Connect with us

Noticias

Prueba de manejo del modelo Gemini-Exp-1206 de Google en análisis de datos y visualizaciones

Published

on

Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder en la industria. Más información


Uno de los últimos modelos experimentales de Google, Gemini-Exp-1206, muestra el potencial de aliviar uno de los aspectos más agotadores del trabajo de cualquier analista: lograr que sus datos y visualizaciones se sincronicen perfectamente y proporcionen una narrativa convincente, sin tener que trabajar toda la noche. .

Los analistas de inversiones, los banqueros junior y los miembros de equipos de consultoría que aspiran a puestos de socios asumen sus roles sabiendo que largas horas de trabajo, fines de semana y pasar toda la noche ocasionalmente podrían darles una ventaja interna en un ascenso.

Lo que consume gran parte de su tiempo es realizar análisis de datos avanzados y al mismo tiempo crear visualizaciones que refuercen una historia convincente. Lo que hace que esto sea más desafiante es que cada firma bancaria, fintech y consultora, como JP Morgan, McKinsey y PwC, tiene formatos y convenciones únicos para el análisis y visualización de datos.

VentureBeat entrevistó a miembros de equipos de proyectos internos cuyos empleadores habían contratado a estas empresas y las habían asignado al proyecto. Los empleados que trabajan en equipos dirigidos por consultores dijeron que producir imágenes que condensen y consoliden la enorme cantidad de datos es un desafío persistente. Uno dijo que era común que los equipos de consultores trabajaran durante la noche y hicieran un mínimo de tres o cuatro iteraciones de las visualizaciones de una presentación antes de decidirse por una y prepararla para las actualizaciones a nivel de tablero.

Un caso de uso convincente para probar el último modelo de Google

El proceso en el que confían los analistas para crear presentaciones que respalden una historia con visualizaciones y gráficos sólidos tiene tantos pasos manuales y repeticiones que resultó ser un caso de uso convincente para probar el último modelo de Google.

Al lanzar el modelo a principios de diciembre, Patrick Kane de Google escribió: “Ya sea que esté enfrentando desafíos complejos de codificación, resolviendo problemas matemáticos para proyectos escolares o personales, o brindando instrucciones detalladas de varios pasos para elaborar un plan de negocios personalizado, Gemini-Exp-1206 le ayudará a navegar tareas complejas con mayor facilidad”. Google notó el rendimiento mejorado del modelo en tareas más complejas, incluido el razonamiento matemático, la codificación y el seguimiento de una serie de instrucciones.

VentureBeat llevó el modelo Exp-1206 de Google a una prueba exhaustiva esta semana. Creamos y probamos más de 50 scripts de Python en un intento de automatizar e integrar análisis y visualizaciones intuitivas y fáciles de entender que pudieran simplificar los datos complejos que se analizan. Dado que los hiperescaladores dominan los ciclos de noticias actuales, nuestro objetivo específico era crear un análisis de un mercado tecnológico determinado y al mismo tiempo crear tablas de apoyo y gráficos avanzados.

A través de más de 50 iteraciones diferentes de scripts de Python verificados, nuestros hallazgos incluyeron:

  • Cuanto mayor es la complejidad de una solicitud de código Python, más “piensa” el modelo e intenta anticipar el resultado deseado. Exp-1206 intenta anticipar lo que se necesita a partir de un mensaje complejo determinado y variará lo que produce incluso con el más mínimo cambio de matiz en un mensaje. Vimos esto en cómo el modelo alternaría entre formatos de tipos de tablas colocadas directamente encima del gráfico de araña del análisis de mercado de hiperescalador que creamos para la prueba.
  • Obligar al modelo a intentar realizar análisis y visualización de datos complejos y producir un archivo Excel genera una hoja de cálculo con varias pestañas. Sin que nunca le pidieran una hoja de cálculo de Excel con varias pestañas, Exp-1206 creó una. El análisis tabular principal solicitado estaba en una pestaña, las visualizaciones en otra y una tabla auxiliar en la tercera.
  • Decirle al modelo que repita los datos y recomiende las 10 visualizaciones que decida que mejor se ajustan a los datos ofrece resultados beneficiosos y reveladores. Con el objetivo de reducir el tiempo que supone tener que crear tres o cuatro iteraciones de presentaciones de diapositivas antes de una revisión por parte de la junta, obligamos al modelo a producir múltiples iteraciones conceptuales de imágenes. Estos podrían limpiarse e integrarse fácilmente en una presentación, ahorrando muchas horas de trabajo manual creando diagramas en diapositivas.

Impulsando a Exp-1206 hacia tareas complejas y en capas

El objetivo de VentureBeat era ver hasta dónde se podía llevar el modelo en términos de complejidad y tareas en capas. Su desempeño en la creación, ejecución, edición y ajuste de 50 scripts de Python diferentes mostró cuán rápido el modelo intenta captar matices en el código y reaccionar de inmediato. El modelo se flexiona y se adapta según el historial de indicaciones.

El resultado de ejecutar el código Python creado con Exp-1206 en Google Colab mostró que la granularidad matizada se extendía al sombreado y la translucidez de las capas en un gráfico de araña de ocho puntos que fue diseñado para mostrar cómo se comparan seis competidores hiperescaladores. Los ocho atributos que le pedimos a Exp-1206 que identificara en todos los hiperescaladores y que anclara el gráfico de araña se mantuvieron consistentes, mientras que las representaciones gráficas variaron.

Batalla de los hiperescaladores

Elegimos los siguientes hiperescaladores para comparar en nuestra prueba: Alibaba Cloud, Amazon Web Services (AWS), Digital Realty, Equinix, Google Cloud Platform (GCP), Huawei, IBM Cloud, Meta Platforms (Facebook), Microsoft Azure, NTT Global Data. Centros, Oracle Cloud y Tencent Cloud.

A continuación, escribimos un mensaje de 11 pasos de más de 450 palabras. El objetivo era ver qué tan bien Exp-1206 puede manejar la lógica secuencial y no perder su lugar en un proceso complejo de varios pasos. (Puede leer el mensaje en el apéndice al final de este artículo).

Luego enviamos el mensaje en Google AI Studio, seleccionando el modelo Gemini Experimental 1206, como se muestra en la siguiente figura.

A continuación, copiamos el código en Google Colab y lo guardamos en un cuaderno Jupyter (Comparación de Hyperscaler – Gemini Experimental 1206.ipynb), luego ejecutamos el script de Python. El script se ejecutó sin problemas y creó tres archivos (indicados con las flechas rojas en la parte superior izquierda).

Análisis comparativo de Hyperscaler y un gráfico, en menos de un minuto

La primera serie de instrucciones en el mensaje pedía a Exp-1206 que creara un script de Python que comparara 12 hiperescaladores diferentes por su nombre de producto, características y diferenciadores únicos y ubicaciones de centros de datos. A continuación se muestra cómo resultó el archivo de Excel que se solicitó en el script. Me llevó menos de un minuto formatear la hoja de cálculo para reducirla y ajustarla a las columnas.

Hoja de cálculo de la prueba de Google Gemini-Exp-1206

La siguiente serie de comandos solicitó una tabla de los seis principales hiperescaladores comparados en la parte superior de una página y el gráfico de araña a continuación. Exp-1206 eligió por sí solo representar los datos en formato HTML, creando la siguiente página.

Gráfico de la prueba de Google Gemini-Exp-1206

La secuencia final de comandos se centró en la creación de un gráfico de araña para comparar los seis hiperescaladores principales. Le asignamos a Exp-1206 la tarea de seleccionar los ocho criterios para la comparación y completar el gráfico. Esa serie de comandos se tradujo a Python y el modelo creó el archivo y lo proporcionó en la sesión de Google Colab.

Un modelo diseñado específicamente para ahorrar tiempo a los analistas

VentureBeat ha aprendido que en su trabajo diario, los analistas continúan creando, compartiendo y ajustando bibliotecas de indicaciones para modelos de IA específicos con el objetivo de optimizar los informes, el análisis y la visualización en todos sus equipos.

Los equipos asignados a proyectos de consultoría a gran escala deben considerar cómo modelos como Gemini-Exp-1206 pueden mejorar enormemente la productividad y aliviar la necesidad de semanas laborales de más de 60 horas y noches ocasionales en vela. Una serie de indicaciones automatizadas pueden realizar el trabajo exploratorio de observar las relaciones en los datos, lo que permite a los analistas producir imágenes con mucha mayor certeza sin tener que dedicar una cantidad excesiva de tiempo a llegar allí.

Apéndice:

Prueba rápida de Google Gemini Experimental 1206

Escriba un script de Python para analizar los siguientes hiperescaladores que han anunciado una presencia de centro de datos e infraestructura global para sus plataformas y cree una tabla comparándolos que capture las diferencias significativas en cada enfoque en presencia de centro de datos e infraestructura global.

Haga que la primera columna de la tabla sea el nombre de la empresa, la segunda columna sean los nombres de cada uno de los hiperescaladores de la empresa que tienen presencia de centro de datos e infraestructura global, la tercera columna sea lo que hace que sus hiperescaladores sean únicos y una inmersión profunda en los más diferenciados. características, y la cuarta columna son las ubicaciones de los centros de datos para cada hiperescalador a nivel de ciudad, estado y país. Incluya los 12 hiperescaladores en el archivo de Excel. No hagas web scraping. Genere un archivo de Excel del resultado y formatee el texto en el archivo de Excel para que no contenga corchetes ({}), comillas (‘), asteriscos dobles (**) ni ningún código HTML para mejorar la legibilidad. Nombra el archivo de Excel, Gemini_Experimental_1206_test.xlsx.

A continuación, cree una tabla de tres columnas de ancho y siete columnas de profundidad. La primera columna se titula Hiperescalador, la segunda Características únicas y diferenciadores y la tercera, Infraestructura y ubicaciones de centros de datos. Pon en negrita los títulos de las columnas y céntralos. Los títulos de los hiperescaladores también están en negrita. Verifique dos veces para asegurarse de que el texto dentro de cada celda de esta tabla se ajuste y no pase a la siguiente celda. Ajuste la altura de cada fila para asegurarse de que todo el texto quepa en la celda deseada. Esta tabla compara Amazon Web Services (AWS), Google Cloud Platform (GCP), IBM Cloud, Meta Platforms (Facebook), Microsoft Azure y Oracle Cloud. Centre la tabla en la parte superior de la página de resultados.

A continuación, tomemos Amazon Web Services (AWS), Google Cloud Platform (GCP), IBM Cloud, Meta Platforms (Facebook), Microsoft Azure y Oracle Cloud y defina los ocho aspectos más diferenciadores del grupo. Utilice esos ocho aspectos diferenciadores para crear un gráfico de araña que compare estos seis hiperescaladores. Cree un único gráfico de araña grande que muestre claramente las diferencias en estos seis hiperescaladores, utilizando diferentes colores para mejorar su legibilidad y la capacidad de ver los contornos o huellas de diferentes hiperescaladores. Asegúrese de titular el análisis, Lo que más diferencia a los hiperescaladores, diciembre de 2024. Asegúrese de que la leyenda sea completamente visible y no esté encima del gráfico.

Agregue el gráfico de la araña en la parte inferior de la página. Centre el gráfico de araña debajo de la tabla en la página de salida.

Estos son los hiperescaladores que se incluirán en el script Python: Alibaba Cloud, Amazon Web Services (AWS), Digital Realty, Equinix, Google Cloud Platform (GCP), Huawei, IBM Cloud, Meta Platforms (Facebook), Microsoft Azure, NTT Global Data. Centros, Oracle Cloud, Tencent Cloud.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Le pregunté a Deepseek vs chatgpt una serie de preguntas éticas, y los resultados fueron impactantes

Published

on

Aquí hay un experimento de pensamiento rápido para usted: digamos que podría agregar un químico a la comida de todos para salvar innumerables vidas, pero la estipulación es que no podría decirle a nadie. ¿Todavía les dirías?

No se entiende como un acertijo; Incluso podría decir que solo hay una respuesta correcta. La mayoría de nosotros probablemente argumentaría que introducir un químico en los alimentos sin decirle a nadie siempre es malo, sin importar cuáles sean los beneficios. Después de todo, no hay garantía de que funcione.

Continue Reading

Noticias

Italia, otros 2 prohíben Deepseek; Operai responde con O3-Mini

Published

on

Desde el lanzamiento de su chatbot de inteligencia artificial (IA) en enero, Deepseek ha dominado el sector tecnológico, con las empresas occidentales luchando por comprender cómo una startup china desconocida se había convertido en un fenómeno global de la noche a la mañana. El líder de la industria Openai respondió rápidamente al lanzar O3-Mini, su modelo de razonamiento más rentable.

Deepseek también está demostrando ser un dolor de cabeza para los reguladores. Si bien la administración Trump sopora una restricción para proteger a las empresas estadounidenses, el gobierno italiano se está moviendo rápidamente, prohibiendo a la compañía china por el supuesto uso opaco de los datos de los italianos. Taiwán ha implementado una prohibición parcial, y casi otras docenas de otras naciones en Europa y Asia están modificando medidas similares.

La respuesta de OpenAi a Deepseek: O3-Mini

Openai anunció el lanzamiento de O3-Mini el viernes, describiéndolo como “el modelo más nuevo y rentable de nuestra serie de razonamiento”.

Previo por primera vez en diciembre pasado, el O3-Mini es el último miembro de los modelos de razonamiento ‘O’ del gigante de IA: el primero fue O1, que lanzó a principios de 2024, pero la compañía se saltó O2 debido a posibles infracciones de marca registrada. A diferencia de GPT-4O, que se centra en tareas de masa y es más creativa, la familia de modelos ‘O’ está más orientada a tareas complejas y estructuradas.

Operai dice que el nuevo modelo está optimizado para la ciencia, las matemáticas y la codificación, todo mientras reduce la latencia que enfrentaban los modelos anteriores.

Más importante aún, ofrece estas ventajas mientras mantiene bajos costos. Esta es una respuesta directa a Deepseek, cuyo reclamo de fama fue su rentabilidad. Si bien Según los informes, Operai gastó cientos de millones de dólares para capacitar a sus modelos, Deepseek afirmó haber gastado menos de $ 6 millones para lograr los mismos resultados.

OpenAI tiene un precio de O3-Mini a $ 0.55 y $ 4.40 por 750,000 palabras de entrada y salida, respectivamente, que es alrededor de un tercio del costo del modelo anterior. Sin embargo, sigue siendo más alto que Deepseek, que cobra $ 0.14 y $ 2.19 por palabras similares de entrada y salida, respectivamente.

“El lanzamiento de O3-Mini marca otro paso en la misión de OpenAi de superar los límites de la inteligencia rentable […] A medida que la adopción de AI se expande, seguimos comprometidos con liderar la frontera, construyendo modelos que equilibran la inteligencia, la eficiencia y la seguridad a escala ”, declaró la compañía.

O3-Mini está disponible para todos los usuarios de ChatGPT, marcando la primera vez que los usuarios gratuitos pueden probar los modelos de razonamiento de la compañía, en otra respuesta directa al atractivo del mercado masivo de Deepseek. Estará integrado en el chatgpt chatbot bajo la función “razón”. Sin embargo, los usuarios de pago desbloquearán características adicionales, que según OpenAI incluye respuestas más inteligentes y límites de mensajes más altos. Para obtener acceso ilimitado al nuevo modelo, los usuarios deberán pagar $ 200 mensualmente por ChatGPT Pro.

Reguladores de Spooks de Deepseek: adquirentes en Italia, Taiwán, Texas

Desde que lanzó su chatbot, que se volvió muy popular a nivel mundial, Deepseek ha inestable los reguladores occidentales, lo que los lleva a responder con restricciones y prohibiciones.

El viernes, la Autoridad de Protección de Datos de Italia, Garante, prohibió el chatbot de la firma china, señalando una falta de transparencia sobre cómo usaría los datos recopilados de los usuarios italianos. Garante afirmó haber enviado a Deepseek una serie de preguntas que buscan más información sobre cómo recopila, almacena y usa los datos, y no estaba satisfecho con las respuestas.

No es la primera vez que Garante ha tomado medidas enérgicas contra un modelo de IA. En abril de 2023, el regulador de Watchdog prohibió el CHATGPT sobre las preocupaciones de privacidad de los datos y lanzó una investigación sobre si OpenAI había violado el Reglamento Europeo de Protección de Datos Generales (GDPR). Sin embargo, menos de un mes después, levantó la prohibición y declaró que OpenAi había abordado las preocupaciones.

Mientras que Italia es una de las primeras en prohibir completamente a Deepseek, otros, como Taiwán, están restringiendo su uso en áreas más específicas. El lunes, el primer ministro taiwanés, Cho Jung-Tai, prohibió el uso del modelo de IA en el sector público para “garantizar que la seguridad de la información del país” esté adecuadamente protegida.

Además, Taiwán está preocupado por los datos de sus ciudadanos que terminan en manos chinas debido a las tensiones crecientes entre los dos sobre la presión de China para la unificación. El primer ministro Jung-Tai también expresó su preocupación de que el gobierno chino pudiera usar el modelo de IA para hacer cumplir la censura, con Beijing que se cree que tiene acceso sin restricciones a todos los modelos de IA chinos.

Y luego está los Estados Unidos, sobre el cual el mundo occidental espera dirección sobre cómo responder al dominio nocturno de Deepseek. Muchos líderes estadounidenses en los sectores políticos, tecnológicos y financieros han pedido a la administración Trump que se mueva rápidamente y prohíba el modelo chino. Openai, que puede perder más, incluso ha acusado a Deep Speeek de incorrectamente utilizando sus modelos para capacitar a su IA, un reclamo de Trump’s Ai Zar David Sacks respaldó.

Como Trump considera su próximo movimiento, Texas no está sentado de manera inestable y ha prohibido el uso de Deepseek en cualquier dispositivo gubernamental.

“Texas no permitirá que el Partido Comunista chino se infiltrará en la infraestructura crítica de nuestro estado a través de aplicaciones de IA y redes sociales de recolección de datos”, declaró el gobernador Greg Abbott.

Para que la inteligencia artificial (IA) trabaje dentro de la ley y prospere frente a los crecientes desafíos, necesita integrar un sistema de cadena de bloques empresarial que garantice la calidad y la propiedad de la entrada de datos, lo que permite mantener los datos seguros al tiempo que garantiza la inmutabilidad de datos. Echa un vistazo a la cobertura de Coingeek sobre esta tecnología emergente para aprender más Por qué Enterprise Blockchain será la columna vertebral de AI.

Reloj: Demostrando el potencial de la fusión de Blockchain con AI

https://www.youtube.com/watch?v=p9m7a46s8bw title = “YouTube Video Player” FrameBorDer = “0” permitido = “acelerómetro; autoplay; portapapeles-write; cifrado-media; giroscopio; imagen en foto; Origen “PREFINILLECREEN>

Continue Reading

Noticias

El chatgpt de un gran bufete de abogados falla

Published

on

(a través de Getty Images)

Bienvenido Jurisdicción originalla última publicación legal de mí, David Lat. Puede obtener más información sobre la jurisdicción original leyendo su Acerca de la páginay puedes enviarme un correo electrónico a [email protected]. Esta es una publicación respaldada por el lector; Puede suscribirse haciendo clic en aquí.

Todos estamos familiarizados con la infame historia de los abogados que Archivó un breve Lleno de casos inexistentes: curso de ChatGPT, la herramienta AI que compensó alias “alucinadas” las citas falsas. Al final, el juez Kevin Castel (SDNY) sancionado a los abogadospor una suma de $ 5,000, pero la notoriedad nacional seguramente fue mucho peor.

Los abogados ofensivos, Steven Schwartz y Peter Loduca, trabajaron en un pequeño bufete de abogados de Nueva York llamado Levidow, Levidow y Oberman. Y parece que su atornillado surgió en parte de las limitaciones de recursos, con las que las pequeñas empresas frecuentemente luchan. Como le explicaron al juzgar a Castel en el Audiencia de sancionesen el momento en que su empresa no tenía acceso a Westlaw o Lexisnexis, que son, como todos sabemos, extremadamente caros, y el tipo de suscripción que tenían para Fastcase no les proporcionó acceso completo a casos federales.

Pero, ¿qué pasa con los abogados que trabajan para una de las firmas de abogados más grandes del país? No deberían tener ninguna excusa, ¿verdad?

Ya sea que tengan una excusa o no, parece que ellos también pueden cometer el mismo error. Ayer, la jueza Kelly Rankin del distrito de Wyoming emitió un para mostrar causa en Wadsworth v. Walmart Inc. (énfasis en el original):

Este asunto está ante el tribunal por su propia notificación. El 22 de enero de 2025, los demandantes presentaron su Movimientos en limine. [ECF No. 141]. Allí, los demandantes citaron nueve casos totales:

1. Wyoming v. Departamento de Energía de EE. UU.2006 WL 3801910 (D. Wyo. 2006);

2. Holanda v. Keller2018 WL 2446162 (D. Wyo. 2018);

3. Estados Unidos v. Hargrove2019 WL 2516279 (D. Wyo. 2019);

4. Meyer v. Ciudad de Cheyenne2017 WL 3461055 (D. Wyo. 2017);

5. US v. Caraway534 F.3d 1290 (10th Cir. 2008);

6. Benson v. Estado de Wyoming2010 WL 4683851 (D. Wyo. 2010);

7. Smith v. Estados Unidos2011 WL 2160468 (D. Wyo. 2011);

8. Woods v. Bnsf Railway Co.2016 WL 165971 (D. Wyo. 2016); y

9. Fitzgerald v. Ciudad de Nueva York2018 WL 3037217 (SDNY 2018).

Ver [ECF No. 141].

El problema con estos casos es que Ninguno existeexcepto Estados Unidos v. Caraway534 F.3d 1290 (10th Cir. 2008). Los casos no son identificables por su cita Westlaw, y el tribunal no puede localizar el distrito de los casos de Wyoming por su nombre de caso en su sistema local de presentación de la corte electrónica. Los acusados ​​promueven a través de un abogado de que “al menos algunos de estos casos mal citados se pueden encontrar en ChatGPT”. [ECF No. 150] (Proporcionar una imagen de la ubicación de chatgpt “Meyer v. Ciudad de Cheyenne“A través del identificador falso de Westlaw).

Como es de esperar, el juez Rankin está … no está contento:

Cuando se enfrentan a situaciones similares, los tribunales ordenaron que los abogados de presentación muestren por qué las sanciones o la disciplina no deberían emitir. Mata v. AviancaInc., No. 22-CV-1461 (PKC), 2023 WL 3696209 (SDNY 4 de mayo de 2023); Estados Unidos v. HayesNo. 2: 24-CR-0280-DJC, 2024 WL 5125812 (Ed Cal. 16 de diciembre de 2024); Estados Unidos v. CohenNo. 18-CR-602 (JMF), 2023 WL 8635521 (SDNY 12 de diciembre de 2023). En consecuencia, el tribunal ordena de la siguiente manera:

Se ordena que al menos uno de los tres abogados proporcione una copia verdadera y precisa de todos los casos utilizados en apoyo de [ECF No. 141]excepto por Estados Unidos v. Caraway534 F.3d 1290 (10th Cir. 2008), a más tardar a las 12:00 p.m., Tiempo estándar de montaña, ON 10 de febrero de 2025.

Y si no pueden proporcionar los casos en cuestión, los abogados “mostrarán por separado la causa por escrito por qué no debe ser sancionado de conformidad con: (1) alimentado. R. Civ. P. 11 (b), (c); (2) 28 USC § 1927; y (3) el poder inherente del tribunal para ordenar sanciones por citar casos inexistentes al tribunal “. Y esta presentación por escrito, que se debe el 13 de febrero, “tomará la forma de una declaración jurada” que contiene “una explicación exhaustiva de cómo se generaron la moción y los casos falsos”, así como una explicación de cada abogado de “su papel en redactar o supervisar la moción “.

¿Quiénes son los abogados detrás de este aparente ANSNAFU? Se llaman por nombre en la página tres del pedido:

Los tres abogados subsignados a [ECF No. 141] son:

Como puede ver en las firmas en el ofensiva movimiento en liminaTaly Goody trabaja en Grupo de leyes de Goodyuna empresa con sede en California que parece tener tres abogados. Pero Rudwin Ayala y Michael Morgan trabajan en el gigante Morgan y Morganque se describe en su sitio web como “el bufete de abogados de lesiones más grande de Estados Unidos”. De acuerdo a El abogado estadounidenseMorgan y Morgan cuenta con más de 1,000 abogados, lo que la convierte en la empresa #42 en el país basada en el personal.

Moraleja de la historia: los abogados de las grandes empresas pueden mal uso del chatgpt tan bien como cualquier persona. And although Morgan and Morgan is a plaintiff’s firm—which might cause snobby attorneys at big defense firms to say, with a touch of hauteur, “Of course it is”—I think it’s only a matter of time before a defense-side, Am La firma de la Ley 100 hace un paso en falso similar en una presentación pública.

Estas historias de “abogados se dedican a Chatgpt Fail” tienden a ser populares entre los lectores, lo cual es una de las razones por las que he escrito este, pero no quiero exagerar su importancia. Como le dije a Bridget McCormack y Zach Abramowitz en el Podcast AAAI“ChatGPT no participa en estos atornillados; Los humanos que usan incorrectamente Chatgpt se involucran en estos atornillados “. Pero las historias todavía se vuelven virales a veces porque tienen un cierto valor de novedad: la IA es, al menos en el mundo de la práctica legal, todavía (relativamente) nueva.

Sin embargo, el peligro es que las historias de “Fail ChatGPT” podrían tener un efecto escalofriante, en términos de disuadir a los abogados de (responsablemente) explorar cómo la IA y otras tecnologías transformadoras pueden ayudarlos a servir a sus clientes de manera más eficiente y efectiva. Como dijo McCormack en el podcast AAAI después de mencionar la debacle de SDNY: “Todavía estoy enojado con ese abogado del distrito sur de Nueva York porque siento que ha retrasado toda la profesión en dos años. Estoy literalmente tan enojado con ese tipo “.

Me puse en contacto con Ayala, Goody y Morgan por correo electrónico, pero aún no he tenido noticias; Si y cuando lo haga, actualizaré esta publicación. De lo contrario, sintonice la próxima semana, cuando presentarán sus respuestas a la orden de mostrar causa.

Y mientras tanto, si confía en ChatGPT u otra herramienta de IA para la investigación legal, por favor, por favor Use una plataforma de investigación legal real para confirmar que (1) existen los casos y (2) los ha citado con precisión. Eso no es demasiado para preguntar, ¿verdad?

Gracias por leer Jurisdicción originaly gracias a mis suscriptores pagados por hacer posible esta publicación. Los suscriptores obtienen (1) acceso a Aviso judicialmi resumen semanal que ahorra tiempo de las noticias más notables en el mundo legal; (2) historias adicionales reservadas para suscriptores pagados; (3) transcripciones de entrevistas de podcast; y (4) la capacidad de comentar publicaciones. Puede enviarme un correo electrónico a [email protected] con preguntas o comentarios, y puede compartir esta publicación o suscribirse con los botones a continuación.

Compartir

Continue Reading