Connect with us

Noticias

The Future Of Text-To-Video Based Generative AI Magically Appears Via Newly Released OpenAI Sora Turbo

Published

on

In today’s column, I explain the hullabaloo over the advent of text-to-video (T2V) in generative AI apps and large language models (LLM). The upshot is this. There is little doubt that text-to-video is still in its infancy at this time, but, by gosh, keep your eye on the ball because T2V is going to gain significant advances that will ultimately knock the socks off the world. As Dr. Seuss might declare, oh, the things that you can do (hang in there, I’ll cover the possibilities momentarily).

As tangible evidence of what text-to-video can do right now, I’ll include in this discussion an assessment of the newly released OpenAI product Sora Turbo, a cousin of the wildly and widely popular ChatGPT. If you are tempted to try out Sora Turbo, it is initially only being made available to ChatGPT Plus and ChatGPT Pro users, meaning that you must pay-to-play. Sad face.

A notable consideration to keep in mind is that ChatGPT currently garners a reported 300 million weekly active users, and though not all of them are going to have ready access to Sora Turbo, an impressive many millions will. Competing products are likely to find that Sora Turbo becomes the 600-pound gorilla and the elephant in the room. By and large, a massive number of users and a massive amount of media attention is going to shift overnight toward Sora Turbo.

Let’s talk about it.

This analysis of an innovative AI advancement is part of my ongoing Forbes column coverage on the latest in AI including identifying and explaining various impactful AI complexities (see the link here). For my coverage of the top-of-the-line ChatGPT o1 model and its advanced functionality, see the link here and the link here.

Getting Up-To-Speed On AI Modes

I’d like to lay out some foundational aspects so that we can then dive deeply into the text-to-video realm.

Generative AI and LLMs generally began by providing text-to-text (T2T) capabilities. You type in text as a prompt, and the AI responds with text such as an essay, poem, narrative, etc. That’s cool. Another exciting feature consists of text-to-image, whereby you enter a prompt, and the AI generates an image such as a photo-realistic picture, a digital painting, a still cartoon, or other kinds of static imagery. Those two modes of usage are nearly old hat now.

The dream for AI researchers is to allow a person to enter a prompt and then have the AI generate a video. A stripped-down way to do this is to focus solely on the visual video and not include any audio. Gradually, we will see the production of visual video elements that are hand-in-hand accompanied by AI-generated matching audio (some LLMs do this but in quite a limited fashion).

A bonus on top of doing text-to-video is the possibility of taking an image as input and turning that into a video. The image might be by itself as the source content, or the AI might accept both a prompt as text and an accompanying image. Finally, the topmost aim is to allow the use of a separate video as the input source, possibly accompanied by text and images, all of which the generative AI utilizes to produce a suitable video. I refer to that as the all-encompassing full-meal deal.

The Holy Grail Is Suitability Of The Generated T2V

Notice that I just mentioned that the quest or hope is that the generative AI will produce a suitable video. My emphasis on that point is the nature of suitability.

Suitability is the trickiest part of this grand scheme. Allow me to explain. If someone enters a prompt that tells AI to produce a video about a cat wearing a hat that is sitting in a box and riding on a moving train, I’d like you to take a moment and imagine what that video looks like.

Go ahead, envision away, I’ll wait.

I dare say that if you told someone what the video would precisely look like, their conception of the video is going to be quite adrift from what you had in mind. Sure, you would both undoubtedly include a cat of some kind, a hat of some kind on the head of the cat, a box of some kind with the cat inside, and a moving train of some kind. But all of those might vary dramatically from the other person’s conception. Yours could be photo-realistic while the other person imagined animation. The colors would differ, the sizes and shapes would differ, and the action of the cat and the moving train would differ.

I’m sure you get the picture (aha, a pun).

Suitability or the act of meeting the request posed by the human user is a tough nut to crack. Your first impulse might be that if a person writes a lengthy prompt, that would seemingly narrow things down. It might do so to some extent. On the other hand, the odds are still notably high that there would still be marked differences.

Sora Turbo Enters Into The Scene

Earlier this year, OpenAI made available on a limited basis their new product Sora. Sora is a generative AI app that does text-to-video. Though it is referred to as text-to-video, it also does allow for the input of images and the input of video.

As an aside, the ultimate aim of AI makers across the board is to have what is known as X-to-X modes for generative AI, meaning that X can be text, images, audio, video, and anything else we come up with. The angle is that the end game consists of taking any type of medium as input and having the AI produce any desired type of medium as the output.

Boom, drop the mic.

No worries, we’ll get there (or, maybe we should be worried, as I’ll bring up toward the end here).

After Sora had its limited availability tryouts, OpenAI made some important changes and has now released the modified and more advanced version, known as Sora Turbo. Clever naming. You might want to go online and watch some posted videos showcasing the use of Sora Turbo. I say that because it is difficult in a written form such as this discussion to convey the look and feel of the prompts and controls you can use, and likewise allow you to see the generated videos. The official Sora portion of the OpenAI website shows some handy examples, plus there are already tons of user-made videos available on social media.

Components Of High-End Text-To-Video AI Apps

The next aspects that I will cover are the types of features and functionality that we nowadays expect a high-end text-to-video AI app to possess. I bring this up to acquaint you with the ins and outs of AI-based text-to-video capabilities.

In a sense, this is almost as though you are interested in possibly using or buying a car, but you aren’t familiar with the features and functions of automobiles. It can be tough to shop for a car if you are in the dark about what counts.

I will briefly identify some of the keystone elements of text-to-video. In addition, I’ll provide an assigned letter grade for what I perceive of the just-released Sora Turbo capabilities. I want to clarify that my letter grading is based on a first glance. My to-do list consists of spending some dedicated time with Sora Turbo and subsequently doing an in-depth review.

Be on the lookout for that posting.

T2V Suitability Or Faithfulness

I already brought up the fact that suitability is the Holy Grail of text-to-video.

Somehow, once the AI parses the input prompt, a video is to be generated that matches what the user has inside their mind. Whoa, we aren’t yet at mind-reading by AI (well, there are efforts underway to create brain-machine interfaces or BMI, see my discussion at the link here).

The AI industry tends to refer to this suitability factor as faithfulness or honesty. The AI is supposed to do a bang-up job and reach a faithful or honest rendering in video format of what the user wants.

I am going to say that all the readily available T2V is still at a grade level of C, including Sora Turbo. Inch by inch, clever techniques are being devised to hone in on what a user wants. This is mainly being done in AI research labs and we will gradually see those capabilities come into the public sphere.

T2V Visual Vividness, Quality, And Resolution

The video that was generated in the early days of text-to-video was very rudimentary. They were mainly low-resolution. The graphics were jerky while in motion. I’m not knocking on those heroic initial efforts. We ought to appreciate the pioneering work else we wouldn’t be where we are today.

Tip of the hat.

My point is that thankfully, we’ve come a long way, baby. If you get a chance to see the Sora Turbo AI-generated videos, the vividness, quality, and resolution are pretty much state-of-the-art for T2V. I’ll give this an A-/B+.

Yes, I am a tough-as-nails grader.

T2V Temporal Consistency Across Frames

I’m sure that you know that movies consist of individual frames that flow past our eyes so fast that we perceive that there is fluid motion afoot in what we are watching. The conventional text-to-video generation adheres to that same practice. A series of one after one-after-another frames are generated, and when they flow along, you perceive motion.

The rub is this. Suppose that in one frame a cat wearing a hat is at the left side of the view. The next frame is supposed to show the cat moving toward the right side, having moved just a nudge to the right. And so on this goes.

If the AI doesn’t figure out things properly, the next frame might show the cat suddenly at the far right of the view. Oops, you are going to be jostled that the cat somehow miraculously got from the left to the right. It won’t look smooth.

This is generally known as temporal consistency. The AI is to render the contents of the frames so that from one frame to the next, which is based on time as each frame goes past our eyes, there should be appropriate consistency. It is a hard problem, just to let you know. I’ll give Sora Turbo a B and anticipate this will be getting stronger as they continue their advancements.

T2V Object Permanence

You are watching an AI-generated video, and it shows a cat wearing a hat. The cat moves toward the right side of the scene. Suddenly, the hat disappears. It vanished. What the heck? This wasn’t part of the text prompt in the sense that the user didn’t say anything about making the hat vanish.

The AI did this.

Parlance for this is that we expect the AI to abide by object permanence and not mess around with things. An object that is shown in one frame should customarily be shown in the next frame, perhaps moved around or partially behind another object, but it ought to normally still be there somewhere. I’ll score Sora Turbo as a B-/C+.

Again, this is a hard problem and is being avidly pursued by everyone in this realm.

T2V Scene Physics

This next topic consists of something known as scene physics for text-to-video. It is one of the most beguiling of all capabilities and keeps AI researchers and AI developers up at night. They probably have nightmares, vivid ones.

It goes like this. You are watching an AI-generated video, and a character drops a brittle mug. Here on planet Earth, the mug is supposed to obey the laws of gravity. Down it falls. Kablam, the mug hits the floor in the scene and shatters into a zillion pieces.

That is the essence of scene physics. The kinds of intense calculations needed to figure out which way objects should natively go based on ordinary laws of nature is a big hurdle. In addition, the user might have stated that physics is altered, maybe telling the AI to pretend that the action is occurring on the Moon or Mars. I’ll score Sora Turbo as a B-/C+.

T2V Grab-Bag Of Features And Functions

I don’t have the space here to go into the myriad of text-to-video features and functions in modern-day T2V.

To give you a taste of things, here’s a list of many equally important capabilities in T2V products:

  • Stylistic options
  • Remixing re-rendering
  • Video output timing length
  • Time to render
  • Sequencing storyboarding
  • Source choices
  • AI maker preset usage limitations
  • Watermarking of generated video
  • Intellectual Property restrictions
  • Prompt library
  • Prompt storage functionality
  • Video storage functionality
  • Prompt sharing and control
  • Etc.

One thing you ought to especially be aware of is that T2V right now is usually only generating video that consists of a relatively short length of time. When T2V first came around, the videos were a second or two in length. They were nearly a blink of an eye.

Nowadays, many of the mainstay players can do somewhere around 10 to 20 seconds of video. That’s probably just enough to provide a brief scene, but it certainly doesn’t equate to a full-length movie. You can usually use a sequencing or storyboarding function that allows you to place one generated scene after another. That’s good. The downside currently is that the scenes aren’t likely to line up in a suitable alignment. Scene-to-scene continuity is typically weak and telling.

Overall, across the extensive list above, I’ll say that Sora Turbo is somewhere on an A-/B+ and you’ll find plenty of useful controls and functions to keep you busy and entertained.

The Emerging Traumas Of Readily Usable AI Text-To-Video

Shifting gears, I said at the opening of this discussion that text-to-video is quite a big deal. Let’s do a sobering unpacking of that thought.

Envision that with the use of prompts, just about anyone will eventually be able to produce top-quality videos that match Hollywood movies. This sends shivers down the spine of the entertainment industry. AI is coming at all those movie stars, filmmakers, support crews, and the like. Some in the biz insist that AI will never be able to replicate what human filmmakers can achieve.

Well, it’s debatable.

Furthermore, if you construe that the writer of the prompt is a said-to-be “filmmaker” you could argue that the human still is in the loop. One twist is that there are already efforts toward having generative AI come up with prompts that feed into AI-based text-to-video. Blasphemous.

There is something else of more immediate concern since the likelihood of T2V creating full-length top-notch movies is still a bit further on the horizon. The immediate qualm is that people are going to be able to make deepfakes of an incredibly convincing nature. See my coverage of deepfake-making via the AI tools to date, at the link here and the link here, and what’s likely going to happen with the next wave of AI advances.

Utterly convincing deepfakes will be made upon millions and billions of them. At low or nearly zero cost. They are easily distributed digitally across networks, at a low or negligible cost. They will be extremely hard to differentiate from real-life real-world videos.

At an enormous scale.

Disconcertingly, they will look like they are real-life videos. Consider the ramifications. A person is wanted for a heinous crime and a nationwide hunt is underway. The public is asked to submit videos from ring cams, their smartphones, and anything they have that might help in spotting the individual.

It would be very easy to create a video that seemed to show the person walking down the street in a given city, completely fabricated by using AI-based text-to-video. The video is believed. This might cause people in that area to become panicked. Law enforcement resources might be pulled from other locales to concentrate on where the suspect was last presumably seen.

You get the idea.

It Takes A Village To Decide Societal Norms For T2V

In my grab-bag list above of T2V features, I noted that watermarking is a feature that AI makers are including in the generated video, allowing for the potential detection and tracking of deepfakes. It is a cat-and-mouse game where evildoers find ways to defeat the watermarks. Another item listed was the AI maker placing restrictions on what can be included in a generated video, such as not allowing the faces and figures of politicians, celebrities, and so on. Again, there are sneaky ways to try and overcome those restrictions.

If you weren’t thinking about AI ethics and AI laws before now, it is time to put on some serious thinking caps.

To what degree should AI makers have discretion in the controls and limits? Should new AI-related laws be enacted? Will such laws potentially hamper AI advancement and place our country at a disadvantage over others (see my analysis of AI advances as a form of exerting national political power on the world stage, at the link here).

OpenAI acknowledges the disconcerting dilemma and noted this as a significant point in their official webpage about Sora Turbo entitled “Sora Is Here” (posted December 9, 2024): “We’re introducing our video generation technology now to give society time to explore its possibilities and co-develop norms and safeguards that ensure it’s used responsibly as the field advances.”

Yes, we all have a stake in this. Go ahead and get up-to-speed on the latest in text-to-video, and while you are at it, join in spirited and crucial discussions about where this is heading and what we can or ought to do to guide humankind in a suitable direction.

There it is again, the importance of suitability.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Ai ahora ‘en la cúspide de hacer una nueva ciencia’

Published

on

[Image created via OpenAI’s image generation technology]

“Estamos en la cúspide de sistemas que pueden hacer una nueva ciencia”.

Esa línea, en la página 3 del último “Marco de preparación” de OpenAI (versión 2, actualizada el 15 de abril de 2025), señala un posible cambio de paradigma para el ecosistema de I + D, que rápidamente está pasando de ser una etapa interna ansiosa, si no siempre precisa, a una colega potencial de AA, o incluso un investigador principal.

Mirando hacia el futuro, el marco lidia con el potencial de la IA para convertirse en “mejorando recursivamente”. Advierte que la “aceleración importante en la tasa de IA I + D” podría introducir rápidamente nuevas capacidades y riesgos. Esta aceleración podría superar las medidas de seguridad actuales, haciendo que la supervisión sea “insuficiente” y marcando explícitamente el peligro de perder el “mantenimiento del control humano” sobre el sistema de IA.

Hablando en un evento de Goldman Sachs solo unas semanas antes, el 5 de marzo (lanzado el 11 de abril en YouTube), la directora financiera de Operai Sarah Friar reforzó este punto de vista, afirmando que los modelos ya están “presentando cosas novedosas en su campo” y superando simplemente reflejando el conocimiento existente para “extender eso”. Friar señaló además el rápido enfoque hacia la inteligencia general artificial (AGI), lo que sugiere “Podemos estar allí”.

Si bien reconoce el debate en curso con algunos expertos que se balancean incluso en el término AGI y mucho menos su viabilidad, al menos con modelos de idiomas grandes), Friar mencionó la opinión del CEO Sam Altman de que la inteligencia general artificial (AGI), la IA que maneja el trabajo humano más valioso, podría ser “inminente”. Esto sugiere que la transición de la IA como herramienta para los investigadores de la IA como investigador puede estar más cerca de lo que muchos se dan cuenta, con primeros ejemplos potencialmente emergentes en campos como el desarrollo de software.

https://www.youtube.com/watch?v=2kzqm_bue7e

Las principales instituciones de I + D están construyendo activamente capacidades de ‘investigación autónoma’. Por ejemplo, los laboratorios nacionales como Argonne y Oak Ridge están desarrollando ‘laboratorios autónomos’ diseñados específicamente para la ciencia y la química de los materiales. Los Alamos también está trabajando con OpenAi
Probar sus modelos de razonamiento en Energía y Aplicaciones de Seguridad Nacional en su supercomputadora de Venado.

En general, los laboratorios nacionales están explorando el uso de IA para asumir tareas de investigación básicas: generar hipótesis (a menudo a través de estrategias de optimización), diseñar experimentos de varios pasos, controlar la ejecución robótica, analizar los resultados en tiempo real e iterando hacia objetivos de descubrimiento con una intervención humana significativamente reducida dentro de dominios operativos específicos. Si bien aún requiere supervisión humana para la validación y la dirección estratégica, que funciona quizás en un ‘nivel 3’ o ‘nivel 4’ emergente de la autonomía de la investigación, tales iniciativas demuestran que la IA se va más allá del análisis de datos pasivos para participar directamente en el proceso de descubrimiento científico. Esto se extiende más allá de la construcción de sistemas integrados; Implica empoderar directamente a los investigadores, como se ve en el reciente Doe ‘1,000 científico Ai Jam’. Esta colaboración a gran escala reunió a unos 1.500 científicos en múltiples laboratorios nacionales, incluido Argonne, para probar modelos avanzados de razonamiento de IA de compañías como OpenAi y Anthrope en problemas científicos del mundo real. Los investigadores exploraron específicamente su potencial para mejorar las tareas como la generación de hipótesis y la automatización del experimento.

Una transición similar ya está en marcha en el desarrollo de software, aunque los desarrolladores actualmente tienen vistas mixtas sobre el potencial de las herramientas habilitadas para Genai. La IA de hoy a menudo sirve como asistente, pero la tecnología está aumentando rápidamente su juego de software, especialmente para lenguajes comunes que van desde Javascript hasta Python. Los modelos de OpenAI están demostrando un progreso significativo, “acercándose a nivel humano” en puntos de referencia clave, y Fray señaló que uno ya es “literalmente el mejor codificador del mundo”. Esto respalda el potencial fraile descrito para un “ingeniero de software de agente”, una IA que “puede salir y trabajar de forma independiente para usted”, incluidas la construcción, las pruebas y las aplicaciones de documentación. Esta evolución hacia capacidades más autónomas podría remodelar el campo por completo.

AI de 5 niveles de Openai
marco de madurez

Según los informes, Operai utiliza un marco interno de cinco niveles para comparar su progreso hacia la inteligencia general artificial (AGI). Esta estructura, discutida dentro de la compañía a mediados de 2024 y luego informada por puntos de venta como Bloomberg, describe distintas etapas de capacidad de IA:

  1. Nivel 1: Chatbots / AI conversacional: Sistemas expertos en el lenguaje natural, como Chatgpt.
  2. Nivel 2: razonadores: AI capaz de resolver problemas básicos comparables a un humano altamente educado. En este nivel, los modelos también pueden demostrar habilidades de razonamiento emergentes sin herramientas externas.
  3. Nivel 3: Agentes: Sistemas de IA autónomos que pueden administrar tareas complejas y tomar decisiones durante períodos prolongados en nombre de los usuarios.
  4. Nivel 4: Innovadores: La IA contribuye significativamente a la creatividad y el descubrimiento generando ideas novedosas, ayudando a la invención o impulsando los avances.
  5. Nivel 5: Organizaciones: La etapa del ápice donde la IA puede gestionar y operar las funciones complejas de toda una organización, potencialmente excediendo la eficiencia humana.

En general, los laboratorios nacionales están explorando el uso de IA para asumir tareas de investigación básicas: generar hipótesis (a menudo a través de estrategias de optimización), diseñar experimentos de varios pasos, controlar la ejecución robótica, analizar los resultados en tiempo real e iterando hacia objetivos de descubrimiento con una intervención humana significativamente reducida dentro de dominios operativos específicos. Si bien aún requiere supervisión humana para la validación y la dirección estratégica, que funciona quizás en un ‘nivel 3’ o ‘nivel 4’ emergente de la autonomía de la investigación, tales iniciativas demuestran que la IA se va más allá del análisis de datos pasivos para participar directamente en el proceso de descubrimiento científico. Esto se extiende más allá de la construcción de sistemas integrados; Implica empoderar directamente a los investigadores, como se ve en el reciente Doe ‘1,000 científico Ai Jam’. Esta colaboración a gran escala reunió a unos 1.500 científicos en múltiples laboratorios nacionales, incluido Argonne, para probar modelos avanzados de razonamiento de IA de compañías como OpenAi y Anthrope en problemas científicos del mundo real. Los investigadores exploraron específicamente su potencial para mejorar las tareas como la generación de hipótesis y la automatización del experimento.

Una transición similar ya está en marcha en el desarrollo de software, aunque los desarrolladores actualmente tienen vistas mixtas sobre el potencial de las herramientas habilitadas para Genai. La IA de hoy a menudo sirve como asistente, pero la tecnología está aumentando rápidamente su juego de software, especialmente para lenguajes comunes que van desde Javascript hasta Python. Los modelos de OpenAI están demostrando un progreso significativo, “acercándose a nivel humano” en puntos de referencia clave, y Fray señaló que uno ya es “literalmente el mejor codificador del mundo”. Esto respalda el potencial fraile descrito para un “ingeniero de software de agente”, una IA que “puede salir y trabajar de forma independiente para usted”, incluidas la construcción, las pruebas y las aplicaciones de documentación. Esta evolución hacia capacidades más autónomas podría remodelar el campo por completo.

Continue Reading

Noticias

Lo que se puso bien y mal

Published

on

Han pasado casi 30 años desde que fui a Disney World. Mis recuerdos de Disney son felices, pero no recuerdo ningún detalle más allá de usar oídos, hacer que los personajes firmen mi libro especial de autógrafos y permanezcan despierto hasta tarde para ver el espectáculo de fuegos artificiales en Epcot.

Tengo dos hijas, casi 4.5 y 2.5, que están obsesionados con las princesas, por lo que cuando descubrí que mi familia estaría en Orlando durante unos días en junio, decidí buscar ir a Disney World por el día. Haremos un viaje más grande de Disney World en un par de años, pero los niños menores de 3 años son gratuitos (una de las pocas cosas que sabía sobre Disney), así que pensé que aprovecharíamos eso y les daríamos una gran sorpresa.

El único problema es que pensar en planificar un día en Disney es abrumador. Hay Tanta información Acerca de cómo optimizar su tiempo en los parques.

Decidí pedirle a ChatGPT que planifique mi día, y luego tuve a Mary Helen Law, propietaria de la compañía de planificación de Disney Minnie Mouse Counselors y uno de los principales especialistas en viajes de Conde Nast Traveler, revise el itinerario. Siga leyendo para escuchar qué chatgpt se hizo bien y mal y qué tenía que decir un experto en Disney.

Conocer al experto

Mary Helen Law, fundador de Mini Mouse Counselores

Mary Helen es una madre y experta en viajes. Comenzó su carrera como agente de viajes en 2018 mientras trabajaba en marketing y desarrollo de negocios. En 2019 decidió dejar su trabajo diario para expandir su negocio. Desde entonces, ha ayudado a cientos de familias a planificar vacaciones mágicas en todo el mundo y es uno de los principales especialistas en viajes de Conde Nast Traveler.

My Disney World Chatgpt Planning de planificación

Primero, aquí está el aviso que le di a Chatgpt para crear nuestro itinerario de Disney World:

¿Puedes planificar el día de mi familia en Disney World? Seremos yo, mi esposo y mis dos hijas. Serán 2.5 y 4.5 para el viaje, y aman a Ariel, Elsa y Ana, Moana, Belle, 101 Dalmatians, Cenicienta y Mary Poppins.

Nos gustaría ir a dos parques diferentes en el transcurso del día, pero necesitaremos un descanso de tres a cuatro horas en la mitad del día para una siesta. Nos gustaría hacer un almuerzo sentado en un restaurante temático que nuestras niñas les gustaría en función de sus intereses. ¿Puede planificar un itinerario para el día para los parques que recomendaría? Además, debe haber una parada de bocadillos por la mañana y la tarde.

¿Qué chatgpt hizo lo correcto sobre la planificación de un viaje a Disney World?

Hay muchas cosas que ChatGPT se equivocó sobre la planificación de un viaje a Disney (más sobre eso en un momento), pero sí recomendó paseos y actividades que encajarían bien en función de los intereses de mis hijas, como ir al viaje “Under the Sea” y conocer a Ariel, ver “cuentos encantados con Belle”, con un almuerzo en el restaurante de invitados y ver la festival de la fantasía de Magic Kingdom.

Cuando mi hermana usó un planificador de Disney el año pasado, tuvo la experiencia opuesta. El planificador acaba de recomendar todos los paseos más populares, como Tron, en el que mi sobrino no habría tenido interés, por lo que al menos Chatgpt prestó atención a lo que le dije que le gustaban a mis chicas.

También le pregunté a ChatGPT si tenía algún consejo para tener un día exitoso en Disney, y obtuve una buena información, como usar la aplicación de Disney para verificar los tiempos de espera de viaje y pedir comida con anticipación, y que podríamos usar el programa Rider Switch en caso de que mi hijo menor fuera demasiado pequeño para viajar.

También me dio algunas recomendaciones excelentes sobre qué empacar para el día, como protector solar, toallitas para bebés y bocadillos. Law estuvo de acuerdo en que había algunas pepitas de buena información, pero señaló que ChatGPT no incluía empacar un cargador de teléfono portátil, algo que dijo que necesitaríamos.

Qué chatgpt se equivocó sobre nuestro itinerario del día de Disney

Tres cosas principales para recordar sobre ChatGPT es que solo responde a lo que le da, se está retirando de la información en Internet y puede que no siempre sea correcto, y tampoco hay un elemento humano para ayudar a racionalizar la información.

Por ejemplo, le dije a ChatGPT que quería ir a dos parques, por lo que me dio un itinerario basado en ese aviso. Nunca hubiera sugerido que no haga dos parques porque sería poco realista dadas las edades de mis hijos.

ChatGPT carece de la capacidad de decir que no o sugerir ideas alternativas

Chatgpt hizo lo que le pedí, pero si hubiera abrazado las sugerencias, supongo que nunca habríamos regresado al parque después de una siesta y está muy frustrado.

Law, por otro lado, echó un vistazo a mi aviso y me dijo que realmente recomendaría no saltar en el parque y que deberíamos quedarnos en Magic Kingdom todo el día versus tratar de irme y volver.

Law me explicó que debido a que no nos quedamos en un resort de Disney, pasaremos mucho más tiempo pasando del estacionamiento a los parques, y que mi estimación de 30 minutos probablemente fue más como una hora y media. ChatGPT no sabe cuánto tiempo lleva llegar al estacionamiento y regresar a un hotel y no pudo estimar con precisión la logística detrás de esto.

También recomendó una siesta de cochecito en el carrusel de progreso con aire acondicionado, que según ella generalmente era un lugar más tranquilo, en lugar de tratar de irse y volver al parque. ChatGPT también recomendó este lugar y el Salón de Presidentes actualmente cerrado como un gran lugar para tomar un descanso, pero en general necesitaba un humano con más conocimiento de cómo funcionan las cosas en Disney para ayudarme a entender lo que era realista en lugar de no para nuestro viaje.

Chatgpt no incluyó ningún tiempo de espera para los paseos

Si nos fijamos en el itinerario que Chatgpt me dio por Disney, es como si tuviéramos el parque para nosotros mismos. Según ChatGPT, estaríamos en camino o en una nueva atracción cada 30 minutos.

Incluso sé lo suficiente sobre Disney para saber que eso no sonó bien. Law dijo que probablemente estaríamos en el extremo inferior de los tiempos de espera desde que iremos a principios de junio, pero acordamos que la cantidad de cosas que el itinerario dijo que logramos no parecía realista.

En cambio, ella me acompañó a través de la aplicación de Disney y me mostró cómo podré ver cuáles son los tiempos de espera para cada viaje, cuáles son los tiempos de show y cómo ver qué personajes están.

También me habló de las otras formas en que podemos reducir los tiempos de espera comprando pases de rayos o el pase Premier, que es un programa más nuevo (aunque costoso) que Disney está probando que le da una entrada a cada experiencia de Lightning Lane.

Usar ChatGPT sería excelente para preguntar qué paseos serían apropiados para mis niñas en función de su edad e intereses para que tengamos una idea de qué apuntar durante todo el día, pero la información sobre cómo usar la aplicación para ahorrar tiempo que la ley me dio será mucho más útil. También ayudó a establecer el nivel de mis expectativas sobre lo que podremos lograr en un día, lo que me ayudará a no estresarse por no poder hacerlo todo una vez que lleguemos allí.

Chatgpt se equivocó con cosas importantes que habrían arruinado nuestro día en Disney

Recuerde, soy un novato en Disney, así que tomé toda la información que me dio al pie de la letra.

El problema, dice Law, es que “ChatGPT simplemente no puede mantenerse al día con la cantidad que cambia Disney”. Se extrae de fuentes en todo Internet y no puede discernir lo que es correcto o no, así que terminé con cosas en el itinerario que no son precisos.

¿Uno de los mayores errores? El itinerario dijo que podríamos conocer a Ana y Elsa, los personajes favoritos de mis niñas, en el Princess Fairytale Hall, que no es cierto. Se encuentran y saludan en Epcot en el Royal Sommerhus.

Law sintió mi decepción y me aseguró que las chicas podrían saludar a Ana, Elsa y Olaf en la feria de amistad mágica de Mickey o en el desfile de Magic Kingdom.

¿Otras cosas importantes que Chatgpt se equivocó que habría descarrilado nuestro día? Sugirió conocer a Ariel a las 9 am cuando no está disponible hasta las 10 de la mañana; dijo que podríamos ingresar al parque a las 8 a.m., lo cual es incorrecto teniendo en cuenta que Magic Kingdom abre a las 8:30 a.m. para las personas que permanecen en la propiedad y las 9 a.m. para las personas que se mantienen fuera de la propiedad; y dijo que deberíamos usar Genie+ o un paso rápido para reducir los tiempos de espera, los cuales son servicios que ya no existen.

Es fácil suponer que lo que ChatGPT escupe es exacto, pero en nuestro caso todos estos errores habrían causado una frustración significativa para el día.

¿Debería usar ChatGPT para cualquier parte de su planificación de Disney?

Law dijo que podía ver que ChatGPT era útil para “cosas de espectro muy amplio” al planificar un viaje a Disney, como recomendaciones para qué recurre para quedarse o tener una idea general de qué personajes son los parques (aunque tenga en cuenta, ChatGPT me dio información incorrecta sobre esto).

“Creo que hay mucha seguridad laboral en lo que [travel planners] Haga por las relaciones que tenemos y el conocimiento “, dice, pero dice que no cree que sea una mala idea usar ChatGPT para obtener algunas ideas iniciales antes de hablar con un planificador.

Chatgpt Disney World Itinerario
Fuente: @mrscofieldandco | Instagram

¿Debería usar un planificador de Disney para su viaje de Disney?

No tiene que usar un planificador de Disney para planificar su viaje, pero después de mi experiencia con ChatGPT, usaré uno, ya que todavía no sé por dónde comenzar con toda la información.

Trabajar con un planificador de Disney es a menudo gratuito, ya que Disney le paga a una comisión al planificador, pero si no es así, podría valer la pena la inversión solo para asegurarse de obtener la información más precisa.

Si no desea usar un planificador, pregúntele a los amigos que hayan estado en Disney para sus consejos e itinerarios. Puede ser más fácil entender lo que es realista en lugar de no para su familia si tiene hijos de edad similar y aún reducirá el trabajo para usted (Everymom también tiene consejos de mamás para viajar a Disney World con niños pequeños, Disney con un bebé e incluso Disney World mientras está embarazada).

Veredicto final? ChatGPT podría ser bueno para algunos aspectos de la planificación de viajes, pero el itinerario que me dio en base a mi aviso no era realista y tenía muchos errores. Para algo tan complicado como Disney World, tener ideas y juicio humanos se siente como una mejor manera de tratar de garantizar más magia de Disney que los dolores de cabeza.

Elliot Harrell SHOYSHOT

Sobre el autor

Elliott Harrell, escritor colaborador

Elliott es madre de dos niñas y tiene su sede en Raleigh, NC. Pasa sus días dirigiendo un equipo de ventas y lavando la ropa y sus noches escribiendo sobre las cosas que ama. Le apasiona todas las cosas de la maternidad y la salud de las mujeres. Cuando no está trabajando, escribiendo o criando, puede encontrarla probar un nuevo restaurante en la ciudad o trabajar en su último proyecto de aguja.

Continue Reading

Noticias

Operai vs Musk Legal Feud se intensifica; Informe de la IEA

Published

on

Operai, la compañía detrás de ChatGPT, disparó la semana pasada con un mostrador contra Elon Musk, marcando otro capítulo en lo que se ha convertido en una batalla legal muy pública entre Elon Musk, Sam Altman, Operai y unos pocos otros.

Musk ha estado en guerra con Operai y el CEO Sam Altman durante casi un año, acusando a la compañía de abandonar su misión original. La demanda original de Musk se centra en las afirmaciones de que OpenAI violó su acuerdo de fundadores y se separó de sus raíces originales sin fines de lucro en busca de ganancia comercial, específicamente a través de la creación de Operai Global LLC, su armado con fines de lucro, así como en su búsqueda de convertir su entidad sin fines de lucro en una compañía con fines de lucro.

Pero esta semana, Operai respondió. La compañía presentó una respuesta legal acusando a Musk de participar en “prácticas comerciales ilegales e injustas” diseñadas para interrumpir las operaciones de OpenAi y untar su reputación. Operai también afirma que Musk está haciendo principalmente todo esto para beneficiar a su compañía de IA, Xai.

Si solo estás poniendo al día con esta disputa, todavía estamos en sus primeras entradas, y ahora es el momento de ponerte al día. Nuestra cobertura anterior desglosa las presentaciones legales, la historia entre Musk y OpenAi, y lo que está en juego para ambas compañías.

La suscripción de $ 200 de Claude

La semana pasada, Anthrope lanzó un nuevo “Plan Max” para su IA Chatbot Claude, un nivel de suscripción de $ 100 y $ 200 por mes que ofrece lo que la compañía llama “uso ampliado”, que es solo otra forma de decir que podrá hacer más (tendrá menos límites) en Claude que antes. El nivel de $ 100/mes ofrece 5 veces más uso que el plan estándar Pro y el plan de $ 200/mes aumenta el uso de 20 veces el uso.

Un movimiento como este probablemente será celebrado por desarrolladores y nuevas empresas que tienen Claude integrado en algún lugar de su pila tecnológica. Pero debajo del capó, este movimiento es más que un rendimiento para sus usuarios; Se trata de rentabilidad para Anthrope, la empresa matriz para Claude.

Anthrope probablemente espere que este nuevo plan Max abra un nuevo canal de ingresos. Después de todo, se rumorea que el PRO Pro de $ 200/mes de OpenAI ha traído $ 300 millones adicionales después de su lanzamiento.

Este cambio de precios también resalta una tendencia más grande que se ha desarrollado detrás de escena del auge de la IA. A pesar de miles de millones en el gasto, ninguna de estas compañías de IA líderes ha obtenido ganancias todavía, y los inversores están comenzando a preocuparse, por lo que están comenzando a preguntar cuándo y de dónde provendrá un retorno de su inversión.

Ofrecer un producto más costoso es una forma de acercarse a la rentabilidad que los inversores están comenzando a presionar a estas compañías de inteligencia artificial para que produzcan, pero es poco probable que confiar en esa corriente de ingresos de los modelos de suscripción por sí solos sea poco probable que cualquiera de las empresas allí, especialmente cuando comienza a analizar cómo los consumidores demandan bien y servicios de IA.

El informe de la IEA explora el consumo de energía de IA

La Agencia Internacional de Energía (IEA) publicó un informe la semana pasada titulado Energía y ai, que exploró la creciente relación entre la inteligencia artificial y el consumo de energía global.

En 301 páginas, es un informe denso, pero aquí hay algunas conclusiones que se destacaron:

1. AI está aumentando la demanda de electricidad

Según el informe, se proyecta que el consumo de electricidad por parte de los centros de datos sea más del doble para 2030, y la IA es el impulsor número uno de ese crecimiento. Se espera que Estados Unidos sea responsable de más de la mitad del aumento global. Al final de la década, el uso de electricidad del Centro de datos de EE. UU. Podría exceder la potencia total utilizada para producir acero, aluminio, cemento, productos químicos y todos los demás bienes intensivos en energía combinados.

2. ¿De dónde vendrá el poder?

No se trata solo de construir más centros de datos; La IEA señala que varias redes de energía en todo el mundo ya están bajo una fuerte tensión. Sin actualizaciones significativas de infraestructura, especialmente nuevas líneas de transmisión, que pueden tardar de 4 a 8 años en construirse, muchos de los planes de expansión del centro de datos que seguimos escuchando pueden retrasarse o cancelarse.

3. El impacto energético de la IA no se está tratando como el de Crypto.

Mientras estaba pasando por el informe, me di cuenta de que el tono en torno al consumo de energía de IA es muy diferente a la actitud que estas mismas agencias tenían hacia la minería de recompensa en bloque. A pesar de que los centros de datos podrían estar utilizando más potencia que todo Japón para 2030, la AIE no argumentó que la industria está consumiendo demasiada electricidad. En cambio, argumenta que las contribuciones de IA a la innovación, especialmente en la eficiencia energética y la optimización de la red, pueden justificar el consumo.

En general, el informe trae algunos de los componentes menos explorados pero cruciales de la industria de la inteligencia artificial a la superficie. Si bien las compañías de IA han estado diciendo durante un tiempo que Estados Unidos necesita más centros de datos para mantenerse competitivos, el informe de la AIE subraya una parte del argumento de que generalmente no escuchamos de las compañías de IA: que no se trata solo de los centros de datos, también se trata de las fuentes de energía. Si la generación de energía y las soluciones de entrega no se exploran e implementan rápidamente, tienen el potencial de ralentizar significativamente los planes que algunos de los gigantes tecnológicos tienen para la industria de la IA.

Para que la inteligencia artificial (IA) trabaje en la ley y prospere frente a los crecientes desafíos, necesita integrar un sistema de cadena de bloques empresarial que garantice la calidad y la propiedad de la entrada de datos, lo que permite mantener los datos seguros al tiempo que garantiza la inmutabilidad de los datos. Echa un vistazo a la cobertura de Coingeek sobre esta tecnología emergente para aprender más Por qué Enterprise Blockchain será la columna vertebral de AI.

RELOJ: Los micropagos son lo que permitirán a las personas confiar en la IA

https://www.youtube.com/watch?v=XC9XDZMHJ9Q title = “YouTube Video Player” FrameBorDer = “0” permitido = “acelerómetro; autoplay; portapapeles-write; cifrado-media; gyroscope; imagen-in-pinicure; web-share” referrerPolicy = “estricto-origin-when-cross-órigin” permitido aficionado = “>”> “>”

Continue Reading

Trending