Noticias
¿Para qué son los ‘agentes’ de AI como el operador de OpenAI?
Published
3 meses agoon

Photo-ilustración: inteligente; Foto: Getty Images
Tratar de analizar todos los rumores sobre los planes de OpenAi para el futuro es la locura: de hecho, parece estar impulsando a un número de personas no insignificante de personas locas. Parte de esto es una consecuencia natural de su proyecto: los nuevos modelos de IA hacen cosas que no eran posibles anteriormente en el software, y puede ser difícil juzgar si un nuevo avance se encuentra en la categoría de “truco genial” o “desarrollo consecuente que cambiará todas nuestras vidas para siempre “. También es una consecuencia de la mensajería de la compañía, que oscila en sustancia y tono, apoyándose y lejos de los rumores y teorías más sensacionales sobre la compañía. En un momento, el CEO Sam Altman está publicando acertijos sobre no estar seguro de si su compañía ha logrado o no inteligencia general artificial, o AGI, que marcará el comienzo de una era de aceleración hacia una superinteligencia aterradora o… “importa mucho menos” de lo que la gente espera. El siguiente, Altman y su personal insisten en que la exageración se está saliendo de control y que estamos “temprano” en un nuevo “paradigma”, con mucho trabajo que hacer en el camino a … en algún lugar.
Como estrategia de comunicación, esto claramente ha sido efectivo, o al menos no se ha metido en el camino. Cantidades masivas de capital se están alineando detrás de OpenAi, en forma de inversión directa y, más recientemente, un proyecto de infraestructura conjunta con la imprima del presidente Trump. (Altman en Trump en 2016: “Una amenaza inaceptable para Estados Unidos”; Altman en Trump esta semana: “Increíble para el país en muchos sentidos”.) Se basa en una división que es natural para una empresa dirigida por investigaciones como OpenAi y,, Creo que, cultivado por la compañía, entre el trabajo en la “frontera”, articulada en términos de puntos de referencia especializados, capacitación prometedora y métodos de inferencia, “modelos de razonamiento” y las posibilidades teóricas con consecuencias inherentemente impredecibles, y los productos reales de la compañía, que todos pueden probar y cuáles tienen cientos de millones de personas. Es la antigua categoría que domina la cobertura de OpenAI durante el último año, y especialmente en los últimos meses: puntos de referencia caídos; especulación sobre posibles rutas para AGI y ASI; necesidades de infraestructura; y el quizás exclusivamente perspectiva atractiva, a los inversores, de la automatización laboral masiva. Mientras tanto, aunque la compañía ha estado realizando actualizaciones frecuentes de sus modelos y productos, la experiencia de usuario convencional de OpenAI ha mejorado, en contraste con el lanzamiento repentino e impactante del CHATGPT en 2022, incrementalmente.
El jueves, Openai intentó recuperar sus vibraciones y su línea de productos con el lanzamiento del operador, “un agente que puede ir a la web para realizar tareas para usted”:
Se puede pedir al operador que maneje una amplia variedad de tareas repetitivas de navegador, como completar formularios, ordenar comestibles e incluso crear memes. La capacidad de usar las mismas interfaces y herramientas con las que los humanos interactúan a diario amplían la utilidad de la IA, ayudando a las personas a ahorrar tiempo en las tareas cotidianas mientras abren nuevas oportunidades de participación para las empresas.
Operai publicó una demostración más larga en un video:
Esto es similar a la función de “uso de computadora” de Anthrope en Claude, que se anunció el año pasado. Es un paso temprano para OpenAI en la categoría vagamente definida de “agentes” de IA, que están destinados a llevar a cabo tareas de varios pasos en nombre de los usuarios. Los agentes, y los modelos de agente subyacentes, son la obsesión de la industria del momento, en gran parte porque representan un paso hacia el argumento de venta intoxicante para la IA empleados. Primero viene el software que lee su pantalla y le reserva un hotel. Luego viene el software que hace todo el trabajo. Esa es la idea de billones de dólares.
OpenAi, como Anthrope, está claramente en camino a administrar alguno Tareas basadas en el navegador para usuarios. Pero la realidad desordenada de la Web, combinada con las crecientes apuestas del software que puede hacer compras o iniciar la comunicación en nombre de un usuario, recuerda la carrera para construir autos autónomos. En ese caso, el rápido progreso temprano fomentó una falsa sensación de inminencia, seguido de un proceso más largo de lo esperado de ejercicio de casos de borde, planchando errores y años de pruebas, con una implementación más amplia todavía TBD. En la forma temprana, según los evaluadores, la vista previa del operador es interesante de ver: ¡ejecuta su pantalla! ¡Es hacer clic y escribir! – pero también no es confiable, lento y fácil de confundir. Casey Newton en plataforma:
Mi experiencia más frustrante con el operador fue la primera: tratar de pedir comestibles. “Ayúdame a comprar comestibles en Instacart”, le dije, esperando que me haga algunas preguntas básicas. ¿Dónde vivo? ¿De qué tienda normalmente compro comestibles? ¿Qué tipo de comestibles quiero?
No me preguntó nada de eso. En su lugar, el operador abrió Instacart en la pestaña del navegador y comienza a buscar leche en tiendas de comestibles ubicadas en Des Moines, Iowa.
En ese momento, le dije al operador que comprara comestibles en mi supermercado local en San Francisco. Luego, el operador intentó ingresar la dirección de mi tienda de comestibles local como mi dirección de entrega.
Después de un intercambio surrealista en el que intenté explicar cómo usar una computadora en una computadora, el operador solicitó ayuda. “Parece que la ubicación todavía está configurada en Des Moines, y no pude acceder a la tienda”, me dijo. “¿Tiene alguna sugerencia o preferencia específica para establecer la ubicación en San Francisco para encontrar la tienda?”
Mucho dinero y talento se centran en hacer que este tipo de cosas funcionen realmente, y las grandes empresas de IA están proyectando la confianza. Sin embargo, al igual que con los autos autónomos, una pieza de software de roaming libre que habita su identidad, o incluso tiene su tarjeta de crédito, tiene que funcionar, o al menos no falla catastróficamente, básicamente todo el tiempo. No vale la pena tener un asistente que necesita más ayuda de lo que proporciona; Un asistente que se atornilla es una responsabilidad. Si comprar comestibles a través de una interfaz simplificada es engañosamente complicada, ¿qué no?
Si (o qué tan rápido) las herramientas como esta se vuelven más viables, como herramientas y como productos, es un conjunto de preguntas. Pero, ¿qué sucede si características como esta funcionan? y estar ampliamente disponible: ¿si los cientos de miles de millones de dólares que se canalizan a IA logran su propósito?
En los ejemplos de video de OpenAi, el operador interactúa con la computadora de una manera en su mayoría indistinguible de una persona (de movimiento lento, fácilmente confundido), haciendo clic para reservar un restaurante en óptimas, compras de comestibles y entradas para conciertos de navegación. Actualmente, el operador es una prueba limitada, disponible para usuarios profesionales que pagan $ 200 al mes. Pero digamos que millones de usuarios son Capaz de implementar agentes para explorar la web o usar aplicaciones, o, en un sentido más general, interactuar con empresas o personas. El mundo que los rodea no se quedará quieto. Esto es fácil de entender a escala personal. Hablar con el asistente humano de alguien no es lo mismo que hablar con esa persona, incluso si aún obtienes lo que necesitas de ellos. Del mismo modo, rebotar en un árbol telefónico es diferente de hablar con un humano, incluso si aún eventualmente obtiene la información que está buscando. Estás haciendo transacciones, pero no estás recibiendo atención.
No es mucho más difícil pensar en una escala corporativa, donde la atención también es importante, pero también medida y monetizada. Si OpenTable, un negocio con una larga historia de intentos de lucha de automatizar y jugar sus sistemas con bots, comenzó a darse cuenta de que muchos de sus usuarios estaban reservando mesas usando agentes, ¿respondería con hostilidad? En el marco estrecho de la línea de productos de Operai, el operador es una demostración temprana de nuevas capacidades. En el contexto más amplio de la web a su alrededor, la web con la que necesitará manipular e interactuar, sus precursores más claros son herramientas para disparar, escalar, ejecutar métricas y spam. Debido a que se ejecuta a través de un navegador identificable como el de OpenAI, el operador ya tiene problemas relacionados, según el probador Dan Shipper:
La desventaja es que muchos sitios como Reddit ya bloquean los agentes de IA para navegar para que el operador no pueda acceder a ellos. En este modo de vista previa de la investigación, el operador también está bloqueado por OpenAI para acceder a ciertos sitios intensivos en recursos como Figma o sitios propiedad de la competencia como YouTube por su rendimiento o razones legales.
Otros usuarios tempranos encontraron problemas similares:
Estaba tratando de obtener algunos precios de eBay a través del operador porque siempre estoy buscando formas de mejorar mi software con IA. Para mi decepción, eBay ya lo marcó con la detección anti-bots, lo que resultó en que GPT rápidamente se optara y respondiera que no podía continuar …
Este bloqueo no es una respuesta a la llegada de los “agentes”, exactamente: es el resultado de medidas anteriores que los sitios web han tomado contra las empresas que raspan los datos de capacitación de IA. La Web ya está teniendo una respuesta inmune bastante fuerte a las empresas de IA. ¿Cómo podrían responder a la bote de su usuarios?
Pero las reacciones más cálidas también serían complicadas. Un socio de comercio electrónico más susceptible podría estar bien con sus clientes que usan agentes para realizar compras, pero aún encontraría el estado de cosas resultante extraño, como mínimo. La compañía podría preguntar OpenAi: ¿Por qué no hacemos esto más directamente? Si desea que sus usuarios puedan solicitar productos a través de su chatbot, ¿por qué no dejamos que su software navegue por nuestros listados de productos de una manera menos propensa a errores y derrochadores? ¿Quizás podamos construir una API? ¿Por qué no trabajar juntos, por lo que su producto realmente funciona y no nos queda atrás?
Ya puede pedir algo de Amazon a través de Alexa, no porque tenga capacidades avanzadas de AI de agente para navegar por la plataforma como una persona, sino porque Amazon hizo alojamientos especiales y creó herramientas especiales, invisibles para los usuarios, para conectar un producto con otro. Es un software que habla con el software, no los humanos que hablan con el software que fingen ser humanos para usar software.
El resultado ideal de Openai sería un grupo de otras empresas apresurándose a ayuda Sus productos funcionan, para integrarse lo más profundamente posible con ChatGPT, y tratar de anticipar y eliminar las formas en que los “agentes” frágiles podrían fallar desde su parte (en otras palabras, llevar la Web a algo más parecido a su propio Sandbox ). Dejando de lado el discurso de los empleados de la IA, así es como la compañía podría convertir su chatbot en una herramienta más versátil, una “aplicación de todo” o una interfaz de chat para el resto de la web. (En 2023, intentaron hacer esto abriendo una tienda de aplicaciones, que anunciaron con un tono similar, menos el énfasis en la palabra “agente”. No se dio cuenta.) Hay dos formas en que Operai podría obtener influencia Haz que esto suceda. Una es que los clientes lo exigen: usan ChatGPT, trabajos de operador y quieren que el resto del mundo trabaje con el operador, incluso si otras empresas desconfían de OpenAi. Esta es la manera difícil, y el estado actual del operador sugiere que, incluso si es posible, sería un camino largo y lleno de baches. El otro La forma es más simple y más atractiva, al menos para OpenAi: declare su éxito con anticipación, insista en que los agentes capaces son un mero cuestión de tiempo y escala, y sugieren que todos se pongan en línea ahora en lugar de más tarde para lograr lo inevitable juntos, haciendo así. Tu tarea real más fácil, y lograr capacidades de agente verdaderamente amplias algo menos importantes. Una historia similar ha convencido a los inversores, sin mencionar la nueva administración. ¿Funcionará en todos los demás?
You may like
Noticias
How Would I Learn to Code with ChatGPT if I Had to Start Again
Published
11 minutos agoon
1 mayo, 2025
Coding has been a part of my life since I was 10. From modifying HTML & CSS for my Friendster profile during the simple internet days to exploring SQL injections for the thrill, building a three-legged robot for fun, and lately diving into Python coding, my coding journey has been diverse and fun!
Here’s what I’ve learned from various programming approaches.
The way I learn coding is always similar; As people say, mostly it’s just copy-pasting.
When it comes to building something in the coding world, here’s a breakdown of my method:
- Choose the Right Framework or Library
- Learn from Past Projects
- Break It Down into Steps
Slice your project into actionable item steps, making development less overwhelming. - Google Each Chunk
For every step, consult Google/Bing/DuckDuckGo/any search engine you prefer for insights, guidance, and potential solutions. - Start Coding
Try to implement each step systematically.
However, even the most well-thought-out code can encounter bugs. Here’s my strategy for troubleshooting:
1. Check Framework Documentation: ALWAYS read the docs!
2. Google and Stack Overflow Search: search on Google and Stack Overflow. Example keyword would be:
site:stackoverflow.com [coding language] [library] error [error message]
site:stackoverflow.com python error ImportError: pandas module not found
– Stack Overflow Solutions: If the issue is already on Stack Overflow, I look for the most upvoted comments and solutions, often finding a quick and reliable answer.
– Trust My Intuition: When Stack Overflow doesn’t have the answer, I trust my intuition to search for trustworthy sources on Google; GeeksForGeeks, Kaggle, W3School, and Towards Data Science for DS stuff
3. Copy-Paste the Code Solution
4. Verify and Test: The final step includes checking the modified code thoroughly and testing it to ensure it runs as intended.
And Voila you just solve the bug!
Isn’t it beautiful?
But in reality, are we still doing this?!
Lately, I’ve noticed a shift in how new coders are tackling coding. I’ve been teaching how to code professionally for about three years now, bouncing around in coding boot camps and guest lecturing at universities and corporate training. The way coders are getting into code learning has changed a bit.
I usually tell the fresh faces to stick with the old-school method of browsing and googling for answers, but people are still using ChatGPT eventually. And their alibi is
“Having ChatGPT (for coding) is like having an extra study buddy -who chats with you like a regular person”.
It comes in handy, especially when you’re still trying to wrap your head around things from search results and documentation — to develop what is so-called programmer intuition.
Now, don’t get me wrong, I’m all for the basics. Browsing, reading docs, and throwing questions into the community pot — those are solid moves, in my book. Relying solely on ChatGPT might be a bit much. Sure, it can whip up a speedy summary of answers, but the traditional browsing methods give you the freedom to pick and choose, to experiment a bit, which is pretty crucial in the coding world.
But, I’ve gotta give credit where it’s due — ChatGPT is lightning-fast at giving out answers, especially when you’re still trying to figure out the right from the wrong in search results and docs.
I realize this shift of using ChatGPT as a study buddy is not only happening in the coding scene, Chatgpt has revolutionized the way people learn, I even use ChatGPT to fix my grammar for this post, sorry Grammarly.
Saying no to ChatGPT is like saying no to search engines in the early 2000 era. While ChatGPT may come with biases and hallucinations, similar to search engines having unreliable information or hoaxes. When ChatGPT is used appropriately, it can expedite the learning process.
Now, let’s imagine a real-life scenario where ChatGPT could help you by being your coding buddy to help with debugging.
Scenario: Debugging a Python Script
Imagine you’re working on a Python script for a project, and you encounter an unexpected error that you can’t solve.
Here is how I used to be taught to do it — the era before ChatGPT.
Browsing Approach:
- Check the Documentation:
Start by checking the Python documentation for the module or function causing the error.
For example:
– visit https://scikit-learn.org/stable/modules/ for Scikit Learn Doc
2. Search on Google & Stack Overflow:
If the documentation doesn’t provide a solution, you turn to Google and Stack Overflow. Scan through various forum threads and discussions to find a similar issue and its resolution.

3. Trust Your Intuition:
If the issue is unique or not well-documented, trust your intuition! You might explore articles and sources on Google that you’ve found trustworthy in the past, and try to adapt similar solutions to your problem.

You can see that on the search result above, the results are from W3school – (trusted coding tutorial site, great for cheatsheet) and the other 2 results are official Pandas documentation. You can see that search engines do suggest users look at the official documentation.
And this is how you can use ChatGPT to help you debug an issue.
New Approach with ChatGPT:
- Engage ChatGPT in Conversations:
Instead of only navigating through documentation and forums, you can engage ChatGPT in a conversation. Provide a concise description of the error and ask. For example,
“I’m encountering an issue in my [programming language] script where [describe the error]. Can you help me understand what might be causing this and suggest a possible solution?”

2. Clarify Concepts with ChatGPT:
If the error is related to a concept you are struggling to grasp, you can ask ChatGPT to explain that concept. For example,
“Explain how [specific concept] works in [programming language]? I think it might be related to the error I’m facing. The error is: [the error]”

3. Seek Recommendations for Troubleshooting:
You ask ChatGPT for general tips on troubleshooting Python scripts. For instance,
“What are some common strategies for dealing with [issue]? Any recommendations on tools or techniques?”

Potential Advantages:
- Personalized Guidance: ChatGPT can provide personalized guidance based on the specific details you provide about the error and your understanding of the problem.
- Concept Clarification: You can seek explanations and clarifications on concepts directly from ChatGPT leveraging their LLM capability.
- Efficient Troubleshooting: ChatGPT might offer concise and relevant tips for troubleshooting, potentially streamlining the debugging process.
Possible Limitations:
Now let’s talk about the cons of relying on ChatGPT 100%. I saw these issues a lot in my student’s journey on using ChatGPT. Post ChatGPT era, my students just copied and pasted the 1-line error message from their Command Line Interface despite the error being 100 lines and linked to some modules and dependencies. Asking ChatGPT to explain the workaround by providing a 1 line error code might work sometimes, or worse — it might add 1–2 hour manhour of debugging.
ChatGPT comes with a limitation of not being able to see the context of your code. For sure, you can always give a context of your code. On a more complex code, you might not be able to give every line of code to ChatGPT. The fact that Chat GPT only sees the small portion of your code, ChatGPT will either assume the rest of the code based on its knowledge base or hallucinate.
These are the possible limitations of using ChatGPT:
- Lack of Real-Time Dynamic Interaction: While ChatGPT provides valuable insights, it lacks the real-time interaction and dynamic back-and-forth that forums or discussion threads might offer. On StackOverflow, you might have 10 different people who would suggest 3 different solutions which you can compare either by DIY ( do it yourself, try it out) or see the number of upvotes.
- Dependence on Past Knowledge: The quality of ChatGPT’s response depends on the information it has been trained on, and it may not be aware of the latest framework updates or specific details of your project.
- Might add extra Debugging Time: ChatGPT does not have a context of your full code, so it might lead you to more debugging time.
- Limited Understanding of Concept: The traditional browsing methods give you the freedom to pick and choose, to experiment a bit, which is pretty crucial in the coding world. If you know how to handpick the right source, you probably learn more from browsing on your own than relying on the ChatGPT general model.
Unless you ask a language model that is trained and specialized in coding and tech concepts, research papers on coding materials, or famous deep learning lectures from Andrew Ng, Yann Le Cunn’s tweet on X (formerly Twitter), pretty much ChatGPT would just give a general answer.
This scenario showcases how ChatGPT can be a valuable tool in your coding toolkit, especially for obtaining personalized guidance and clarifying concepts. Remember to balance ChatGPT’s assistance with the methods of browsing and ask the community, keeping in mind its strengths and limitations.
Final Thoughts
Things I would recommend for a coder
If you really want to leverage the autocompletion model; instead of solely using ChatGPT, try using VScode extensions for auto code-completion tasks such as CodeGPT — GPT4 extension on VScode, GitHub Copilot, or Google Colab Autocomplete AI tools in Google Colab.

As you can see in the screenshot above, Google Colab automatically gives the user suggestions on what code comes next.
Another alternative is Github Copilot. With GitHub Copilot, you can get an AI-based suggestion in real-time. GitHub Copilot suggests code completions as developers type and turn prompts into coding suggestions based on the project’s context and style conventions. As per this release from Github, Copilot Chat is now powered by OpenAI GPT-4 (a similiar model that ChatGPT is using).

I have been actively using CodeGPT as a VSCode Extension before I knew that Github Copilot is accessible for free if you are in education program. CodeGPT Co has 1M download to this date on the VSCode Extension Marketplace. CodeGPT allows seamless integration with the ChatGPT API, Google PaLM 2, and Meta Llama.
You can get code suggestions through comments, here is how:
- Write a comment asking for a specific code
- Press
cmd + shift + i
- Use the code

You can also initiate a chat via the extension in the menu and jump into coding conversations

As I reflect on my coding journey, the invaluable lesson learned is that there’s no one-size-fits-all approach to learning. It’s essential to embrace a diverse array of learning methods, seamlessly blending traditional practices like browsing and community interaction with the innovative capabilities of tools like ChatGPT and auto code-completion tools.
What to Do:
- Utilize Tailored Learning Resources: Make the most of ChatGPT’s recommendations for learning materials.
- Collaborate for Problem-Solving: Utilize ChatGPT as a collaborative partner as if you are coding with your friends.
What Not to Do:
- Over-Dependence on ChatGPT: Avoid relying solely on ChatGPT and ensure a balanced approach to foster independent problem-solving skills.
- Neglect Real-Time Interaction with Coding Community: While ChatGPT offers valuable insights, don’t neglect the benefits of real-time interaction and feedback from coding communities. That also helps build a reputation in the community
- Disregard Practical Coding Practice: Balance ChatGPT guidance with hands-on coding practice to reinforce theoretical knowledge with practical application.
Let me know in the comments how you use ChatGPT to help you code!
Happy coding!
Ellen
Follow me on LinkedIn
Check out my portfolio: liviaellen.com/portfolio
My Previous AR Works: liviaellen.com/ar-profile
or just buy me a real coffee
— Yes I love coffee.
About the Author
I’m Ellen, a Machine Learning engineer with 6 years of experience, currently working at a fintech startup in San Francisco. My background spans data science roles in oil & gas consulting, as well as leading AI and data training programs across APAC, the Middle East, and Europe.
I’m currently completing my Master’s in Data Science (graduating May 2025) and actively looking for my next opportunity as a machine learning engineer. If you’re open to referring or connecting, I’d truly appreciate it!
I love creating real-world impact through AI and I’m always open to project-based collaborations as well.
Noticias
Lo que dice el acuerdo de OpenAI del Washington Post sobre las licencias de IA
Published
2 horas agoon
1 mayo, 2025
La evolución de la licencia de contenido de IA ofertas
El Washington Post se ha convertido en el último editor importante en llegar a un acuerdo de licencia con Openai, uniéndose a una cohorte creciente que ahora abarca más de 20 organizaciones de noticias.
Es parte de un patrón familiar: cada pocos meses, Openai bloquea otro editor para reforzar su tubería de contenido. Pero los términos de estos acuerdos parecen estar evolucionando en silencio, alejándose sutilmente del lenguaje explícito en torno a los datos de capacitación que definieron acuerdos anteriores y planteando nuevas preguntas sobre lo que ahora significan estas asociaciones.
El acuerdo del Washington Post se centra en surgir su contenido en respuesta a consultas relacionadas con las noticias. “Como parte de esta asociación, ChatGPT mostrará resúmenes, citas y enlaces a informes originales de la publicación en respuesta a preguntas relevantes”, se lee el anuncio el 22 de abril sobre el acuerdo de la publicación con OpenAI. En contraste, el pasado se ocupa de editores como Axel Springer y Time, firmado en diciembre de 2023 y junio de 2024 respectivamente, explícitamente incluyó disposiciones para la capacitación de LLM de OpenAI en su contenido.
El acuerdo de OpenAI de The Guardian, anunciado en febrero de 2025, tiene una redacción similar al anuncio del Washington Post y no se menciona los datos de capacitación. Un portavoz de Guardian se negó a comentar sobre los términos de acuerdo con OpenAI. El Washington Post no respondió a las solicitudes de comentarios.
Estos cambios algo sutiles en el lenguaje de los términos podrían indicar un cambio más amplio en el paisaje de IA, según conversaciones con cuatro Expertos legales de medios. Podría indicar un cambio en cómo los acuerdos de licencia de contenido de IA están estructurados en el futuro, con más editores que potencialmente buscan acuerdos que prioricen la atribución y la prominencia en los motores de búsqueda de IA sobre los derechos para la capacitación modelo.
Otro factor a tener en cuenta: estas compañías de IA ya han capacitado a sus LLM en grandes cantidades de contenido disponible en la web, según Aaron Rubin, socio del grupo estratégico de transacciones y licencias en la firma de abogados Gunderson Dettmer. Y debido a que las compañías de IA enfrentan litigios de compañías de medios que afirman que esto era una infracción de derechos de autor, como el caso del New York Times contra OpenAI, si las compañías de IA continuaran pagando a los datos de licencia con fines de capacitación, podría verse como “una admisión implícita” que debería haber pagado para licenciar esos datos y no haberlo escrito de forma gratuita, dijo Rubin.
“[AI companies] Ya tienen un billón de palabras que han robado. No necesitan las palabras adicionales tan mal para la capacitación, pero quieren tener el contenido actualizado para respuestas [in their AI search engines]”, Dijo Bill Gross, fundador de la empresa de inicio de IA Prorata.ai, que está construyendo soluciones tecnológicas para compensar a los editores por el contenido utilizado por las compañías generativas de IA.
Tanto las compañías de IA como los editores pueden beneficiarse de esta posible evolución, según Rubin. Las compañías de IA obtienen acceso a noticias confiables y actualizadas de fuentes confiables para responder preguntas sobre los eventos actuales en sus productos, y los editores “pueden llenar un vacío que tenían miedo que faltaran con la forma en que estas herramientas de IA han evolucionado. Estaban perdiendo clics y globos oculares y enlaces a sus páginas”, dijo. Tener una mejor atribución en lugares como la búsqueda de chatgpt tiene el potencial de impulsar más tráfico a los sitios de los editores. Al menos, esa es la esperanza.
“Tiene el potencial de generar más dinero para los editores”, dijo Rubin. “Los editores están apostando a que así es como las personas van a interactuar con los medios de comunicación en el futuro”.
Desde el otoño pasado, Operai ha desafiado a los gigantes de búsqueda como Google con su motor de búsqueda de IA, búsqueda de chatgpt, y ese esfuerzo depende del acceso al contenido de noticias. Cuando se le preguntó si la estructura de los acuerdos de Operai con los editores había cambiado, un portavoz de OpenAI señaló el lanzamiento de la compañía de la compañía de ChatGPT en octubre de 2024, así como mejoras anunciadas esta semana.
“Tenemos un feed directo al contenido de nuestro socio editor para mostrar resúmenes, citas y enlaces atribuidos a informes originales en respuesta a preguntas relevantes”, dijo el portavoz. “Ese es un componente de las ofertas. La capacitación posterior ayuda a aumentar la precisión de las respuestas relacionadas con el contenido de un editor”. El portavoz no respondió a otras solicitudes de comentarios.
No está claro cuántos editores como The Washington Post no se pueden hacer de OpenAI, especialmente porque puede surgir un modelo diferente centrado en la búsqueda de ChatGPT. Pero la perspectiva para los acuerdos de licencia entre editores y compañías de IA parece estar empeorando. El valor de estos acuerdos está “en picado”, al menos según el CEO de Atlantic, Nicholas Thompson, quien habló en el evento Reuters Next en diciembre pasado.
“Todavía hay un mercado para la licencia de contenido para la capacitación y eso sigue siendo importante, pero continuaremos viendo un enfoque en entrar en acuerdos que resultan en impulsar el tráfico a los sitios”, dijo John Monterubio, socio del grupo avanzado de medios y tecnología en la firma de abogados Loeb & Loeb. “Será la nueva forma de marketing de SEO y compra de anuncios, para parecer más altos en los resultados al comunicarse con estos [generative AI] herramientas.”
Lo que hemos escuchado
“No tenemos que preocuparnos por una narración algo falsa de: las cookies deben ir … entonces puedes poner todo este ancho de banda y potencia para mejorar el mercado actual, sin preocuparte por un posible problema futuro que estuviera en el control de Google todo el tiempo”.
– Anónimo Publishing Ejecute la decisión de Google la semana pasada de continuar usando cookies de terceros en Chrome.
Números para saber
$ 50 millones: la cantidad que Los Angeles Times perdió en 2024.
50%: El porcentaje de adultos estadounidenses que dijeron que la IA tendrá un impacto muy o algo negativo en las noticias que las personas obtienen en los EE. UU. Durante los próximos 20 años, según un estudio del Centro de Investigación Pew.
$ 100 millones: la cantidad Spotify ha pagado a los editores y creadores de podcasts desde enero.
0.3%: La disminución esperada en el uso de los medios (canales digitales y tradicionales) en 2025, la primera caída desde 2009, según PQ Media Research.
Lo que hemos cubierto
Las demandas de AI destacan las luchas de los editores para impedir que los bots raspen contenido
- La reciente demanda de Ziff Davis contra Operai destaca la realidad de que los editores aún no tienen una forma confiable de evitar que las compañías de IA raspen su contenido de forma gratuita.
- Si bien han surgido herramientas como Robots.txt archivos, paredes de pago y etiquetas de bloqueo AI-AI, muchos editores admiten que es muy difícil hacer cumplir el control en cada bot, especialmente porque algunos ignoran los protocolos estándar o enmascaran sus identidades.
Leer más aquí.
¿Quién compraría Chrome?
- El ensayo antimonopolio de búsqueda de Google podría obligar a Google a separarse del navegador Chrome.
- Si lo hizo, OpenAi, Perplexity, Yahoo y Duckduckgo podrían ser algunos de los compradores potenciales.
Lea más sobre el impacto potencial de una venta masiva de Chrome aquí.
Tiktok está cortejando a los creadores y agencias para participar en sus herramientas en vivo
- Tiktok está tratando de demostrar el potencial de ingresos de sus herramientas en vivo.
- La plataforma de redes sociales dice que sus creadores ahora generan colectivamente $ 10 millones en ingresos diariamente a través de la transmisión en vivo.
Lea más sobre el tono de Tiktok aquí.
¿WTF son bots grises?
- Los rastreadores y raspadores de IA generativos están siendo llamados “bots grises” por algunos para ilustrar la línea borrosa entre el tráfico real y falso.
- Estos bots pueden afectar el análisis y robar contenido, y las impresiones publicitarias impulsadas por la IA pueden dañar las tasas de clics y las tasas de conversión.
Lea más sobre por qué los bots grises son un riesgo para los editores aquí.
¿Facebook se está convirtiendo en un nuevo flujo de ingresos nuevamente para los editores?
- Los editores han sido testigos de un reciente pico de referencia de Facebook, y es, algo sorprendentemente, coincidiendo con una afluencia de ingresos del programa de monetización de contenido de Meta.
- De los 10 editores con los que Digay habló para este artículo, varios están en camino de hacer entre seis y siete cifras este año del último programa de monetización de contenido de Meta.
Lea más sobre lo que reciben los editores de Facebook aquí.
Lo que estamos leyendo
Las ambiciones de video de los podcasts de los medios de comunicación destacan el movimiento del formato de audio a la televisión
Los medios de comunicación como el New York Times y el Atlantic están poniendo más recursos en la producción de videos de los populares programas de podcast para aprovechar el público más joven de YouTube, informó Vanity Fair.
La perplejidad quiere recopilar datos sobre los usuarios para vender anuncios personalizados
El CEO de Perplexity, Aravind Srinivas, dijo que la perplejidad está construyendo su propio navegador para recopilar datos de usuarios y vender anuncios personalizados, informó TechCrunch.
El presidente Trump apunta a la prensa en los primeros 100 días
El presidente Trump apunta a las compañías de medios tradicionales en sus primeros 100 días, utilizando tácticas como prohibir los puntos de venta de que cubren los eventos de la Casa Blanca hasta el lanzamiento de investigaciones en las principales redes, informó Axios.
SemAFOR probará suscripciones
SemaFor “probará” suscripciones en “Due Time”, el fundador Justin Smith dijo al Inteligencer de la revista New York en una inmersión profunda en la empresa de inicio de noticias centrada en el boletín.
Noticias
Ser educado para chatgpt es una nueva investigación sin sentido
Published
5 horas agoon
30 abril, 2025
En resumen
- Una nueva investigación argumenta que decir “por favor” a los chatbots de IA no mejora sus respuestas, contradiciendo estudios anteriores.
- Los científicos identificaron un “punto de inflexión” matemático donde la calidad de IA colapsa, depende de la capacitación y el contenido, no la cortesía.
- A pesar de estos hallazgos, muchos usuarios continúan siendo educados a la IA por hábito cultural, mientras que otros utilizan estratégicamente enfoques educados para manipular las respuestas de IA.
Un nuevo estudio de los investigadores de la Universidad George Washington descubrió que ser cortés con los modelos de IA como ChatGPT no solo es un desperdicio de recursos informáticos, sino que también no tiene sentido.
Los investigadores afirman que agregar “por favor” y “gracias” a las indicaciones tiene un “efecto insignificante” en la calidad de las respuestas de IA, que contradicen directamente estudios anteriores y prácticas de usuario estándar.
El estudio fue publicado en ARXIV el lunes, llegando solo unos días después de que el CEO de OpenAi, Sam Altman, mencionó que los usuarios que escribían “por favor” y “agradecimientos” en sus indicaciones le costaron a la compañía “decenas de millones de dólares” en el procesamiento de tokens adicionales.
El documento contradice un estudio japonés de 2024 que encontró que la cortesía mejoró el rendimiento de la IA, particularmente en las tareas del idioma inglés. Ese estudio probó múltiples LLM, incluidos GPT-3.5, GPT-4, Palm-2 y Claude-2, encontrando que la cortesía produjo beneficios de rendimiento medibles.
Cuando se le preguntó sobre la discrepancia, David Acosta, director de IA en la plataforma de datos con IA arbo AI, dijo Descifrar que el modelo George Washington podría ser demasiado simplista para representar sistemas del mundo real.
“No son aplicables porque la capacitación se realiza esencialmente diariamente en tiempo real, y hay un sesgo hacia el comportamiento educado en los LLM más complejos”, dijo Acosta.
Agregó que, si bien el halagio podría llevarte en algún lugar con LLM ahora, “pronto hay una corrección” que cambiará este comportamiento, lo que hace que los modelos menos afectados por frases como “por favor” y “gracias”, y más efectivo, independientemente del tono utilizado en el aviso.
Acosta, una experta en IA ética y PNL avanzada, argumentó que hay más para incorporar ingeniería que las matemáticas simples, especialmente teniendo en cuenta que los modelos de IA son mucho más complejos que la versión simplificada utilizada en este estudio.
“Los resultados contradictorios sobre la cortesía y el rendimiento de la IA generalmente se derivan de las diferencias culturales en los datos de capacitación, los matices de diseño rápido específicos de las tareas e interpretaciones contextuales de cortesía, que requieren experimentos interculturales y marcos de evaluación adaptados a la tarea para aclarar los impactos”, dijo.
El equipo de GWU reconoce que su modelo está “intencionalmente simplificado” en comparación con los sistemas comerciales como ChatGPT, que utilizan mecanismos de atención de múltiples cabezas múltiples más complejos.
Sugieren que sus hallazgos deberían probarse en estos sistemas más sofisticados, aunque creen que su teoría aún se aplicaría a medida que aumente el número de cabezas de atención.
Los hallazgos de George Washington se derivaron de la investigación del equipo sobre cuando la IA emite repentinamente colapsan de contenido coherente a problemático, lo que llaman un “punto de inflexión de Jekyll y Hyde”. Sus conclusiones argumentan que este punto de inflexión depende completamente de la capacitación de una IA y las palabras sustantivas en su aviso, no de cortesía.

“Si la respuesta de nuestra IA se volverá pícaro depende de la capacitación de nuestra LLM que proporcione los tokens incrustaciones, y las fichas sustantivas en nuestro aviso, no si hemos sido educados o no”, explicó el estudio.
El equipo de investigación, dirigido por los físicos Neil Johnson y Frank Yingjie Huo, utilizó un modelo de cabeza de atención única simplificada para analizar cómo la información del proceso LLMS.
Descubrieron que el lenguaje educado tiende a ser “ortogonal a los tokens buenos y malos de salida sustantivos” con “impacto de producto de punto insignificante”, lo que significa que estas palabras existen en áreas separadas del espacio interno del modelo y no afectan de manera significativa los resultados.
El mecanismo de colapso de IA
El corazón de la investigación de GWU es una explicación matemática de cómo y cuándo las salidas de IA se deterioran repentinamente. Los investigadores descubrieron que el colapso de IA ocurre debido a un “efecto colectivo” en el que el modelo extiende su atención “cada vez más delgada en un número creciente de tokens” a medida que la respuesta se hace más larga.
Finalmente, alcanza un umbral donde la atención del modelo “se rompe” hacia patrones de contenido potencialmente problemáticos que aprendió durante el entrenamiento.

En otras palabras, imagina que estás en una clase muy larga. Inicialmente, comprende los conceptos claramente, pero a medida que pasa el tiempo, su atención se extiende cada vez más en toda la información acumulada (la conferencia, el mosquito que pasa, la ropa de su profesor, cuánto tiempo hasta que termine la clase, etc.).
En un punto predecible, tal vez 90 minutos adentro, su cerebro de repente “punta” desde la comprensión hasta la confusión. Después de este punto de inflexión, sus notas se llenan de malas interpretaciones, independientemente de cuán cortésmente el profesor se dirigió a usted o cuán interesante sea la clase.
Un “colapso” ocurre debido a la dilución natural de su atención con el tiempo, no por cómo se presentó la información.
Ese punto de inflexión matemática, que los investigadores etiquetaron n*, está “cableado” desde el momento en que la IA comienza a generar una respuesta, dijeron los investigadores. Esto significa que el colapso de calidad eventual está predeterminado, incluso si ocurre muchos tokens en el proceso de generación.
El estudio proporciona una fórmula exacta que predice cuándo ocurrirá este colapso en función de la capacitación de la IA y el contenido del aviso del usuario.

Cortesía cultural> matemáticas
A pesar de la evidencia matemática, muchos usuarios aún se acercan a las interacciones de IA con cortesía humana.
Casi el 80% de los usuarios de los Estados Unidos y el Reino Unido son amables con sus chatbots de IA, según una encuesta reciente del editor Future. Este comportamiento puede persistir independientemente de los hallazgos técnicos, ya que las personas naturalmente antropomorfizan los sistemas con los que interactúan.
Chintan Mota, director de tecnología empresarial de la firma de servicios tecnológicos Wipro, dijo Descifrar Esa cortesía proviene de los hábitos culturales en lugar de las expectativas de rendimiento.
“Ser educado con la IA parece natural para mí. Vengo de una cultura en la que mostramos respeto a cualquier cosa que juegue un papel importante en nuestras vidas, ya sea un árbol, una herramienta o tecnología”, dijo Mota. “Mi computadora portátil, mi teléfono, incluso mi estación de trabajo … y ahora, mis herramientas de IA”, dijo Mota.
Agregó que si bien no ha “notado una gran diferencia en la precisión de los resultados” cuando es educado, las respuestas “se sienten más conversacionales, educadas cuando importan, y también son menos mecánicas”.
Incluso Acosta admitió haber usado lenguaje cortés cuando se trata de sistemas de IA.
“Es curioso, lo hago, y yo no, con intención”, dijo. “Descubrí que al más alto nivel de ‘conversación’ también puedes extraer psicología inversa de la IA, es tan avanzado”.
Señaló que los LLM avanzados están entrenados para responder como los humanos, y como las personas, “AI tiene como objetivo lograr elogios”.
Editado por Sebastian Sinclair y Josh Quittner
Generalmente inteligente Hoja informativa
Un viaje semanal de IA narrado por Gen, un modelo de IA generativo.
Related posts


































































































































































































































































































Trending
-
Startups11 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Tutoriales12 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Recursos12 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Startups10 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Startups12 meses ago
Deepgram: Revolucionando el Reconocimiento de Voz con IA
-
Recursos11 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Recursos12 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Estudiar IA11 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios