in demand year-on-year) is straining the supply chain, leading to chip shortages and long lead times for acquiring hardware. A few factors make the supply fragile:
(1) Concentrated Suppliers – a large share of advanced AI chips are manufactured by TSMC in Taiwan or Samsung in South Korea. Any disruption (natural disaster, geopolitical tension) affecting these manufacturers or the specialized fabs that produce 5nm/7nm chips can create global bottlenecks. The sector “relies on a few key suppliers… any disruption can create significant bottlenecks, delaying production and impacting the entire supply chain.”
(2) Complex Production Process – producing high-end GPUs/TPUs involves dozens of steps across different countries (design in the US, fabrication in Taiwan, packaging and testing elsewhere). Production can halt due to shortages in critical materials like silicon wafers, photoresist chemicals, or neon gas for lasers. During the COVID-19 pandemic and subsequent supply crunch, lead times for GPU orders stretched to over 6-12 months, affecting not just research labs but any company relying on that hardware (logicalis.com, techrepublic.com).
(3) Geopolitical Risks – export controls and trade disputes also play a role; for instance, recent regulations on chip exports have limited access to top-tier AI GPUs in certain countries, which not only impacts availability but also prompts efforts to develop indigenous AI chips. To mitigate these issues, governments and companies are investing in diversifying and shoring up the supply chain. Initiatives like the US CHIPS Act (2022) earmark tens of billions of dollars to build new fabs in the US. However, building new semiconductor fabs is a slow process – it can take 2–3 years and billions of dollars to get a new plant online, and even then, ramping up yield for cutting-edge nodes is nontrivial (datacenterpost.com).
Data Center Infrastructure Constraints: Building and operating the data centers that power advanced AI is another logistical challenge. AI supercomputing clusters (like those used for training GPT-4 or other large models) pack thousands of accelerators together, which creates extraordinary demands on power and cooling. Energy consumption is a major concern: training a single large model can consume megawatt-hours of electricity. For example, GPT-3’s training is estimated to have used ~1,300 MWh, equivalent to the annual power usage of 100+ U.S. homes (weforum.org). Data centers must be designed to deliver this power (often tens of MW for an AI cluster) and remove the corresponding heat. This has led to specialized cooling solutions, like liquid cooling plates on GPUs and even full immersion cooling for servers, to allow dense packing of chips. From a facilities standpoint, companies often choose locations with cheap electricity and cool climates for AI data centers to manage operating costs and sustainability concerns.
Additionally, bandwidth and networking inside these clusters are a limiting factor. Distributing a training job across hundreds of GPUs/TPUs requires extremely high network throughput and low latency. Architects use high-bandwidth switches, and sometimes novel network topologies (e.g. Fat-Tree or Dragonfly networks), to ensure each node can communicate at tens or hundreds of gigabits per second. Communication overhead can eat into scaling efficiency, so researchers have to optimize communication patterns to fully utilize big clusters. Another constraint is data storage and pipeline: feeding terabytes of training data to thousands of accelerators without stalls requires parallel storage systems (like NVMe RAID arrays or distributed file systems) that can stream data at dozens of GB/s. If the I/O can’t keep up, the expensive compute sits idle. Many AI datacenters now employ high-throughput flash storage and caching to pre-load datasets into local SSDs or even GPU memory. All these considerations mean that scaling AI is not just about more GPUs – it’s about balancing compute, memory, networking, and storage. As one illustration, NVIDIA’s DGX SuperPOD design notes that each node has to sustain >40 GB/s I/O to not bottleneck the GPUs. Ensuring such performance across an entire cluster is a major logistical feat, requiring careful planning of data center layout, power distribution, and network architecture.
Emerging Solutions and Future Trends: To address these logistical hurdles, the industry is exploring several promising directions. On the hardware supply side, one trend is the development of chiplet-based designs. Instead of one large, monolithic die (which is harder to manufacture at high yield), companies like AMD and Intel are building chips out of multiple smaller dies (chiplets) connected by high-speed interfaces. This improves yield and flexibility – different chiplets (compute, memory, I/O) can be mixed and matched. It could alleviate some supply issues by allowing more modular production. Another approach is wafer-scale integration: Cerebras Systems famously created a wafer-sized chip (over 80,000 cores on one huge silicon wafer) to accelerate AI, eliminating off-chip communication for certain workloads. While niche, it shows the appetite for novel form factors to speed up AI. In networking, there’s work on optical interconnects and silicon photonics to eventually replace or augment copper links, which could dramatically increase bandwidth and reduce latency between nodes, easing the data movement problem.
There is also a push toward distributed training across data centers. If one center doesn’t have enough capacity, frameworks could in theory utilize resources from multiple locations. However, network latency makes this challenging for synchronous training.
Another future trend is algorithmic: reducing the need for brute-force compute via smarter training methods. Techniques like sparsity (pruning models), low-rank approximations, and progressive training aim to cut down the required compute without sacrificing results. If successful, these could relieve pressure on hardware and infrastructure by making AI models less hungry for resources. Lastly, the industry is acutely aware of geopolitical considerations – there’s a focus on building more resilient and geographically distributed supply chains. This might mean more chip fabs in different countries, standardizing certain components to be interchangeable, and maintaining strategic stockpiles of critical materials.
In summary, while today’s AI boom is taxing the logistics of compute, a combination of technological innovation and strategic planning is underway to ensure that OpenAI Deep Research-scale projects remain feasible. The path involves not just more powerful chips, but smarter algorithms, better software infrastructure, and robust planning for the “nuts and bolts” that underpin AI at global scale. Each breakthrough in hardware, algorithms, product engineering, or logistics brings us a step closer to truly ubiquitous and sustainable advanced AI systems, enabling researchers to push the boundaries of what AI can do.
https://chatgpt.com/share/67a3a20c-d2d4-8005-92a7-feae93cb9b1e
Bonus: the o1-pro assisted factcheck did not help