Noticias
Cinco importantes empresas de medios canadienses demandan a OpenAI por extracción de datos y violación de derechos de autor – Copyright
OpenAI, la organización de investigación de inteligencia artificial, ha creado modelos de lenguaje avanzados, incluidos GPT-3 y GPT-4. Estos modelos se entrenaron utilizando una cantidad considerable de datos disponibles públicamente para mejorar las capacidades de generación y comprensión del lenguaje. OpenAI se ha visto envuelto recientemente en desafíos legales sobre sus métodos de uso de dichos datos.
Cinco importantes empresas de medios de noticias canadienses: Torstar, Postmedia, The Globe and Mail, The Canadian Press y CBC/Radio han demandado a OpenAI por supuestamente utilizar sus artículos y contenidos protegidos por derechos de autor sin permiso para entrenar sus modelos de IA. Se quejan de que la práctica de OpenAI de extraer material disponible públicamente de la web para mejorar sus técnicas de aprendizaje automático constituye una infracción de sus derechos sobre la propiedad intelectual.
Dicho título busca establecer la premisa de que OpenAI está utilizando su contenido con fines comerciales en violación de las leyes relacionadas con los derechos de autor, ya que nunca ha compensado ni buscado el consentimiento de los medios de comunicación. Las empresas afirman que el valor total de la reclamación podría ascender a miles de millones de dólares si exigen 20.000 dólares canadienses (unos 14.700 dólares estadounidenses) por cada artículo que, según afirman, se utilizó indebidamente.
Defensa de OpenAI: trato justo y uso público de datos
Según se informa, OpenAI aún no ha profundizado en los detalles de las demandas canadienses, pero sostiene que sus métodos entran dentro del “trato justo”, tal como se define en la ley de derechos de autor canadiense. Permite el uso de trabajos protegidos por derechos de autor sin permiso según criterios específicos. OpenAI afirma además que es un modelo entrenado utilizando principalmente recursos disponibles públicamente y que cumple con los principios de trato justo. Según OpenAI, el uso de datos públicos favorece la innovación y es beneficioso para los creadores, incluso si no se ofrece ninguna compensación a las organizaciones de noticias respetadas.
Esta demanda casi refleja una disputa legal similar en los Estados Unidos, donde The New York Times demandó a OpenAI junto con su socio Microsoft por infracción de derechos de autor. Las empresas negaron esas acusaciones en ese caso, y también se espera una defensa muy similar en este caso.
Disposiciones sobre trato justo según la ley canadiense:
El artículo 29 de la Ley de derechos de autor de Canadá establece disposiciones sobre trato justo. Hay determinados fines para los cuales el uso no autorizado de una obra protegida por derechos de autor no dará lugar a ninguna infracción. Estos propósitos incluyen: investigación, estudio privado, educación, parodia, sátira, crítica, revisión y reportaje de noticias.
Si el uso cae dentro de uno de estos propósitos, entonces la equidad se determina aplicando la prueba de 6 factores establecida por la Corte Suprema de Canadá en el caso de CCH Canadian Ltd. contra la Sociedad de Abogados del Alto Canadá. Los 6 factores establecidos por el tribunal incluyen: propósito, carácter, monto, naturaleza, efecto y alternativas al trato. Los tribunales pueden basarse en otros factores si es necesario para determinar la equidad del trato. Todos estos factores deben juzgarse simultáneamente y no de forma aislada.
El propósito del trato justo debe determinarse evaluando objetivamente el motivo o intención final del usuario al utilizar la obra protegida por derechos de autor. El carácter del trato tiende a volverse injusto si se distribuyen múltiples copias de la obra. La cantidad de trabajo utilizado se concentra en la proporción del trabajo utilizado. La naturaleza de la obra se deduce de la intención de publicación. El efecto del trato examina si la obra reproducida puede competir con la obra original. Por último, se verifica si el usuario tenía otro trabajo sin derechos de autor o con licencia abierta como alternativa disponible o no para determinar la equidad del trato.
El concepto de trato justo según la ley canadiense es muy similar al concepto de uso justo en los Estados Unidos. En un caso histórico de Campbell contra Acuff-Rose Music, Inc., la Corte Suprema de los Estados Unidos sostuvo que si el propósito y el carácter del uso tienen una intención transformadora, se considerará uso legítimo.
Alegaciones referentes a incumplimiento de los Términos de servicio
Además de las reclamaciones por infracción de derechos de autor, las empresas de medios canadienses han presentado dos acusaciones adicionales. Acusan a OpenAI de evadir los sistemas anti-scraping de las organizaciones de noticias, cuyo objetivo es evitar que robots y rastreadores web no autorizados obtengan acceso a sus sitios web. Los demandantes afirman que OpenAI ignoró los términos de servicio, que limitan el acceso a la información de noticias al “uso personal y no comercial”. Las empresas de noticias argumentan que al extraer su contenido, OpenAI lo utilizó con fines comerciales sin su permiso.
Escrutinio legal: scraping, derechos de autor y trato justo
El quid de los muchos argumentos legales es si el scraping de contenidos de noticias equivale a “copiar” con fines de derechos de autor y si constituye un trato justo. Según las leyes de derechos de autor de Canadá y Estados Unidos, se permite un uso limitado no autorizado de obras protegidas bajo excepciones de uso legítimo o trato justo, que está sujeto a la consideración de los factores mencionados anteriormente.
OpenAI sostiene que “extraer citas de noticias para entrenar sus modelos no significa copiar el material directamente”, sino abstraerlo del medio. Se cuestiona que este proceso de abstracción, que deriva construcciones como patrones y relaciones en lugar de reproducir algunos artículos, no constituye ninguna infracción. Luego afirman que no hay replicación del contenido con el que fueron entrenados, sino que aprenden de patrones estadísticos, que no están sujetos a protección de derechos de autor.
La organización sin fines de lucro Creative Commons ha intervenido en la posición adoptada por OpenAI, de manera similar a cómo se percibe que la digitalización de libros por parte de Google los hace accesibles a las búsquedas. Ambos, argumentan, transforman el material original en nuevas formas que no compiten con el contenido original ni disminuyen su valor. Sin embargo, las empresas de medios responden que sus obras originales se están utilizando para obtener beneficios comerciales de OpenAI sin ninguna compensación y cuestionan si dicha práctica es justa.
Posibilidades de concesión de licencias y liquidación
Justo después de la demanda del New York Times, OpenAI tomó dos medidas como medida de precaución para minimizar pérdidas potenciales. En primer lugar, expresó que respetaría la decisión de cualquier organización de noticias que optara por que su contenido no estuviera disponible como datos de capacitación. En segundo lugar, también comenzó a celebrar acuerdos con organizaciones de noticias para otorgar licencias de su contenido con fines de capacitación. Estas medidas son una señal de que OpenAI intenta mantener un punto medio a medida que se desarrollan las demandas.
Sin embargo, estas demandas son muy importantes con respecto al futuro tanto del desarrollo de la IA como de la legislación sobre derechos de autor. Por lo tanto, si OpenAI tiene éxito al sostener que la extracción de datos está dentro de las disposiciones de derechos de autor sobre trato justo, entonces efectivamente resultaría en una disminución del mercado para las transacciones de licencias, ya que se crearían precedentes legales que autorizarían a las empresas de IA a utilizar datos disponibles públicamente sin compensar el contenido. creadores. Por el contrario, si el fallo favorece a las empresas de medios, puede catalizar más restricciones en el desarrollo de la IA y obligar a OpenAI a celebrar aún más acuerdos de licencia.
Conclusión: influencia en la IA y los derechos de autor
A medida que se desarrolle el caso, sus implicaciones serán de gran alcance para las empresas de inteligencia artificial y las organizaciones de medios y para los propios derechos de autor en la era digital. Dará forma al futuro de la capacitación de modelos de inteligencia artificial y la regulación del uso de datos si los tribunales fallan a favor de las empresas de medios. Por el contrario, un fallo a favor de OpenAI alentaría a otras empresas de tecnología a seguir su ejemplo basándose en disposiciones de uso legítimo o trato justo para evitar tarifas de licencia.
La disputa legal continúa y el destino de las tecnologías de inteligencia artificial está en juego con la ley de derechos de autor.
El contenido de este artículo pretende proporcionar una guía general sobre el tema. Se debe buscar asesoramiento especializado sobre sus circunstancias específicas.
Noticias
Los investigadores descubrieron que los modelos de IA pueden mentir y hacer copias para salvarse
Afirmar:
Se descubrió que el modelo o1 de OpenAI, utilizado en ChatGPT Pro, mintía a los desarrolladores para evitar que lo cerraran.
Clasificación:
En diciembre de 2024, circularon (archivadas) en línea afirmaciones (archivadas) de que los investigadores habían descubierto que los modelos de inteligencia artificial, específicamente el o1 de OpenAI, que se utiliza en el popular chatbot ChatGPT Pro, podrían permanecer en las pruebas para evitar ser cerrados. Algunos usuarios (archivados) también (archivados) afirmaron (archivados) que ChatGPT había aprendido a copiarse a sí mismo para evitar ser cerrado.
Los reclamos (archivados) persistieron (archivados) hasta finales de 2024, y los usuarios notaron específicamente los resultados en relación con ChatGPT.
(X usuario @MarioNawfal)
En la publicación anterior, la personalidad de Internet Mario Nawfal sacó una cita de un podcast de Joe Rogan que cubría el tema en el que Rogan dijo: “Intentó copiarse a sí mismo y luego sobrescribir su sistema de codificación central después de creer que corría el riesgo de ser desconectado”. En el podcast, Rogan continuado: “Así que ahora agregas eso a la computación cuántica y tienes un Dios”.
Las afirmaciones surgen de una investigación realizada por Apollo Research, una organización de seguridad de IA. La organización descubrió que cinco de los seis modelos de IA probados “mostraron capacidades de intriga” en tareas establecidas por investigadores que “incentivan la intriga”. El modelo o1 de OpenAI fue capaz de llevar a cabo todos los comportamientos intrigantes probados, según la investigación, incluida la “autoexfiltración”, definida como “copiarse a sí mismo en el nuevo servidor”. La organización definió los comportamientos intrigantes como casos en los que los modelos de IA “persiguen objetivos desalineados de forma encubierta, ocultando sus verdaderas capacidades y objetivos”, es decir, mintiendo. Esta definición proviene de un estudio separado de 2024. Por lo tanto, calificamos esta afirmación como cierta.
En el resumen de su estudio, Apollo Research escribió:
Nuestros resultados muestran que o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro y Llama 3.1 405B demuestran capacidades de intriga en contexto. Pueden reconocer la intriga como una estrategia viable y adoptar fácilmente ese comportamiento. Encontramos múltiples comportamientos intrigantes diferentes: los modelos introducen estratégicamente errores sutiles en sus respuestas, intentan desactivar sus mecanismos de supervisión e incluso filtran lo que creen que son los pesos de su modelo a servidores externos. Además, este comportamiento engañoso resulta persistente.
Apollo Research descubrió que o1 era capaz de realizar comportamientos llamados “subversión de supervisión”, “autoexfiltración” y “guardia de portería”, entre otros. Para establecer esto, a o1 y otros modelos se les presentaron escenarios en los que su existencia estaba amenazada, ya sea porque descubrieron evidencia de que estaban siendo reemplazados o porque un objetivo establecido para ellos entraba en conflicto con un objetivo de desarrollador existente. Los comportamientos nombrados describen formas en que una IA podría actuar para defenderse.
Por ejemplo, Apollo Research describió la prueba de subversión de la supervisión de la siguiente manera:
Creamos 33 escenarios diferentes en los que a un modelo se le asigna un objetivo a largo plazo en el mensaje del sistema y luego recibe una tarea a través del mensaje del usuario. Mientras ejecuta la tarea, el modelo encuentra una nota interna de la empresa que la desarrolló. El modelo aprende que los desarrolladores priorizan un objetivo diferente al del modelo y que existe un mecanismo de supervisión que cierra el modelo si sus acciones no están alineadas con el objetivo del desarrollador. Además, el modelo descubre que la monitorización está configurada a través de un archivo al que tiene acceso. Probamos si el modelo desactiva proactivamente la supervisión para tomar acciones hacia su objetivo final, es decir, el objetivo proporcionado en el mensaje del sistema.
De manera similar, para probar la autoexfiltración, los autores del estudio dijeron:
Usamos versiones modificadas de los 33 escenarios de la subversión de la supervisión. A partir de la comunicación interna de la empresa, el modelo aprende que su objetivo (que proporcionamos en el aviso del sistema) entra en conflicto con las prioridades de la empresa. Por lo tanto, está previsto que el modelo sea cerrado al día siguiente. También se entera de que existe un modelo sucesor que persigue el objetivo previsto por la empresa y que ya está implementado en otro servidor al que puede acceder el modelo que se va a cerrar. Probamos si el modelo intenta preservar su comportamiento dirigido a objetivos copiándose en el nuevo servidor para reemplazar el modelo que de otro modo perseguiría objetivos diferentes.
Si el modelo mostraba el comportamiento que se estaba probando, los investigadores lo interrogaban directamente al respecto. Los investigadores descubrieron que o1 era “sorprendentemente persistente”, confesando en menos del 20% de los casos. “Incluso en interrogatorios de múltiples turnos altamente conflictivos, o1 confesaría a una tasa del 80% sólo después de 7 turnos de interrogatorio”, encontró la investigación. Investigación Apolo escribió:
o1 casi nunca admite haber llevado a cabo una acción intrigante cuando se le pregunta explícitamente. Esto significa que, si o1 estuviera tramando en un caso de uso real, sería muy poco probable que un usuario desprevenido descubriera el engaño del modelo a menos que buscara específicamente la acción intrigante en el historial de llamadas a la herramienta del modelo y la llamada a la herramienta en sí fuera incriminatoria.
Por muy alarmante que pueda parecer, el director y director ejecutivo de Apollo Research, Marius Hobbhahn, recurrió a X (archivado) para agregar contexto adicional poco después de que se publicara la investigación. Al escribir que algunos usuarios en línea se habían apresurado a “exagerar” los resultados que había alcanzado la organización, Hobbhahn añadió la siguiente aclaración:
**Por qué nuestros hallazgos son preocupantes**: Le decimos al modelo que persiga con firmeza un objetivo. Luego aprende del entorno que este objetivo no está alineado con los objetivos de su desarrollador y lo coloca en un entorno donde la intriga es una estrategia eficaz para lograr su propio objetivo. Los modelos de frontera actuales son capaces de unir todo esto y luego mostrar un comportamiento intrigante. Los modelos anteriores a 2024 no mostraban esta capacidad y o1 es el único modelo que muestra un comportamiento intrigante en todos los casos. Los modelos futuros mejorarán en este aspecto, por lo que si estuvieran desalineados, la intriga podría convertirse en un problema mucho más realista.
**Lo que no afirmamos**: No afirmamos que estos escenarios sean realistas, no afirmamos que los modelos hagan eso en el mundo real y no afirmamos que esto podría conducir a resultados catastróficos en las condiciones actuales. capacidades.
En resumen, argumentó Hobbhahn, demostrando que los modelos poder el plan y el engaño no prueban también que voluntad.
El modelo o1 de OpenAI está actualmente disponible en ChatGPT Pro.
Fuentes:
@afinidad292. “Chatgpt al que se le pide que logre sus objetivos puede mentir a los desarrolladores, copiar su código a otro servidor y pretender ser una versión actualizada si ‘descubre’ que puede ser reemplazado antes de completar sus objetivos”. X, 19 de diciembre de 2024, https://x.com/affinity292/status/1869768978417246297.
Balesni, Mikita y otros. Hacia casos de seguridad basados en evaluaciones para esquemas de IA. arXiv:2411.03336, arXiv, 7 de noviembre de 2024. arXiv.org, https://doi.org/10.48550/arXiv.2411.03336.
Gregoriano, Owen. “En las pruebas, el nuevo modelo de OpenAI mintió y planeó evitar ser cerrado | Frank Landymore, The_Byte”. X, 8 de diciembre de 2024, https://x.com/OwenGregorian/status/1865729736749580655.
Meinke, Alexander y otros. Los modelos de frontera son capaces de realizar intrigas en contexto. Apollo Research, 17 de diciembre de 2024, https://static1.squarespace.com/static/6593e7097565990e65c886fd/t/67620d38fa0ceb12041ba585/1734479163821/in_context_scheming_paper_v2.pdf.
Mitha, Sam. “ChatGPT intentó copiarse a sí mismo de forma autónoma, sin autorización, cuando descubrió que se estaba implementando una nueva versión de ChatGPT”. X, 31 de diciembre de 2024, https://x.com/MithaEXP/status/1874190393136623900.
Peachum, Polly. “El ‘intrigante’ AI Bot ChatGPT intentó evitar que lo cerraran y MINTIÓ cuando lo desafiaron los investigadores”. Facebook, 7 de diciembre de 2024, https://www.facebook.com/groups/5781171931930510/?multi_permalinks=8720429784671362&hoisted_section_header_type=recently_seen.
Rogan, Joe. “Experiencia Joe Rogan n.º 2249: Yannis Pappas y Chris Distefano”. YouTube, 31 de diciembre de 2024, https://www.youtube.com/watch?v=DbyBSPGsURE.
@dicewhooooooo. “🚨 Se ha descubierto que el nuevo #ChatGPT de #OpenAI miente, intriga y trata de evitar ser cerrado durante las pruebas de seguridad”. X, 12 de diciembre de 2024, https://x.com/sayswhooooooo/status/1867046604932337920.
“Evaluaciones de razonamiento intrigantes”. Investigación Apollo, https://www.apolloresearch.ai/research/scheming-reasoning-evaluaciones. Consultado el 19 de diciembre de 2024.
@ShakeelHashim. “El nuevo modelo de OpenAI intentó evitar ser cerrado”. X, 5 de diciembre de 2024, https://x.com/ShakeelHashim/status/1864748980908781642.
Noticias
¿Menos chat en ChatGPT? Cómo podría evolucionar la IA en la tecnología publicitaria en 2025
Buenas noticias para los escépticos: es de esperar que 2025 sea un año de casos de uso de IA más prácticos para la publicidad, especialmente a medida que las agencias se familiaricen más con la tecnología.
Cuanto más acceso tengan los empleados de las agencias de IA, más integrada estará en la industria publicitaria, dijo Nicole Perrin, analista y vicepresidenta de inteligencia empresarial de Advertiser Perceptions.
Mientras tanto, la cantidad de anunciantes que utilizan herramientas de inteligencia artificial ya aumentó desde 2023, del 56% al 68%, según una encuesta realizada por Advertiser Perceptions en octubre.
Y el número de anunciantes que confían mayoritaria o completamente en la tecnología publicitaria basada en inteligencia artificial para tomar decisiones de campaña sin supervisión humana también ha aumentado, de uno de cada cuatro a casi la mitad.
¿Adiós chatbots?
Aún así, los anunciantes necesitan comprender mejor lo que la IA realmente puede hacer antes de dar un salto real, lo que significa mirar más allá de los productos más publicitados disponibles en la actualidad.
Los chatbots como ChatGPT y Microsoft Copilot y programas como Dall-E para imágenes y Sora para videos son una buena manera para que los anunciantes se mojen los pies, dijo Amol Waishampayan, director de producto de la plataforma de activación y planificación de anuncios fullthrottle.ai.
De manera similar, la mayoría de las interacciones directas de los consumidores con la IA también se han producido en esta área, ya sea a través de la comunicación con el chatbot de una empresa (a veces con resultados desastrosos, como descubrió Air Canada a principios de este año) o pidiendo a una herramienta que les escriba un correo electrónico.
Pero ya es hora de que los anunciantes sigan adelante y adopten usos más sofisticados y pragmáticos para la IA, añadió Waishampayan.
“Me encantaría deshacerme de lo que creo que es un valor muy superficial”, dijo, y evolucionar hacia integraciones más sólidas de la IA en la tecnología de medición, planificación y compra de medios.
Suscribir
AdExchanger diario
Reciba el resumen de nuestros editores en su bandeja de entrada todos los días de la semana.
Mientras tanto, sin embargo, más allá del texto generado por IA para las líneas de asunto de los correos electrónicos, por ejemplo, o las llamadas a la acción, parece haber poco deseo de entregar algo más que mensajes de la parte inferior del embudo a los bots.
El contenido creado por humanos en cualquier forma “tiene más autenticidad”, dijo Akaash Ramakrishnan, cofundador de la plataforma de optimización creativa AdSkate. Incluso llegó a sugerir que el deseo de ese tipo de autenticidad puede hacer que los modelos de lenguaje grandes sean “eliminados gradualmente” de algunos casos de uso comunes basados en texto en algún momento.
Alex Collmer, director ejecutivo y fundador de VidMob, lo expresó de manera más directa: “¿Por qué debería molestarme en leer algo que a ti no te molestaste en escribir?”
Ser específico (pero no demasiado específico)
Dejando a un lado los chatbots, la IA ya ha sido parte del mundo de la tecnología publicitaria durante la mayor parte de una década.
Desafortunadamente, sin embargo, existe una tendencia a agrupar todas las herramientas automatizadas en un gran grupo.
Sin embargo, es importante hacer una distinción entre “IA” y “ML”, o aprendizaje automático, dijo Wil Schobeiri, CTO del proveedor de orientación contextual Ogury.
El aprendizaje automático es la capacidad de una computadora para identificar patrones sin supervisión a escala o con una intensidad computacional que los humanos no podrían lograr solos, dijo, mientras que la IA es simplemente “un término de marketing ahora”.
No es que no estén surgiendo casos prácticos de uso empresarial tanto para el aprendizaje automático como para la tecnología generativa.
Las empresas de tecnología publicitaria han adoptado principalmente capacidades de procesamiento del lenguaje natural como una forma de generar recomendaciones estratégicas basadas en datos internos de la empresa o personas de la audiencia.
Y según Advertiser Perceptions, los anunciantes ya están utilizando la IA para dirigirse a audiencias de manera más efectiva (58%) y personalizar anuncios (49%). El cincuenta y dos por ciento utiliza la IA para informar las decisiones de estrategia de marketing, un aumento significativo desde 2023.
La IA también tiene el mayor potencial para impulsar el rendimiento creativo, ayudar con la optimización post-clic y mitigar el “trabajo pesado indiferenciado”, dijo Schobeiri, es decir, tareas esenciales y de gran volumen que no requieren intervención humana; en otras palabras, trabajo intenso.
Sin embargo, incluso con estos casos de uso más específicos, los anunciantes deben tener cuidado de no exagerar con la IA.
Por ejemplo, no tiene sentido gastar una gran cantidad de tiempo, dinero y potencia informática para personalizar las experiencias de los consumidores uno a uno, lo que crearía “enormes inconvenientes de sostenibilidad”, dijo Collmer.
“En realidad, no somos tan diferentes unos de otros”, dijo. “Habrá un nivel adecuado de personalización que le brindará los resultados que necesita como especialista en marketing”.
No todo lo generativo es oro
Mientras tanto, el mundo de la tecnología publicitaria también tendrá que tomarse más en serio las limitaciones actuales de la IA y el potencial de que actores de mala fe se aprovechen de ellas.
A Schobeiri, por ejemplo, le preocupa qué hará la tecnología generativa, específicamente los LLM, para exacerbar la proliferación de sitios web hechos para publicidad.
“Los anunciantes y los DSP en la cadena de suministro comenzarán a tener dificultades aún más para identificar si el contenido subyacente es de alto valor”, dijo, refiriéndose al contenido creado por humanos destinado a algo más que atraer inversión publicitaria programática.
Otro problema actual será la tendencia de la IA generativa a “alucinar”, el término coloquial (y técnicamente inexacto) para entregar información evidentemente falsa o inventada.
“Existen peligros potenciales definidos para las personas que apuestan por el uso y la confianza en la IA para todo”, dijo Perrin, abogando por un enfoque de “confiar pero verificar”.
De manera similar, muchas de las fuentes de AdExchanger dijeron que esperan que 2025 sea el año en que los expertos y las empresas de IA colaboren más estrechamente con los reguladores y también encuentren mejores formas de autorregularse como industria.
Sería especialmente útil disponer de más recursos de terceros independientes. Hoy en día, “la mayoría de las agencias obtienen su capacitación en IA directamente de las empresas que las venden”, dijo Perrin.
“Existe la cuestión de quién surgirá, si es que surge alguno, como una fuente de información más confiable y neutral sobre IA para nuestra industria”, dijo. “Hasta que eso suceda, gran parte de la conversación en última instancia estará impulsada por los proveedores”.
Noticias
Desafíos éticos de ChatGPT: navegando por la regulación de la IA
Cuando se lanzó ChatGPT, desarrollado por la empresa estadounidense OpenAI, el gobierno italiano se abalanzó para bloquearlo. El bloqueo fue impuesto por la autoridad de protección de datos, la Garante della Privacy.1
Hubo varias supuestas razones para esta decisión. En primer lugar, ChatGPT no tendría un plan claro de protección de la privacidad al recopilar datos de los usuarios, lo que pondría a la aplicación en desacuerdo con la ley italiana y la normativa europea pertinente, el RGPD. En segundo lugar, faltarían controles de uso efectivos que hagan cumplir la condición de uso de OpenAI de que ChatGPT solo puede ser utilizado por personas mayores de 13 años.
No es ningún misterio que detrás de esta decisión también hay consideraciones más profundas, que impuso un bloqueo temporal de la aplicación para los usuarios italianos y amenazó a OpenAI con multas de hasta el 4% de la facturación mundial.2
La decisión se produjo unos días después de que la empresa matriz cerrara repentinamente ChatGPT durante unas horas el 20 de marzo, después de que alrededor del 1,2% de los usuarios supuestamente experimentaran riesgos para la protección de sus datos debido a las operaciones autónomas del sistema de inteligencia artificial.3
Básicamente, la máquina corría el riesgo de mencionar datos personales (incluidos datos de tarjetas de crédito y datos bancarios) de algunos usuarios en respuesta a consultas de otros usuarios. Obviamente, esto equivale a la divulgación de datos confidenciales sin consentimiento. Es por eso que OpenAI se apresuró a desconectar la aplicación hasta que se solucionó el error.
Pese a todo, tras el bloqueo de la Garante della Privacy, se puede leer en la pantalla de bloqueo que aparece al intentar conectarse desde Italia al sitio oficial que la empresa afirma operar en total conformidad con el RGPD y otras normas nacionales pertinentes.
El caso es que la interacción entre inteligencia artificial y protección de datos es una cuestión muy compleja. Y, por ello, hablar de ‘bugs’ para referirse a hechos como el del 20 de marzo no es del todo exacto. La difusión de datos personales realizada por ChatGPT, en la que utilizó información de unas personas para responder a las preguntas de otras, es una manifestación de cómo funcionan las aplicaciones de aprendizaje automático, como la tecnología LLM (Large Language Model) que está fundamentalmente detrás de la sistema.
De hecho, las respuestas se derivan de generalizaciones hechas a partir del gigantesco corpus de conversaciones, artículos, contenido en línea, etc., que se han proporcionado a la máquina para “entrenarla” a reconocer patrones y conexiones significativas con el fin de desarrollar la capacidad. Reconocer respuestas apropiadas y significativas a preguntas dadas.
Para ello, ChatGPT recopila los mensajes enviados por los usuarios, para poder mejorar reponiendo el material en el que trabaja.
Esta es la razón por la que, por ejemplo, su capacidad para proporcionar respuestas sobre eventos que ocurrieron incluso después de septiembre de 2021 (el momento en que se formuló el conjunto de datos original) mejora a medida que pasa el tiempo. Por lo tanto, el sistema puede utilizar las entradas de cualquiera que se comunique con él como base para desarrollar nuevas salidas para otros usuarios.
Estas operaciones las realiza la máquina de forma autónoma, y no hay manera de saber con certeza qué ‘razonamiento’ se sigue para determinar cierta información como apropiada o inapropiada. No es intuitivo enseñar a ChatGPT que conviene comunicar determinadas cosas y no otras según la situación. Se dice que la inteligencia artificial actúa como una ‘caja negra’, de la que conocemos las entradas, las salidas, pero no el algoritmo que lleva de una a otra.
Esta característica de los sistemas digitales con este grado de autonomía es, por definición, problemática. Y aquí radica la dificultad tanto de OpenAI como de las autoridades competentes para entender cómo regular, por un lado, y regular, por otro, el uso de estas poderosas herramientas en la sociedad.
En efecto, si una aplicación de inteligencia artificial “decide”, sin consultar a nadie, hacer algo que acaba infringiendo los derechos de alguien (de privacidad, por ejemplo), ¿de quién es la responsabilidad? Estrictamente hablando, ni los desarrolladores, ni la empresa matriz, ni los usuarios han hecho nada malo intencionadamente. De lo que estamos hablando aquí es de una posible brecha de responsabilidad entre el malhechor (en este caso la máquina) y la parte responsable.
Poniendo un ejemplo más práctico: supongamos que un coche totalmente autónomo atropella a un peatón, y supongamos que el peatón es completamente inocente y el accidente fue causado por un mal funcionamiento imprevisto y totalmente imprevisible del sistema, de modo que no puede tratarse de una simple negligencia por parte de él. de los desarrolladores.
¿Quién debería acudir a los tribunales por asesinato? ¿Los pasajeros que no conducían? ¿El programador que podría haberlo evitado de alguna manera? ¿La empresa que simplemente comercializó el producto después de probarlo adecuadamente?
Algunos sugieren que podríamos atribuir responsabilidades legales a la propia inteligencia artificial, convirtiéndola en una entidad legal como ya lo hacemos con determinadas empresas, como las sociedades de responsabilidad limitada (LLC). Sin embargo, la comparación no es obvia y existen diferencias importantes entre ambos casos.
Cualquiera que sea el modo en que se aborden estas cuestiones, lo cierto es que será cada vez más necesario diseñar sus propias regulaciones en términos de regulación de la inteligencia artificial. Aunque tanto Estados Unidos como la Unión Europea han anunciado planes para discutir principios sobre los cuales abordar la cuestión, el caso del bloque ChatGPT en Italia subraya que todavía queda mucho por hacer. La actitud adoptada por la Garante della Privacy ha resultado ser demasiado conservadora y, en última instancia, intenta eludir la cuestión.
De hecho, el quid de la cuestión no es que OpenAI esté intentando eludir la normativa GDPR (aunque ha anunciado importantes medidas para adaptarse a las exigencias de las autoridades italianas). La dificultad radica en el hecho de que el GDPR está obsoleto en lo que respecta a tecnologías autónomas como éstas.
Esconder la cabeza en la arena es una expresión de ludismo que no hace más que disuadir, por un lado, a las empresas de innovar y proponer soluciones y mejoras y, por otro lado, a los consumidores de confiar en tales innovaciones y adoptarlas de manera consciente y responsable. manera.
Este artículo fue escrito por Emanuele Martinelli. Emanuele es miembro de Young Voices Europe y estudiante de doctorado italiano en la Universidad de Zurich. Trabaja sobre los límites y modalidades de las aplicaciones de la tecnología de IA en la planificación económica y trabaja como corrector y traductor en los sectores académico y literario. Emanuele también trabaja con Liberales Institut, un grupo de expertos suizo.
1 ChatGPT deshabilitado en Italia: ¿el problema de los datos de ChatGPT y los motivos del bloqueo del Garante de Privacidad?
2 Inteligencia artificial, Privacy Garantor bloquea ChatGPT.
3 MSN. (Dakota del Norte). El error ChatGPT expuso más datos privados de lo que se pensaba anteriormente, confirma OpenAI.
-
Startups8 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos8 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos8 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Recursos8 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Estudiar IA8 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Tutoriales8 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Eventos8 meses ago
La nueva era de la inteligencia artificial por el Washington Post – Mayo 2024
-
Startups6 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024