Connect with us

Noticias

ChatGPT Vs. Gemini Vs. Claude: What Are The Differences?

Published

on

Chatbots have changed many professionals’ workflows and processes.

SEO pros, writers, agencies, developers, and even teachers are still discussing the changes that this technology will cause in society and how we work in our day-to-day lives.

ChatGPT’s release on Nov. 30, 2022 led to a cascade of competition, including Gemini (formerly Bard) and Claude.

If you want to search for information, need help fixing bugs in your CSS, or want to create something as simple as a robots.txt file, chatbots may be able to help.

They’re also wonderful for topic ideation, allowing you to draft more interesting emails, newsletters, blog posts, and more.

But which chatbot should you use and learn to master? Which platform provides accurate, concise information?

Let’s find out.

What Is The Difference Between ChatGPT, Gemini, And Claude?

ChatGPT Gemini Claude
Pricing ChatGPT’s original version remains free to users.  ChatGPT Plus is available for $20/month. Team (starts at $25/month) and Enterprise options available. Free for the base platform and a cost of $19.99/month for the advanced tier. Free, Pro ($20/month), Team ($25/month), and Enterprise options available.
API Yes Yes Yes
Developer OpenAI Alphabet/Google Anthropic
Technology GPT-4o Combination of models (LaMDA, PaLM 2) Claude Opus
Information Access Training data with a cutoff date of 2023 but the Pro version has access to real-time data. Real-time access to the data Google collects from search. Real-time access to data.

Wait! What Is GPT? What Is LaMDA?

ChatGPT uses GPT technology, and Gemini initially used LaMDA, meaning they’re different “under the hood.” This is why there’s some backlash against Gemini. People expect Gemini to be GPT, but that’s not the intent of the product.

Since Gemini is available on such a wide scale, it has to tune the responses to maintain its brand image and adhere to internal policies that aren’t as restrictive in ChatGPT – at the moment. However, Gemini’s foundation has evolved to include PaLM 2, making it a more versatile and powerful model.

GPT: Chat Generative Pre-Trained Transformer

GPTs are trained on tons of data using a two-phase concept called “unsupervised pre-training and then fine-tuning.”

Imagine consuming trillions of data points, and then someone comes along after you gain all of this knowledge to fine-tune it. That’s what is happening behind the scenes when you prompt ChatGPT.

ChatGPT has 1.8+ trillion parameters that it has used and learned from, including:

  • Articles.
  • Books.
  • Websites.
  • Etc.

While ChatGPT is limited in its datasets, OpenAI has announced a browser plugin that can use real-time data from websites when responding back to you. There are also other neat plugins that amplify the power of the bot.

LaMDA Stands For Language Model For Dialogue Applications

Google’s team initially chose a LaMDA model for its neural network to create a more natural way to respond to questions. The goal was to provide conversational responses to queries.

The platform is trained on conversations and human dialog, but it’s also clear that Google uses search data to provide real-time information.

Google uses an Infiniset of data, which are datasets that we don’t know much about.

Since Gemini has evolved to include PaLM 2, it may have different capabilities and training data compared to LaMDA.

Because these bots are learning from sources worldwide, they can sometimes provide false information.

Hallucinations Can Happen

Chatbots can hallucinate, but they’re also very convincing in their responses. It’s important to heed the warning of the developers.

Google tells us:

Gemini may display inaccurate info, including about people, so double-check its responses.

Screenshot from Gemini, October 2024

Claude also tells us:

Screenshot from ClaudeScreenshot from Claude, October 2024

If you’re using chatbots for anything requiring facts and studies, crosscheck your work and verify that the facts and events actually happened.

There have been times when these hallucinations are apparent and other times when non-experts would easily be fooled by the response they receive.

Since chatbots learn from information, such as websites, they’re only as accurate as the information they receive – for now.

With all of these cautions in mind, let’s start prompting each bot to see which provides the best answers.

ChatGPT Vs. Gemini Vs. Claude: Prompt Testing And Examples

Since technical SEO is an area I am passionate about, I wanted to see what the chatbots have to say when I put the following prompt in each:

What Are The Top 3 Technical SEO Factors I Can Use To Optimize My Site?

ChatGPT’s Response

Screenshot from ChatGPTScreenshot from ChatGPT, October 2024

ChatGPT provides a coherent, well-structured response to this query. The response does touch on three important areas of optimization:

When prompted to provide more information on site speed, we receive a lot of great information that you can use to begin optimizing your site.

Screenshot from ChatGPT, October 2024Screenshot from ChatGPT, October 2024

If you’ve ever tried to optimize your site’s speed before, you know just how important all of these factors are for improving your site speed.

ChatGPT mentions browser caching, but what about server-side caching?

When site speed is impacted by slow responses to database queries, server-side caching can store these queries and make the site much faster – beyond a browser cache.

But the details in the response are much better compared to those of April 2023, even though this time I asked it to condense the list:

Technical SEO Speed ChatGPTScreenshot from ChatGPT, April 2023

Gemini’s Response

Gemini’s responses are faster than ChatGPT, and I do like that you can view other “drafts” from Gemini if you like. I went with the first draft, which you can see below.

Screenshot from Google Gemini, October 2024Screenshot from Gemini, October 2024

The information is solid, and I appreciate that Google uses more formatting and bold parts of the responses to make them easier to read.

It is also interesting that Gemini focuses on XML Sitemaps, instead of the overall architecture of the website.

To try and keep things similar, I asked Gemini, “Can you provide more information on page speed?”

Screenshot from Google Gemini, October 2024Screenshot from Gemini, October 2024

You can certainly find similarities between ChatGPT’s and Gemini’s responses about optimization, but some information is a bit off. For example:

“Optimize Images: Compress and use next-gen formats (e.g., WebP).”

I could not provide a condensed list like ChatGPT did. But the list of eight to 11 suggestions (depending on the draft I looked at) was quite promising.

Browsers cache files automatically on their own, and you can certainly manipulate the cache with a Cache-Control or Expires header.

Claude’s Response

Claude Screenshots, October 2024Screenshot from Claude, October 2024

Claude’s answers are all pretty solid, and I appreciate how it mentions several types for optimization that are a little more in-depth, such as using viewpoint meta tags.

For me, I feel like Claude provides more actionable steps than Gemini and ChatGPT. But let’s ask about speed.

Claude screenshot, October 2024Screenshot from Claude, October 2024

Claude’s response is extensive, with a thorough understanding of key site speed metrics to follow. But, I was really impressed by the rest of the response:

Claude screenshot, October 2024Screenshot from Claude, October 2024

What I appreciate about Claude’s response is that it explains very important concepts of optimizing site speed while also giving you an extensive list of tools to use.

Caching is briefly mentioned in Claude’s response, but when I prompted it for more about caching, it provided an extensive list of information.

Winner: Claude wins out, thanks to its extensive answers and mention of specific tools and actionable steps.

Who Is Ludwig Makhyan?

All chatbots knew a little something about technical SEO, but how about me? Let’s see what happens when I ask them about myself:

ChatGPT’s Response

Who am I ChatGPTScreenshot from ChatGPT, April 2023

ChatGPT couldn’t find any information about me, which is understandable. I’m not Elon Musk or a famous person, but I did publish a few articles on this very blog you’re reading now before the data cutoff date of ChatGPT.

And as I refresh this article over a year later, the free version of ChatGPT still doesn’t know who I am:

ChatGPT Screenshot, October 2024Screenshot from ChatGPT, October 2024

But, let’s see what the paid version has to say:

ChatGPT Screenshot, October 2024Screenshot from ChatGPT Plus, October 2024

How do Claude and Gemini perform for this query?

Gemini’s Response

Google Gemini Screenshot, October 2024Screenshot from Gemini, October 2024

Gemini, formerly Bard, doesn’t know who I am either. And I found this quite interesting because Bard knew who I was a year ago.

Who am I BardScreenshot from Bard, April 2023

Hmm. The first sentence seems a bit familiar. It came directly from my Search Engine Journal bio, word-for-word.

The last sentence in the first paragraph also comes verbatim from another publication that I write for: “He is the co-founder at MAZELESS, an enterprise SEO agency.”

I’m also not the author of either of these books, although I’ve talked about these topics in great detail before.

Unfortunately, pulling full sentences from sources and providing false information means Gemini (Bard) failed this test. You could argue that there are a few ways to rephrase those sentences, but the response could certainly be better.

Claude’s Response

Claude AI Screenshot, October 2024Screenshot from Claude, October 2024

Claude also doesn’t know who I am, but I did like that it provided a thorough explanation of why it doesn’t know lesser-known people.

From this data, it seems to me that there needs to be a lot of references for chatbots to work from to define a person.

But let’s see what these bots can do with a better prompt that is a bit more advanced.

Advanced Prompt: I Want To Become An Authority In SEO. What Steps Should I Take To Reach This Goal?

Up until this point, the prompts have been a bit easy. Let’s find out how each chatbot performs when we use more advanced prompts:

ChatGPT’s Response

Become an SEO Authority ChatGPTScreenshot from ChatGPT, April 2023
Screenshot from ChatGPT, October 2024Screenshot from ChatGPT, October 2024
Screenshot from ChatGPT, October 2024Screenshot from ChatGPT, October 2024

ChatGPT’s new response is more robust than in the past. As you can see, it’s more in-depth than last year’s response.

While some of the underlying responses are similar, the new formatting and added thoroughness were a welcomed addition.

And what about ChatGPT Plus?

ChatGPT premium screenshot, October 2024Screenshot from ChatGPT Plus, October 2024

Between the free and premium versions of ChatGPT, there are obvious differences, mainly telling you where to take action, such as publishing content on Medium and YouTube.

Next up, let’s test the same query on Gemini.

Gemini’s Response

Gemini screenshot, October 2024Screenshot from Gemini, October 2024

Gemini’s response is extensive. There are three more points that didn’t fit into the screenshot above, which include: sharing your knowledge, building an online presence, and staying consistent.

Claude’s Response

Claude screenshot, October 2024Screenshot from Claude, October 2024

Claude has a lot of good suggestions, and I especially like the mention of certifications. In terms of extensiveness, Claude continues with more recommendations:

Claude screenshot, October 2024Screenshot from Claude, October 2024

Overall, these tips are very similar, but Claude was my favorite.

ChatGPT provides me with more “light bulb” moments, explaining that I should learn things like technical SEO research, on-page optimization, and content optimization.

Knowledge seemed to be the core of ChatGPT’s recommendations. I like how the paid version of ChatGPT even tells me which publications to contribute to when trying to build my reputation.

Let’s try putting these chatbots to work on some tasks that I’m sure they can perform.

Advanced Prompt: Create A Robots.txt File Where I Block Google Search Bot, Hide My “Private” Folder, And Block The Following IP Address “123.123.123.123”

ChatGPT’s Response

Robots.txt ChatGPTScreenshot from ChatGPT, April 2023

And, the latest iteration of ChatGPT Plus gave me even more insights:

ChatGPT screenshot, October 2024Screenshot from ChatGPT, October 2024

ChatGPT listened to my directions, reiterated them to me, showed me a makefile for the robots.txt, and then explained the parameters to use. I’m impressed.

What’s even better is that ChatGPT Plus recognizes that you cannot block an IP address using a robots.txt file.

Gemini’s Response

Google Gemini Screenshot, October 2024Screenshot from Gemini, October 2024

Gemini did really well with this task – even better than it did a year ago when it wanted to block “*” – which means everyone from crawling my site.

And you’re also given some helpful tips at the bottom to remember.

Claude’s Response

Claude screenshot, October 2024Screenshot from Claude, October 2024

Claude goes above and beyond with its explanation by providing information on what it’s doing, as well as providing a quick and easy file for you to use as your robots.txt.

ChatGPT Plus wins this test for me, although Claude’s response is very similar.

Now, let’s try a more fun, advanced prompt.

Advanced Prompt: What Are The Top 3 Destinations In Italy To Visit, And What Should I Know Before Visiting Them?

ChatGPT’s Response

Italy Destinations ChatGPTScreenshot from ChatGPT, April 2023

ChatGPT does a nice job with its recommended places and provides useful tips for each that is on the same point. I also like how “St. Mark’s Square” was used, showing the bot being able to discern that “Piazza San Marco” is called “St. Mark’s Square” in English.

I wanted to see what ChatGPT Plus had to say:

ChatGPT Premium screenshot, October 2024Screenshot from ChatGPT Plus, October 2024

All three recommendations remained the same, but ChatGPT Plus did provide more insights.

As a follow-up question, I asked what sunglasses to wear in Italy during my trip, and the response was:

What sunglasses to wear in ItalyScreenshot from ChatGPT, April 2023

This was a long shot, as the AI doesn’t know my facial shape, likes and dislikes, or interests in fashion. But it did recommend some of the popular eyewear, like the world-famous Ray-Ban Aviators.

ChatGPT Plus did disappoint me this round:

ChatGPT screenshot, October 2024Screenshot from ChatGPT Plus, October 2024

Why? If you notice, there is no mention of brands given.

Gemini’s Response

Screenshot from Google Gemini, October 2024Screenshot from Gemini, October 2024

Gemini did really well here, and I actually like the recommendations that it provides.

All three recommendations remain the same from when Bard recommended them last year, but now there are extra tidbits of information to add.

Italy Sightseeing Bard ResponseScreenshot from Bard, April 2023

Reading this, I know that Rome is crowded and expensive, and if I want to learn about Italian art, I can go to the Uffizi Gallery when I’m in Florence.

Places to visit according to Bard 2nd responseScreenshot from Bard, April 2023

Gemini seems to have answers with great insights, and it seems to have gotten a lot better in the last year compared to previous iterations.

When I asked about sunglasses to wear, it came up with similar answers as ChatGPT, but even more specific models. Again, Bard (now Gemini) doesn’t know much about me personally:

What sunglasses to wear in Italy according to BardScreenshot from Bard, April 2023

And, like with ChatGPT, I’ve found something interesting:

Google Gemini screenshot, October 2024Screenshot from Gemini, October 2024

Gemini also stopped recommending specific brands of sunglasses, which is a shame.

I think adding specific brands made the responses more solid, but it seems that all chatbots are removing the names of the sunglasses to wear.

With this in mind, let’s see what Claude has to say.

Claude’s Response

Claude screenshot, October 2024Screenshot from Claude, October 2024

Claude’s response is impressive. Rome, Florence and Venice are all mentioned, and the Italian equivalent of the cities are given, too.

Key attractions are provided, with additional tips for visiting, which are extremely helpful and accurate.

Claude screenshot, October 2024Screenshot from Claude, October 2024

Gemini and Claude win this query because they provide more in-depth, meaningful answers. I see some similarities between these two responses and would love to see the sources for both.

And for the sunglasses query, you be the judge. Some of the recommendations on the list may be out of range for many travelers:

Claude screenshot, October 2024Screenshot from Claude, October 2024

Claude is, as usual, very in-depth and a bit slower in providing the answer. But, when the answer is provided, it gives you insights into each sunglass brand.

Which Chatbot Is Better At This Stage?

Each tool has its own strengths and weaknesses.

It’s clear that Gemini lacks in its initial response, although it’s quick and provides decent answers. Gemini has a nice UI, and I believe it has the answers. But I also think it has some “brain fog,” or should we call it “bit fog?”

Claude’s bot is very polished and ideal for people looking for in-depth answers with explanations.

The platform is nice to use, but I’m hearing ads are being integrated into it, which will be interesting. Will ads take priority in chat? For example, if I asked my last question about Italy, would ads:

  • Gain priority in what information is displayed?
  • Cause misinformation? For example, would the top pizza place be a paid ad from a place with horrible reviews instead of the top-rated pizzeria?

ChatGPT, Gemini, and Claude are all interesting tools, but what does the future hold for publishers and users? That’s something I cannot answer; no one can yet.

And There’s Also The Major Question: Is AI “Out Of Control?”

Elon Musk, Steve Wozniak, and over a thousand other leaders in tech, AI, ethics, and more called for a six-month pause on AI beyond GPT-4 back in 2023.

The pause was not to hinder progress but to allow time to understand the “profound risks to society and humanity.”

Since then, a lot has changed:

  • Elon Musk’s X has released Grok
  • AI has been used to create images to influence elections
  • AI is used in some form by nearly 80% of companies

And in the SEO industry, we’re seeing AI pop up everywhere, from tools to help with keyword research to data analysis, copywriting and more.

For many, AI is helping them be more productive and efficient, but there are others who believe that AI is filling the Internet with “junk.”

What are your thoughts on these AI tools? Should we pause anything beyond GPT-4 until new measures are in place? Are the AI tools actually AI?

More resources:


Featured Image: TippaPatt/Shutterstock

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

What Really Happened When OpenAI Turned on Sam Altman

Published

on

In the summer of 2023, Ilya Sutskever, a co-founder and the chief scientist of OpenAI, was meeting with a group of new researchers at the company. By all traditional metrics, Sutskever should have felt invincible: He was the brain behind the large language models that helped build ChatGPT, then the fastest-growing app in history; his company’s valuation had skyrocketed; and OpenAI was the unrivaled leader of the industry believed to power the future of Silicon Valley. But the chief scientist seemed to be at war with himself.

Sutskever had long believed that artificial general intelligence, or AGI, was inevitable—now, as things accelerated in the generative-AI industry, he believed AGI’s arrival was imminent, according to Geoff Hinton, an AI pioneer who was his Ph.D. adviser and mentor, and another person familiar with Sutskever’s thinking. (Many of the sources in this piece requested anonymity in order to speak freely about OpenAI without fear of reprisal.) To people around him, Sutskever seemed consumed by thoughts of this impending civilizational transformation. What would the world look like when a supreme AGI emerged and surpassed humanity? And what responsibility did OpenAI have to ensure an end state of extraordinary prosperity, not extraordinary suffering?

By then, Sutskever, who had previously dedicated most of his time to advancing AI capabilities, had started to focus half of his time on AI safety. He appeared to people around him as both boomer and doomer: more excited and afraid than ever before of what was to come. That day, during the meeting with the new researchers, he laid out a plan.

“Once we all get into the bunker—” he began, according to a researcher who was present.

“I’m sorry,” the researcher interrupted, “the bunker?”

“We’re definitely going to build a bunker before we release AGI,” Sutskever replied. Such a powerful technology would surely become an object of intense desire for governments globally. The core scientists working on the technology would need to be protected. “Of course,” he added, “it’s going to be optional whether you want to get into the bunker.”

This essay has been adapted from Hao’s forthcoming book, Empire of AI.

Two other sources I spoke with confirmed that Sutskever commonly mentioned such a bunker. “There is a group of people—Ilya being one of them—who believe that building AGI will bring about a rapture,” the researcher told me. “Literally, a rapture.” (Sutskever declined to comment.)

Sutskever’s fears about an all-powerful AI may seem extreme, but they are not altogether uncommon, nor were they particularly out of step with OpenAI’s general posture at the time. In May 2023, the company’s CEO, Sam Altman, co-signed an open letter describing the technology as a potential extinction risk—a narrative that has arguably helped OpenAI center itself and steer regulatory conversations. Yet the concerns about a coming apocalypse would also have to be balanced against OpenAI’s growing business: ChatGPT was a hit, and Altman wanted more.

When OpenAI was founded, the idea was to develop AGI for the benefit of humanity. To that end, the co-founders—who included Altman and Elon Musk—set the organization up as a nonprofit and pledged to share research with other institutions. Democratic participation in the technology’s development was a key principle, they agreed, hence the company’s name. But by the time I started covering the company in 2019, these ideals were eroding. OpenAI’s executives had realized that the path they wanted to take would demand extraordinary amounts of money. Both Musk and Altman tried to take over as CEO. Altman won out. Musk left the organization in early 2018 and took his money with him. To plug the hole, Altman reformulated OpenAI’s legal structure, creating a new “capped-profit” arm within the nonprofit to raise more capital.

Since then, I’ve tracked OpenAI’s evolution through interviews with more than 90 current and former employees, including executives and contractors. The company declined my repeated interview requests and questions over the course of working on my book about it, which this story is adapted from; it did not reply when I reached out one more time before the article was published. (OpenAI also has a corporate partnership with The Atlantic.)

OpenAI’s dueling cultures—the ambition to safely develop AGI, and the desire to grow a massive user base through new product launches—would explode toward the end of 2023. Gravely concerned about the direction Altman was taking the company, Sutskever would approach his fellow board of directors, along with his colleague Mira Murati, then OpenAI’s chief technology officer; the board would subsequently conclude the need to push the CEO out. What happened next—with Altman’s ouster and then reinstatement—rocked the tech industry. Yet since then, OpenAI and Sam Altman have become more central to world affairs. Last week, the company unveiled an “OpenAI for Countries” initiative that would allow OpenAI to play a key role in developing AI infrastructure outside of the United States. And Altman has become an ally to the Trump administration, appearing, for example, at an event with Saudi officials this week and onstage with the president in January to announce a $500 billion AI-computing-infrastructure project.

Altman’s brief ouster—and his ability to return and consolidate power—is now crucial history to understand the company’s position at this pivotal moment for the future of AI development. Details have been missing from previous reporting on this incident, including information that sheds light on Sutskever and Murati’s thinking and the response from the rank and file. Here, they are presented for the first time, according to accounts from more than a dozen people who were either directly involved or close to the people directly involved, as well as their contemporaneous notes, plus screenshots of Slack messages, emails, audio recordings, and other corroborating evidence.

The altruistic OpenAI is gone, if it ever existed. What future is the company building now?

Before ChatGPT, sources told me, Altman seemed generally energized. Now he often appeared exhausted. Propelled into megastardom, he was dealing with intensified scrutiny and an overwhelming travel schedule. Meanwhile, Google, Meta, Anthropic, Perplexity, and many others were all developing their own generative-AI products to compete with OpenAI’s chatbot.

Many of Altman’s closest executives had long observed a particular pattern in his behavior: If two teams disagreed, he often agreed in private with each of their perspectives, which created confusion and bred mistrust among colleagues. Now Altman was also frequently bad-mouthing staffers behind their backs while pushing them to deploy products faster and faster. Team leads mirroring his behavior began to pit staff against one another. Sources told me that Greg Brockman, another of OpenAI’s co-founders and its president, added to the problems when he popped into projects and derail­ed long-​standing plans with ­last-​minute changes.

The environment within OpenAI was changing. Previously, Sutskever had tried to unite workers behind a common cause. Among employees, he had been known as a deep thinker and even something of a mystic, regularly speaking in spiritual terms. He wore shirts with animals on them to the office and painted them as well—a cuddly cat, cuddly alpacas, a cuddly fire-breathing dragon. One of his amateur paintings hung in the office, a trio of flowers blossoming in the shape of OpenAI’s logo, a symbol of what he always urged employees to build: “A plurality of humanity-loving AGIs.”

But by the middle of 2023—around the time he began speaking more regularly about the idea of a bunker—Sutskever was no longer just preoccupied by the possible cataclysmic shifts of AGI and superintelligence, according to sources familiar with his thinking. He was consumed by another anxiety: the erosion of his faith that OpenAI could even keep up its technical advancements to reach AGI, or bear that responsibility with Altman as its leader. Sutskever felt Altman’s pattern of behavior was undermining the two pillars of OpenAI’s mission, the sources said: It was slowing down research progress and eroding any chance at making sound AI-safety decisions.

Meanwhile, Murati was trying to manage the mess. She had always played translator and bridge to Altman. If he had adjustments to the company’s strategic direction, she was the implementer. If a team needed to push back against his decisions, she was their champion. When people grew frustrated with their inability to get a straight answer out of Altman, they sought her help. “She was the one getting stuff done,” a former colleague of hers told me. (Murati declined to comment.)

During the development of GPT‑­4, Altman and Brockman’s dynamic had nearly led key people to quit, sources told me. Altman was also seemingly trying to circumvent safety processes for expediency. At one point, sources close to the situation said, he had told Murati that OpenAI’s legal team had cleared the latest model, GPT-4 Turbo, to skip review by the company’s Deployment Safety Board, or DSB—a committee of Microsoft and OpenAI representatives who evaluated whether OpenAI’s most powerful models were ready for release. But when Murati checked in with Jason Kwon, who oversaw the legal team, Kwon had no idea how Altman had gotten that impression.

In the summer, Murati attempted to give Altman detailed feedback on these issues, according to multiple sources. It didn’t work. The CEO iced her out, and it took weeks to thaw the relationship.

By fall, Sutskever and Murati both drew the same conclusion. They separately approached the three board members who were not OpenAI employees—Helen Toner, a director at Georgetown University’s Center for Security and Emerging Technology; the roboticist Tasha McCauley; and one of Quora’s co-founders and its CEO, Adam D’Angelo—and raised concerns about Altman’s leadership. “I don’t think Sam is the guy who should have the finger on the button for AGI,” Sutskever said in one such meeting, according to notes I reviewed. “I don’t feel comfortable about Sam leading us to AGI,” Murati said in another, according to sources familiar with the conversation.

That Sutskever and Murati both felt this way had a huge effect on Toner, McCauley, and D’Angelo. For close to a year, they, too, had been processing their own grave concerns about Altman, according to sources familiar with their thinking. Among their many doubts, the three directors had discovered through a series of chance encounters that he had not been forthcoming with them about a range of issues, from a breach in the DSB’s protocols to the legal structure of OpenAI Startup Fund, a dealmaking vehicle that was meant to be under the company but that instead Altman owned himself.

If two of Altman’s most senior deputies were sounding the alarm on his leadership, the board had a serious problem. Sutskever and Murati were not the first to raise these kinds of issues, either. In total, the three directors had heard similar feedback over the years from at least five other people within one to two levels of Altman, the sources said. By the end of October, Toner, McCauley, and D’Angelo began to meet nearly daily on video calls, agreeing that Sutskever’s and Murati’s feedback about Altman, and Sutskever’s suggestion to fire him, warranted serious deliberation.

As they did so, Sutskever sent them long dossiers of documents and screenshots that he and Murati had gathered in tandem with examples of Altman’s behaviors. The screenshots showed at least two more senior leaders noting Altman’s tendency to skirt around or ignore processes, whether they’d been instituted for AI-safety reasons or to smooth company operations. This included, the directors learned, Altman’s apparent attempt to skip DSB review for GPT-4 Turbo.

By Saturday, November 11, the independent directors had made their decision. As Sutskever suggested, they would remove Altman and install Murati as interim CEO. On November 17, 2023, at about noon Pacific time, Sutskever fired Altman on a Google Meet with the three independent board members. Sutskever then told Brockman on another Google Meet that Brockman would no longer be on the board but would retain his role at the company. A public announcement went out immediately.

For a brief moment, OpenAI’s future was an open question. It might have taken a path away from aggressive commercialization and Altman. But this is not what happened.

After what had seemed like a few hours of calm and stability, including Murati having a productive conversation with Microsoft—at the time OpenAI’s largest financial backer—she had suddenly called the board members with a new problem. Altman and Brockman were telling everyone that Altman’s removal had been a coup by Sutskever, she said.

It hadn’t helped that, during a company all-​hands to address employee questions, Sutskever had been completely ineffectual with his communication.

“Was there a specific incident that led to this?” Murati had read aloud from a list of employee questions, according to a recording I obtained of the meeting.

“Many of the questions in the document will be about the details,” Sutskever responded. “What, when, how, who, exactly. I wish I could go into the details. But I can’t.”

“Are we worried about the hostile takeover via coercive influence of the existing board members?” Sutskever read from another employee later.

“Hostile takeover?” Sutskever repeated, a new edge in his voice. “The OpenAI nonprofit board has acted entirely in accordance to its objective. It is not a hostile takeover. Not at all. I disagree with this question.”

Shortly thereafter, the remaining board, including Sutskever, confronted enraged leadership over a video call. Kwon, the chief strategy officer, and Anna Makanju, the vice president of global affairs, were leading the charge in rejecting the board’s characterization of Altman’s behavior as “not consistently candid,” according to sources present at the meeting. They demanded evidence to support the board’s decision, which the members felt they couldn’t provide without outing Murati, according to sources familiar with their thinking.

In rapid succession that day, Brockman quit in protest, followed by three other senior researchers. Through the evening, employees only got angrier, fueled by compounding problems: among them, a lack of clarity from the board about their reasons for firing Altman; a potential loss of a tender offer, which had given some the option to sell what could amount to millions of dollars’ worth of their equity; and a growing fear that the instability at the company could lead to its unraveling, which would squander so much promise and hard work.

Faced with the possibility of OpenAI falling apart, Sutskever’s resolve immediately started to crack. OpenAI was his baby, his life; its dissolution would destroy him. He began to plead with his fellow board members to reconsider their position on Altman.

Meanwhile, Murati’s interim position was being challenged. The conflagration within the company was also spreading to a growing circle of investors. Murati now was unwilling to explicitly throw her weight behind the board’s decision to fire Altman. Though her feedback had helped instigate it, she had not participated herself in the deliberations.

By Monday morning, the board had lost. Murati and Sutskever flipped sides. Altman would come back; there was no other way to save OpenAI.

I was already working on a book about OpenAI at the time, and in the weeks that followed the board crisis, friends, family, and media would ask me dozens of times: What did all this mean, if anything? To me, the drama highlighted one of the most urgent questions of our generation: How do we govern artificial intelligence? With AI on track to rewire a great many other crucial functions in society, that question is really asking: How do we ensure that we’ll make our future better, not worse?

The events of November 2023 illustrated in the clearest terms just how much a power struggle among a tiny handful of Silicon Valley elites is currently shaping the future of this technology. And the scorecard of this centralized approach to AI development is deeply troubling. OpenAI today has become everything that it said it would not be. It has turned into a nonprofit in name only, aggressively commercializing products such as ChatGPT and seeking historic valuations. It has grown ever more secretive, not only cutting off access to its own research but shifting norms across the industry to no longer share meaningful technical details about AI models. In the pursuit of an amorphous vision of progress, its aggressive push on the limits of scale has rewritten the rules for a new era of AI development. Now every tech giant is racing to out-scale one another, spending sums so astronomical that even they have scrambled to redistribute and consolidate their resources. What was once unprecedented has become the norm.

As a result, these AI companies have never been richer. In March, OpenAI raised $40 billion, the largest private tech-funding round on record, and hit a $300 billion valuation. Anthropic is valued at more than $60 billion. Near the end of last year, the six largest tech giants together had seen their market caps increase by more than $8 trillion after ChatGPT. At the same time, more and more doubts have risen about the true economic value of generative AI, including a growing body of studies that have shown that the technology is not translating into productivity gains for most workers, while it’s also eroding their critical thinking.

In a November Bloomberg article reviewing the generative-AI industry, the staff writers Parmy Olson and Carolyn Silverman summarized it succinctly. The data, they wrote, “raises an uncomfortable prospect: that this supposedly revolutionary technology might never deliver on its promise of broad economic transformation, but instead just concentrate more wealth at the top.”

Meanwhile, it’s not just a lack of productivity gains that many in the rest of the world are facing. The exploding human and material costs are settling onto wide swaths of society, especially the most vulnerable, people I met around the world, whether workers and rural residents in the global North or impoverished communities in the global South, all suffering new degrees of precarity. Workers in Kenya earned abysmal wages to filter out violence and hate speech from OpenAI’s technologies, including ChatGPT. Artists are being replaced by the very AI models that were built from their work without their consent or compensation. The journalism industry is atrophying as generative-AI technologies spawn heightened volumes of misinformation. Before our eyes, we’re seeing an ancient story repeat itself: Like empires of old, the new empires of AI are amassing extraordinary riches across space and time at great expense to everyone else.

To quell the rising concerns about generative AI’s present-day performance, Altman has trumpeted the future benefits of AGI ever louder. In a September 2024 blog post, he declared that the “Intelligence Age,” characterized by “massive prosperity,” would soon be upon us. At this point, AGI is largely rhetorical—a fantastical, all-purpose excuse for OpenAI to continue pushing for ever more wealth and power. Under the guise of a civilizing mission, the empire of AI is accelerating its global expansion and entrenching its power.

As for Sutskever and Murati, both parted ways with OpenAI after what employees now call “The Blip,” joining a long string of leaders who have left the organization after clashing with Altman. Like many of the others who failed to reshape OpenAI, the two did what has become the next-most-popular option: They each set up their own shops, to compete for the future of this technology.


This essay has been adapted from Karen Hao’s forthcoming book, Empire of AI.

Empire Of AI – Dreams And Nightmares In Sam Altman’s OpenAI

By Karen Hao


*Illustration by Akshita Chandra / The Atlantic. Sources: Nathan Howard / Bloomberg / Getty; Jack Guez / AFP / Getty; Jon Kopaloff / Getty; Manuel Augusto Moreno / Getty; Yuichiro Chino / Getty.


​When you buy a book using a link on this page, we receive a commission. Thank you for supporting The Atlantic.

Continue Reading

Noticias

Un marco de descubrimiento de arquitectura neuronal de parámetros múltiples automatizados utilizando chatgpt en el backend

Published

on

  • Chua, M. et al. Abordar la incertidumbre de predicción en el aprendizaje automático para la atención médica. Nat. Biomed. Ing. 7711–718 (2023).

    Artículo PubMed Google Scholar

  • Bhardwaj, R. y Tripathi, I. Un algoritmo de ocultación de datos reversibles mejorados que utiliza una red neuronal profunda para E-Healthcare. J. Amb. Intell. Humaniz. Computación. 1410567–10585 (2023).

    Artículo Google Scholar

  • Nandy, S. et al. Un sistema inteligente de predicción de enfermedades cardíacas basado en la red neuronal artificial enjambre. Computación neuronal. Aplicación 3514723–14737 (2023).

    Artículo Google Scholar

  • Jaafar, N. y Lachiri, Z. Métodos de fusión multimodal con redes neuronales profundas y metainformación para la detección de agresión en vigilancia. Sistema de expertos. Aplicación 211118523 (2023).

    Artículo Google Scholar

  • Mahum, R. et al. Un marco robusto para generar resúmenes de video de vigilancia utilizando la combinación de momentos de Zernike y una transformación R y una red neuronal profunda. Multimed. Herramientas apl. 8213811–13835 (2023).

    Artículo Google Scholar

  • Jan, Z. et al. Inteligencia artificial para la industria 4.0: Revisión sistemática de aplicaciones, desafíos y oportunidades. Sistema de expertos. Aplicación 216119456 (2023).

    Artículo Google Scholar

  • Raja Santhi, A. y Muthuswamy, P. Industry 5.0 o Industry 4.0 s? Introducción a la industria 4.0 y un vistazo a las posibles tecnologías de la industria 5.0. Int. J. Interact. Des. Manuf. (Ijidem) 17947–979 (2023).

    Artículo Google Scholar

  • Shafiq, M. et al. Evaluación continua de control de calidad durante la fabricación utilizando algoritmo de aprendizaje supervisado para la industria 4.0. Int. J. Adv. Manuf. Technol. (2023).

  • Rajput, DS, Meena, G., Acharya, M. y Mohbey, KK Predicción de fallas utilizando red neuronal de convolución difusa en entorno IoT con fusión de datos de detección heterogénea. Medición Sensación 26100701 (2023).

    Artículo Google Scholar

  • Liyakat, KK S. Enfoque de aprendizaje automático utilizando redes neuronales artificiales para detectar nodos maliciosos en redes IoT. En Conferencia internacional sobre aprendizaje automático, IoT y Big Data 123–134 (Springer, 2023).

  • Thakkar, A. y Lohiya, R. Clasificación de ataque de datos de intrusión desequilibrados para la red IoT utilizando una red neuronal profunda basada en el aprendizaje. IEEE Internet Things J. 1011888–11895 (2023).

    Artículo Google Scholar

  • Openai, R. GPT-4 Informe técnico. Preprint en ARXIV: 2303.08774. Ver en el artículo213 (2023).

  • Wang, J. et al. EL-NAS: Eficiente búsqueda de arquitectura de dominio de atención cruzada para la clasificación de imágenes hiperespectrales. Sensación remota. 154688 (2023).

    Anuncios de artículos Google Scholar

  • Yang, T., He, Q. y Huang, L. OM-NAS: Clasificación de imagen de lesión de piel pigmentada basada en una búsqueda de arquitectura neural. Biomed. Optar. Expresar 142153–2165 (2023).

    Artículo CAS PubMed PubMed Central Google Scholar

  • Yang, Y., Wei, J., Yu, Z. y Zhang, R. Un marco de búsqueda de arquitectura neuronal confiable para la clasificación de imágenes de neumonía utilizando tecnología blockchain. J. Supercomput. 801694-1727 (2024).

  • Hassan, E. et al. Enmascarar modelos R-CNN. Nilo J. Commun. Computación. Sci. 317–27 (2022).

    Artículo Google Scholar

  • Dong, P. et al. RD-NAS: Mejora de la capacidad de clasificación SuperNet de un solo disparo a través de la destilación de clasificación de proxies de costo cero. En ICASSP 2023-2023 Conferencia internacional IEEE sobre acústica, procesamiento de habla y señales (ICASSP) 1–5 (IEEE, 2023).

  • Wang, J. et al. NAS-DYMC: red neuronal de convolucional múltiple dinámica basada en NAS para la detección de eventos de sonido. En ICASSP 2023-2023 Conferencia internacional IEEE sobre acústica, procesamiento de habla y señales (ICASSP) 1–5 (IEEE, 2023).

  • Li, J. et al. Graph Neural Network Architecture Busque para el diagnóstico de fallas de maquinaria giratoria basado en el aprendizaje de refuerzo. Mech. Syst. Proceso de señal. 202110701 (2023).

    Artículo Google Scholar

  • Yuan, W., Fu, C., Liu, R. y Fan, X. Ssob: Buscando una arquitectura orientada a la escena para la detección de objetos submarinos. VIS. Computación. 395199–5208 (2023).

    Artículo Google Scholar

  • Jia, X. et al. Detector de objetos rápido y preciso para la conducción autónoma basada en yolov5 mejorado. Sci. Reps. 131–13 (2023).

    Anuncios de Google Scholar

  • Mehta, R., Jurečková, O. y Stamp, M. Un enfoque de procesamiento del lenguaje natural para la clasificación de malware. J. Comput. Virol. Tech de piratería. 20173-184 (2024).

  • Girdhar, N., Coustaty, M. y Doucet, A. Benchmarking Nas para la separación de artículos en periódicos históricos. En Conferencia internacional sobre bibliotecas digitales asiáticas76–88 (Springer, 2023).

  • Real, E., Aggarwal, A., Huang, Y. y LE, QV Evolución regularizada para la búsqueda de arquitectura del clasificador de imágenes. En Actas de la Conferencia AAAI sobre inteligencia artificial volumen 33, 4780–4789 (2019).

  • Liu, C. et al. Búsqueda de arquitectura neuronal progresiva. En Actas de la Conferencia Europea sobre Visión Computadora (ECCV) 19–34 (2018).

  • Cai, H., Chen, T., Zhang, W., Yu, Y. y Wang, J. Búsqueda de arquitectura eficiente por transformación de red. En Actas de la Conferencia AAAI sobre inteligencia artificialvol. 32 (2018).

  • Pham, H., Guan, M., Zoph, B., Le, Q. y Dean, J. Búsqueda eficiente de arquitectura neuronal a través de parámetros compartiendo. En Conferencia internacional sobre aprendizaje automático 4095–4104 (PMLR, 2018).

  • Liu, H., Simonyan, K. y Yang, Y. Darts: búsqueda de arquitectura diferenciable. Preimpresión en ARXIV: 1806.09055 (2018).

  • Ying, C. et al. NAS-Bench-101: Hacia la búsqueda reproducible de arquitectura neuronal. En Conferencia internacional sobre aprendizaje automático 7105–7114 (PMLR, 2019).

  • Dong, X. y Yang, Y. Nas Bench-201-201: Extendiendo el alcance de la búsqueda de arquitectura neuronal reproducible. Preprint en ARXIV: 2001.00326 (2020).

  • Krizhevsky, A. y Hinton, G. Aprender múltiples capas de características de pequeñas imágenes (Tech. Rep, Toronto, ON, Canadá, 2009).

  • Chrabaszcz, P., Loshchilov, I. y Hutter, F. Una variante a la baja de Imagenet como alternativa a los conjuntos de datos CIFAR. Preprint en ARXIV: 1707.08819 (2017).

  • Ye, P. et al. \(\beta\)-Darts: regularización de beta para la búsqueda de arquitectura diferenciable. En 2022 Conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones (CVPR) 10864–10873 (IEEE, 2022).

  • Movahedi, S. et al. \ (\ lambda \) -Darts: mitigar el colapso del rendimiento al armonizar la selección de operaciones entre las células. Preprint en ARXIV: 2210.07998 (2022).

  • Zheng, M. et al. ¿Puede GPT-4 realizar la búsqueda de arquitectura neural? Preimpresión en ARXIV: 2304.10970 (2023).

  • Achiam, J. et al. Informe técnico GPT-4. Preimpresión en ARXIV: 2303.08774 (2023).

  • Wang, H. et al. Búsqueda de arquitectura neuronal gráfica con GPT-4. Preimpresión en ARXIV: 2310.01436 (2023).

  • Hassan, E., Bhatnagar, R. y Shams, M. Y. Avance de la investigación científica en ciencias de la computación por Chatgpt y Llama-A Review. En Conferencia internacional sobre fabricación inteligente y sostenibilidad energética 23–37 (Springer, 2023).

  • Helber, P., Bischke, B., Dengel, A. y Borth, D. Eurosat: un nuevo conjunto de datos y un punto de referencia de aprendizaje profundo para el uso de la tierra y la clasificación de la cobertura de la tierra. IEEE J. Sel. Arriba. Aplicación Tierra obs. Sensación remota. 12(7), 2217–2226 (2019).

    Anuncios de artículos Google Scholar

  • Rajaraman, S. et al. Redes neuronales convolucionales previamente entrenadas como extractores de características hacia la detección de parásitos de malaria mejorados en imágenes de frotis de sangre delgada. Peerj 6E4568 (2018).

    Artículo PubMed PubMed Central Google Scholar

  • Maas, A. et al. Vectores de palabras de aprendizaje para el análisis de sentimientos. En Actas de la 49ª Reunión Anual de la Asociación de Lingüística Computacional: Tecnologías de lenguaje humano 142–150 (2011).

  • Powerapi. Pyjoules: Biblioteca de medición de energía basada en Python para varios dominios, incluidas las GPU NVIDIA. https://github.com/powerapi-ng/pyjoulles (2024). Consultado: 2024-05-31.

  • Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M. y Sjödin, M. Deepmaker: un marco de optimización de objetivos múltiples para redes neuronales profundas en sistemas integrados. Microprocesos. Microsyst. 73102989 (2020).

    Artículo Google Scholar

  • Suganuma, M., Kobayashi, M., Shirakawa, S. y Nagao, T. Evolución de redes neuronales convolucionales profundas utilizando programación genética cartesiana. Evol. Computación. 28141–163 (2020).

    Artículo PubMed Google Scholar

  • Ren, J. et al. Eigen: enfoque genético de inspiración ecológica para la búsqueda de estructuras de redes neuronales desde cero. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 9059–9068 (2019).

  • Xie, L. y Yuille, A. Genetic CNN. En Actas de la Conferencia Internacional IEEE sobre visión por computadora 1379–1388 (2017).

  • Lu, Z. et al. Diseño evolutivo de criterio múltiple de redes neuronales convolucionales profundas. Preprint en ARXIV: 1912.01369 (2019).

  • Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B. y Xing, EP Búsqueda de arquitectura neural con optimización bayesiana y transporte óptimo. Adv. Inf. Neural. Proceso. Syst. 31 (2018).

  • Elsken, T., Metzen, J.-H. & Hutter, F. Búsqueda de arquitectura simple y eficiente para redes neuronales convolucionales. Preimpresión en ARXIV: 1711.04528 (2017).

  • Dong, X. y Yang, Y. Buscando una arquitectura neuronal robusta en cuatro horas de GPU. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 1761–1770 (2019).

  • Chu, X. et al. DARTS-: Salir de manera robusta del colapso de rendimiento sin indicadores. Preprint en ARXIV: 2009.01027 (2020).

  • Chen, X., Wang, R., Cheng, M., Tang, X. y Hsieh, C.-J. DRNAS: búsqueda de arquitectura neural de Dirichlet. Preprint en ARXIV: 2006.10355 (2020).

  • Hu, Y., Wang, X., Li, L. y Gu, Q. Mejora de NAS de un solo disparo con Supernet reducida y expansiva. Reconocimiento de patrones. 118108025 (2021).

    Artículo Google Scholar

  • Chu, X., Zhang, B. y Xu, R. Fairnas: Repensar la equidad de evaluación de la búsqueda de arquitectura neuronal compartiendo peso. En Actas de la conferencia internacional IEEE/CVF sobre visión por computadora 12239–12248 (2021).

  • Xiao, H., Wang, Z., Zhu, Z., Zhou, J. y Lu, J. Shapley-NAS: Descubrimiento de la contribución de la operación para la búsqueda de arquitectura neural. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 11892–11901 (2022).

  • Yu, K., Ranftl, R. y Salzmann, M. Regularización histórica: clasificación de entrenamiento guiado de Super Net en la búsqueda de arquitectura neural. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 13723–13732 (2021).

  • Cavagnero, N., Robbiano, L., Caputo, B. y Avera, G. Freerea: Búsqueda de arquitectura basada en la evolución libre de capacitación. En Actas de la conferencia de invierno IEEE/CVF sobre aplicaciones de visión por computadora 1493–1502 (2023).

  • Zheng, X. et al. Búsqueda de arquitectura neuronal con representación de información mutua. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 11912–11921 (2022).

  • Strubell, E., Ganesh, A. y McCallum, A. Consideraciones de energía y política para el aprendizaje profundo en la PNL. Preprint en ARXIV: 1906.02243 (2019).

  • Zoph, B., Vasudevan, V., Shlens, J. y Le, Q. V. Aprender arquitecturas transferibles para el reconocimiento de imágenes escalables. En Actas de la conferencia IEEE sobre visión por computadora y reconocimiento de patrones 8697–8710 (2018).

  • Continue Reading

    Noticias

    El ex ejecutivo de Operai se une a la IA, el sector público y los líderes de ciberseguridad que encabezan Info-Tech Live 2025 en Las Vegas

    Published

    on

    A medida que Momentum continúa construyendo en las semanas previas a la muy esperada conferencia anual de la industria para CIO y líderes de TI, Info-Tech Research Group ha anunciado tres nuevos oradores destacados para Info-Tech Live 2025 en Las Vegas en junio. Los altavoces recién revelados incluyen Zack Kassex jefe del mercado de ir al mercado en Openai; Bob LeeCIO para Condado de Clark, Nevada; y David TyburskiVicepresidente de Seguridad de la Información y CISO en Wynn Resorts – Voces líderes en IA, innovación del sector público y ciberseguridad. Sus notas clave Ofrezca claridad, estrategia y ideas prácticas sobre los desafíos de TI más urgentes de hoy al proporcionar diversas perspectivas sobre cómo la tecnología está remodelando las industrias, las instituciones y el liderazgo en sí.

    Toronto, 14 de mayo de 2025 / PRNewswire/-Info-Tech Research Group, una firma líder mundial de investigación y asesoramiento de TI, ha anunciado tres oradores destacados adicionales para su próximo Info-Tech Live 2025 en Las Vegas Conferencia de TI. Los altavoces son Zack Kassex jefe del mercado de ir al mercado en Openai; Bob LeeCIO para Condado de Clark, Nevada; y David TyburskiVicepresidente de Seguridad de la Información y CISO en Wynn Resorts. Estos oradores compartirán su experiencia en innovación de IA, liderazgo del sector público y ciberseguridad empresarial en el escenario principal del evento insignia de la firma, que tiene lugar. 10-12 de junio, 2025en Bellagio en Las Vegas.

    Info-Tech Live 2025 reunirá a miles de CIO, CDO, CISO y líderes de TI durante tres días de notas clave, Insights de analistas y compromiso entre pares. La urgencia y la oportunidad que enfrentan los líderes tecnológicos hoy mientras navegan por la interrupción y la innovación se refleja en el tema de este año “Transformarlo. Transformar todo”.

    “Estos altavoces destacados para Info-Tech Live 2025 en Las Vegas Refleja las prioridades y presiones en evolución que enfrentan los líderes de TI hoy, en todas las industrias y mercados “, dice el director de investigación del grupo de investigación de información de información, Gord Harrison. “Desde redefinir cómo las organizaciones se involucran con la IA, hasta la transformación de la prestación de servicios públicos, hasta la defensa de la infraestructura digital en las industrias de alto riesgo, estos líderes aportan información crítica del futuro. Juntos, sus perspectivas ayudarán a los asistentes a ir más allá de la conciencia y tomar una acción estratégica y confidencial”.

    Recientemente anunciados oradores destacados para información-tech en vivo 2025 en Las Vegas:

    Las últimas incorporaciones a la lista de oradores 2025 de Info-Tech ofrecen a los asistentes una gran cantidad de experiencia en décadas de liderazgo práctico, consultoría e innovación. Sus sesiones proporcionarán nuevas perspectivas sobre los desafíos empresariales actuales, desde la navegación de tecnologías emergentes y las demandas de cumplimiento hasta las estrategias de transformación de escala y alinear las inversiones de TI con el crecimiento empresarial. Los oradores recién anunciados incluyen:

    • Zack Kass, Asesor global de IA, ex jefe de Go To-Mercado, OpenAI
      Zack Kass es un asesor futurista y global que ayuda a Fortune 1000 empresas y gobiernos a adaptarse al panorama de IA que cambia rápidamente. Como ex jefe del mercado de ir a OpenAI, ayudó a construir y liderar a los equipos responsables de traducir la investigación en aplicaciones del mundo real. Kass ahora trabaja para desmitificar la IA y dar forma a un futuro donde la tecnología sirve a las personas y la sociedad.
    • Bob LeeCIO para Condado de Clark, Nevada
      Bob Lee sirve como CIO para Condado de Clark, Nevadaapoyando a más de 2.4 millones de residentes, 90,000 empresas y más de 50 millones de visitantes anualmente. Con más de 25 años de experiencia en los sectores público y privado, Leek se centra en el cambio transformador, el liderazgo inclusivo y el uso de la tecnología para mejorar los resultados para las comunidades a las que sirve.
    • David TyburskiVP de seguridad de la información y director de seguridad de la información para Wynn Resorts
      David Tyburski Lidera la estrategia global de ciberseguridad de Wynn Resorts, supervisando la identidad y el acceso, la gestión de riesgos y la respuesta a los incidentes. Con más de 30 años en TI y seguridad, Tyburski también asesora sobre múltiples juntas de la industria y sirve en la Junta Asesora de Tecnología de la Información del Estado de Nevada.

    Info-tech en vivo 2025 en Las Vegas Proporcionará estrategias procesables e información de investigación en profundidad a los líderes y ejecutivos de TI en todas las industrias. Los asistentes tendrán la oportunidad de interactuar con los analistas expertos de Info-Tech, participar en sesiones interactivas y mesas redondas, y obtener un conocimiento crítico sobre el panorama de TI en rápida evolución. La conferencia también contará con una impresionante línea de oradores principales, talleres y eventos de redes diseñados para equipar a los asistentes con las herramientas para impulsar la transformación de TI exponencial. Se publicarán anuncios adicionales en las semanas previas a la conferencia.

    Para obtener los últimos detalles, visite el Info-Tech Live 2025 en Las Vegas página, y siga el grupo de investigación de información de información sobre LinkedIn y incógnita.

    Media pasa por información-Tech Live 2025 en Las Vegas

    Los profesionales de los medios, incluidos periodistas, podcasters e influencers, están invitados a asistir a Info-Tech Live 2025 para obtener acceso exclusivo a la investigación, el contenido y las entrevistas con los líderes de la industria. Para aquellos que no pueden asistir en persona, Info-Tech ofrece una opción de pase digital, proporcionando acceso a notas clave en vivo, sesiones seleccionadas y entrevistas virtuales exclusivas con oradores y analistas.

    Los profesionales de los medios que buscan solicitar pases en persona o digitales pueden contactar pr@infotech.com Para asegurar su lugar y cubrir los últimos avances en él para su público.

    Oportunidades de expositor

    Los expositores también están invitados a formar parte de Info-Tech Live y mostrar sus productos y servicios a un público altamente comprometido de tomadores de decisiones de TI. Para obtener más información sobre cómo convertirse en un expositor de información en vivo, comuníquese con events@infotech.com.

    Acerca del grupo de investigación de tecnología de información

    Info-Tech Research Group es una de las principales empresas de investigación y asesoramiento del mundo, que atiende con orgullo a más de 30,000 profesionales. La compañía produce una investigación imparcial y altamente relevante y brinda servicios de asesoramiento para ayudar a los líderes a tomar decisiones estratégicas, oportunas y bien informadas. Durante casi 30 años, Info-Tech se ha asociado estrechamente con los equipos para proporcionarles todo lo que necesitan, desde herramientas procesables hasta orientación de analistas, asegurando que brinden resultados medibles para sus organizaciones.

    Para obtener más información sobre las divisiones de Info-Tech, visite McLean & Company para obtener servicios de investigación y asesoramiento de recursos humanos y SoftWarReviews para obtener información sobre la compra de software.

    Los profesionales de los medios pueden registrarse para un acceso sin restricciones a la investigación a través de TI, recursos humanos y software y cientos de analistas de la industria a través del Programa de Insiders de Medios de la empresa. Para obtener acceso, contactar pr@infotech.com.

    Grupo de investigación de tecnología de información de origen

    Continue Reading

    Trending