Noticias

¿Se puede confiar en Sam Altman con el futuro?

Published

on

En 2017, poco después de que los investigadores de Google inventaron un nuevo tipo de red neuronal llamada Transformer, un joven ingeniero de OpenAi llamado Alec Radford comenzó a experimentar con ella. Lo que hizo que la arquitectura del transformador fuera diferente a la de los sistemas de IA existentes fue que podía ingerir y hacer conexiones entre los más grandes volúmenes de texto, y Radford decidió entrenar su modelo en una base de datos de siete mil libros en inglés no publicados: ruido, aventura, cuentos especulativos, la gama completa de fantasía e invención humana. Luego, en lugar de pedirle a la red que traduzca el texto, como lo habían hecho los investigadores de Google, lo llevó a predecir la siguiente palabra más probable en una oración.

La máquina respondió: una palabra, luego otra y otra, cada nuevo término inferido de los patrones enterrados en esos siete mil libros. Radford no le había dado reglas de gramática o una copia de Strunk and White. Simplemente lo había alimentado con historias. Y, de ellos, la máquina parecía aprender a escribir por su cuenta. Se sintió como un truco mágico: Radford volcó el interruptor, y algo vino de la nada.

Sus experimentos sentaron las bases para ChatGPT, lanzadas en 2022. Incluso ahora, mucho después de esa primera Jolt, la generación de texto aún puede provocar una sensación de incansable. Pídale a ChatGPT que cuente una broma o escriba un guión, y lo que devuelve, en ración bueno, pero de manera confiable, es una especie de curva estadística adecuada para el vasto corpus en el que fue entrenado, cada oración que contiene rastros de la experiencia humana codificada en esos datos.

Cuando estoy redactando un correo electrónico y un tipo, “Hola, muchas gracias por”, luego pausa, y el programa sugiere “tomar”, luego “el”, entonces “tiempo”, me he vuelto recientemente consciente de cuál de mis pensamientos diverge del patrón y qué se ajusta a él. Mis mensajes ahora están sombreados por la imaginación general de los demás. Muchos de los cuales, al parecer, quieren agradecer a alguien por tomar. . . el . . . tiempo.

Que el avance de Radford ocurrió en Operai no fue un accidente. La organización había sido fundada, en 2015, como un “Proyecto Manhattan sin fines de lucro para IA”, con fondos tempranos de Elon Musk y el liderazgo de Sam Altman, quien pronto se convirtió en su cara pública. A través de una asociación con Microsoft, Altman aseguró el acceso a poderosas infraestructuras informáticas. Pero, para 2017, el laboratorio todavía estaba buscando un logro de firma. En otra pista, los investigadores de Operai enseñaban a un robot virtual en forma de T para voltear: el bot intentaría movimientos aleatorios, y los observadores humanos votarían sobre qué se parecían a un flip. Con cada ronda de retroalimentación, mejoró, minimalmente, pero medidablemente. La compañía también tenía un espíritu distintivo. Sus líderes hablaron sobre la amenaza existencial de la inteligencia general artificial, el momento, definida vagamente, cuando las máquinas superarían la inteligencia humana, mientras la persiguen implacablemente. La idea parecía ser que la IA era potencialmente tan amenazante que era esencial construir una buena IA más rápido que cualquier otra persona podría construir una mala.

Incluso los recursos de Microsoft no eran ilimitados; Los chips y la potencia de procesamiento dedicado a un proyecto no se pueden usar para otro. A raíz del avance de Radford, el liderazgo de Openai, especialmente el genial Altman y su cofundador y científico jefe, el débilmente chamánico Ilya Sutskever, tomó una serie de decisiones fundamentales. Se concentrarían en modelos de idiomas en lugar de, por ejemplo, los robots de flujo posterior. Dado que las redes neuronales existentes ya parecían capaces de extraer patrones de los datos, el equipo decidió no concentrarse en el diseño de la red, sino para acumular la mayor cantidad de datos de capacitación posible. Se movieron más allá del caché de libros inéditos de Radford y se convirtieron en un pantano de transcripciones de YouTube y charla de tableros de mensajes: el lenguaje raspado de Internet en un arrastre generalizado.

Ese enfoque para el aprendizaje profundo requirió más poder informático, lo que significó más dinero, ejerciendo tensión en el modelo original sin fines de lucro. Pero funcionó. GPT-2 fue lanzado en 2019, un evento de época en el mundo de la IA, seguido por el ChatGPT más orientado al consumidor en 2022, que causó una impresión similar en el público en general. Los números de usuario aumentaron, al igual que una sensación de impulso místico. En un retiro fuera del sitio cerca de Yosemite, Sutskever, según los informes, incendió una efigie que representa la inteligencia artificial no alineada; En otro retiro, lideró a colegas en un canto: “Siente el Agi. Siente el agi”.

En el espinoso “Imperio de la IA: Dreams and Nightmares in Sam Altman’s OpenAi” (Penguin Press), Karen Hao rastrea las consecuencias de los avances de GPT a través de los rivales de OpenAi: Google, Meta, Antropic, Baidu, y argumenta que cada compañía, a su manera, se refleja las elecciones de Altman. El modelo de escala OpenAI a toda costa se convirtió en el incumplimiento de la industria. El libro de Hao es a la vez admirablemente detallado y un dedo puntiagudo largo. “Era específicamente OpenAi, con sus orígenes multimillonario, una inclinación ideológica única y la unidad singular de Altman, la red y el talento de recaudación de fondos, que creó una combinación madura por su visión particular de emerger y hacerse cargo”, escribe. “Todo lo que Openai hizo fue lo contrario de inevitable; los costos globales explosivos de sus modelos masivos de aprendizaje profundo, y la peligrosa raza que provocó en toda la industria para escalar tales modelos a los límites planetarios, solo podría haber surgido del único lugar que realmente hizo”. En otras palabras, hemos sido seducidos, llenos por la retórica espeluznante y de alta mentalidad de riesgo existencial. La historia de la evolución de la IA durante la última década, en la narración de Hao, no se trata realmente de la fecha de adquisición de la máquina o el grado de control humano sobre la tecnología, los términos del debate de AGI. En cambio, es una historia corporativa sobre cómo terminamos con la versión de AI que tenemos.

Hao escribe el “pecado original” de este brazo de tecnología, yacía en una decisión de un matemático de Dartmouth llamado John McCarthy, en 1955, para acuñar la frase “inteligencia artificial” en primer lugar. “El término se presta a las exageraciones casuales antropomorfizantes y sin aliento sobre las capacidades de la tecnología”, observa. Como evidencia, señala a Frank Rosenblatt, un profesor de Cornell que, a finales de los años cincuenta, ideó un sistema que podía distinguir entre cartas con un pequeño cuadrado a la derecha contra la izquierda. Rosenblatt lo promovió como el cerebro, en su camino hacia la sensibilidad y la autocreplicación, y estas afirmaciones fueron recogidas y transmitidas por la Nueva York Veces. Pero una vacilación cultural más amplia sobre las implicaciones de la tecnología significaba que, una vez que OpenAi, hizo su avance, Altman, su CEO, se veía para ser visto no solo como un administrador fiduciario sino también como ético. La pregunta de fondo que comenzó a burbujear alrededor del valle, Keach Hagey escribe en “The Optimist: Sam Altman, OpenAi, y la carrera para inventar el futuro” (Norton): “Primero susurró, luego murmuró y luego aparece en ensayos en línea elaborados de los desertores de la compañía: ¿podemos confiar en esta persona para llevarnos a Agi?”

Dentro del mundo de los fundadores de la tecnología, Altman podría haber parecido un candidato bastante confiable. Salió de sus veinte años no solo muy influyente y muy rico (lo cual no es inusual en Silicon Valley), sino con su reputación moral básicamente intacta (lo cual es). Criado en un suburbio de St. Louis en un hogar judío de reforma, el mayor de cuatro hijos de un desarrollador de bienes raíces y un dermatólogo, había sido identificado desde el principio como una especie de niño polimatico en John Burroughs, una escuela preparatoria local. “Su personalidad me recordó a Malcolm Gladwell”, le dice a Hagey la cabeza de la escuela, Andy Abbott. “Puede hablar de cualquier cosa y es realmente interesante”: computadoras, política, Faulkner, derechos humanos.

Altman salió como gay a los dieciséis años. En Stanford, según Hagey, cuya biografía es más convencional que la de Hao, pero es bastante convincente, lanzó una campaña estudiantil en apoyo del matrimonio homosexual y entretuvo brevemente la posibilidad de tomarlo nacional. En una feria empresarial durante su segundo año, en 2005, el altman físicamente leve se paró en una mesa, abrió su teléfono, declaró que la geolocalización era el futuro e invitó a cualquier persona interesada a unirse a él. Pronto, se retiró y dirigía una compañía llamada Loopt. Abbott recordó el momento en que escuchó que su antiguo estudiante iba a la tecnología. “Oh, no vayas en esa dirección, Sam”, dijo. “¡Eres tan agradable!”

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Trending

Exit mobile version