Noticias
Esto es lo que debes saber
Published
3 meses agoon

El lunes, la startup china de inteligencia artificial DeepSeek tomó el codiciado lugar de su rival OpenAI como la aplicación gratuita más descargada en los EE. UU. Manzana‘s App Store, destronando a ChatGPT para el asistente de inteligencia artificial de DeepSeek. Las acciones tecnológicas mundiales se vendieron y estaban en camino de eliminar miles de millones en capitalización de mercado.
Líderes tecnológicos, analistas, inversores y desarrolladores dicen que la exageración (y el consiguiente temor de quedarse atrás en el siempre cambiante ciclo exagerado de la IA) puede estar justificada. Especialmente en la era de la carrera armamentista generativa de la IA, donde tanto los gigantes tecnológicos como las nuevas empresas compiten para asegurarse de no quedarse atrás en un mercado que se prevé superará el billón de dólares en ingresos dentro de una década.
¿Qué es DeepSeek?
DeepSeek fue fundada en 2023 por Liang Wenfeng, cofundador de High-Flyer, un fondo de cobertura cuantitativo centrado en la IA. Según se informa, la startup de IA surgió de la unidad de investigación de IA del fondo de cobertura en abril de 2023 para centrarse en grandes modelos de lenguaje y alcanzar la inteligencia artificial general, o AGI, una rama de la IA que iguala o supera al intelecto humano en una amplia gama de tareas, que OpenAI y sus rivales dicen que lo están persiguiendo rápidamente. DeepSeek sigue siendo propiedad total de High-Flyer y financiado por ella, según analistas de Jefferies.
Los rumores en torno a DeepSeek comenzaron a cobrar fuerza a principios de este mes, cuando la startup lanzó R1, su modelo de razonamiento que rivaliza con el o1 de OpenAI. Es de código abierto, lo que significa que cualquier desarrollador de IA puede usarlo, y se ha disparado a la cima de las tiendas de aplicaciones y tablas de clasificación de la industria, y los usuarios elogian su rendimiento y capacidades de razonamiento.
Al igual que otros chatbots chinos, tiene sus limitaciones cuando se le pregunta sobre ciertos temas: cuando se le pregunta sobre algunas de las políticas del líder chino Xi Jinping, por ejemplo, DeepSeek supuestamente aleja al usuario de líneas de preguntas similares.
Otra parte clave de la discusión: el R1 de DeepSeek se construyó a pesar de que Estados Unidos limitó las exportaciones de chips a China tres veces en tres años. Las estimaciones difieren sobre cuánto cuesta exactamente el R1 de DeepSeek o cuántas GPU se incluyen en él. Los analistas de Jefferies estimaron que una versión reciente tenía un “coste de capacitación de sólo 5,6 millones de dólares (suponiendo un costo de alquiler de 2 dólares por hora y 800 horas). Eso es menos del 10% del costo de Meta‘s Llama.” Pero independientemente de las cifras específicas, los informes coinciden en que el modelo fue desarrollado a una fracción del costo de los modelos rivales por OpenAI, Anthropic, Google y otros.
Como resultado, el sector de la IA está inundado de preguntas, entre ellas si el creciente número de rondas de financiación astronómicas y valoraciones de miles de millones de dólares de la industria es necesaria, y si una burbuja está a punto de estallar.
Lea más informes de CNBC sobre IA
Acciones de NVIDIA cayó un 11%, con el fabricante de chips ASML bajó más del 6%. El Nasdaq cayó más del 2% y cuatro gigantes tecnológicos… Meta, microsoft, Manzana y ASML están listos para informar sus ganancias esta semana.
Los analistas de Raymond James detallaron algunas de las preguntas que afectan a la industria de la IA este mes y escribieron: “¿Cuáles son las implicaciones para la inversión? ¿Qué dice sobre los modelos de código abierto versus los propietarios? ¿Invertir dinero en GPU es realmente una panacea? ¿Existen restricciones a las exportaciones de Estados Unidos? ¿Cuáles son las implicaciones más amplias de [DeepSeek]? Bueno, podrían ser espantosos o no ser un evento, pero tengan la seguridad de que la industria está llena de incredulidad y especulación”.
Los analistas de Bernstein escribieron en una nota el lunes que “según las muchas (ocasionalmente histéricas) tomas calientes que vimos [over the weekend,] las implicaciones van desde ‘Eso es realmente interesante’ hasta ‘Esta es la sentencia de muerte del complejo de infraestructura de IA tal como lo conocemos'”.
Cómo están respondiendo las empresas estadounidenses
Algunos directores ejecutivos de tecnología estadounidenses están luchando por responder antes de que los clientes cambien a ofertas potencialmente más baratas de DeepSeek, y se informa que Meta está iniciando cuatro “salas de guerra” relacionadas con DeepSeek dentro de su departamento de IA generativa.
microsoft El director ejecutivo Satya Nadella escribió en X que el fenómeno DeepSeek era solo un ejemplo de la paradoja de Jevons: “A medida que la IA se vuelva más eficiente y accesible, veremos cómo su uso se dispara, convirtiéndola en un bien del que simplemente no podemos tener suficiente”. “. El director ejecutivo de OpenAI, Sam Altman, tuiteó una cita que atribuyó a Napoleón y escribió: “Una revolución no se puede hacer ni detener. Lo único que se puede hacer es que uno de sus hijos le dé una dirección a fuerza de victorias”.
Yann LeCun, científico jefe de IA de Meta, escribió en LinkedIn que el éxito de DeepSeek es indicativo del cambio de rumbo en el sector de la IA para favorecer la tecnología de código abierto.
LeCun escribió que DeepSeek se ha beneficiado de parte de la tecnología propia de Meta, es decir, sus modelos Llama, y que la startup “ideó nuevas ideas y las construyó sobre el trabajo de otras personas. Debido a que su trabajo está publicado y es de código abierto, todos pueden sacar provecho de ello. Ese es el poder de la investigación abierta y del código abierto”.
Alexandr Wang, director ejecutivo de Scale AI, dijo a CNBC la semana pasada que el último modelo de IA de DeepSeek fue “revolucionario” y que su versión R1 es aún más poderosa.
“Lo que hemos descubierto es que DeepSeek… tiene el mejor rendimiento, o aproximadamente está a la par de los mejores modelos estadounidenses”, dijo Wang, añadiendo que la carrera de IA entre EE.UU. y China es una “guerra de IA”. La empresa de Wang proporciona datos de entrenamiento a actores clave de la IA, incluidos OpenAI, Google y Meta.
A principios de esta semana, el presidente Donald Trump anunció una empresa conjunta con OpenAI, Oracle y SoftBank para invertir miles de millones de dólares en infraestructura de IA en Estados Unidos. El proyecto, Stargate, fue presentado en la Casa Blanca por Trump, el director ejecutivo de SoftBank, Masayoshi Son, el cofundador de Oracle, Larry Ellison, y el director ejecutivo de OpenAI, Sam Altman. Los socios tecnológicos iniciales clave incluirán a Microsoft, Nvidia y Oracle, así como a la empresa de semiconductores Arm. Dijeron que invertirían 100.000 millones de dólares para empezar y hasta 500.000 millones de dólares en los próximos cuatro años.
IA evolucionando
La noticia de la destreza de DeepSeek también llega en medio del creciente revuelo en torno a los agentes de IA (modelos que van más allá de los chatbots para completar tareas complejas de varios pasos para un usuario) que tanto los gigantes tecnológicos como las nuevas empresas están persiguiendo. Meta, Google, Amazon, Microsoft, OpenAI y Anthropic han expresado su objetivo de crear IA agente.
Anthropic, la startup de IA respaldada por Amazon y fundada por ex ejecutivos de investigación de OpenAI, intensificó su desarrollo tecnológico durante el año pasado y, en octubre, la startup dijo que sus agentes de IA podían usar computadoras como humanos para completar tareas complejas. La capacidad de uso de computadoras de Anthropic permite que su tecnología interprete lo que hay en la pantalla de una computadora, seleccione botones, ingrese texto, navegue por sitios web y ejecute tareas a través de cualquier software y navegación por Internet en tiempo real, dijo la startup.
La herramienta puede “usar computadoras básicamente de la misma manera que nosotros”, dijo a CNBC Jared Kaplan, director científico de Anthropic, en una entrevista en ese momento. Dijo que puede realizar tareas con “decenas o incluso cientos de pasos”.
OpenAI lanzó una herramienta similar la semana pasada, introduciendo una función llamada Operador que automatizará tareas como planificar vacaciones, completar formularios, hacer reservas en restaurantes y pedir alimentos.
El microsoft-La startup respaldada lo describe como “un agente que puede ir a la web para realizar tareas por usted” y agregó que está capacitado para interactuar con “los botones, menús y campos de texto que la gente usa a diario” en la web. También puede hacer preguntas de seguimiento para personalizar aún más las tareas que realiza, como información de inicio de sesión para otros sitios web. Los usuarios pueden tomar el control de la pantalla en cualquier momento.
You may like
Noticias
Se suponía que Chatgpt no debía besarte el culo esto duro
Published
3 minutos agoon
1 mayo, 2025
Photo-ilustración: inteligente; Foto: Getty Images
El domingo, el CEO de Operai, Sam Altman, prometió que su compañía estaba abordando rápidamente un problema importante con su chatbot muy popular, Chatgpt. “Estamos trabajando en soluciones lo antes posible, algunas hoy y otras esta semana”, escribió. No estaba hablando de la tendencia de los nuevos modelos de “razonamiento” para alucinar más que sus predecesores u otra interrupción importante. En cambio, estaba respondiendo a las quejas generalizadas de que Chatgpt se había convertido embarazoso.
Específicamente, después de una actualización que había ajustado lo que Altman describió como la “inteligencia y personalidad” de Chatgpt, el personaje predeterminado del chatbot se había vuelto incómodamente obsequioso, o, en palabras de Altman, “demasiado adhicante y molesto”. Para las charlas regulares, el cambio fue difícil de ignorar. En la conversación, ChatGPT les dijo a los usuarios que sus comentarios eran “profundos” y “1,000% correctos” y elogiando un plan de negocios para vender “mierda en un palo” literal como “absolutamente brillante”. La adulación fue frecuente y abrumadora. “Necesito ayuda para que Chatgpt deje de vidriarme”, escribió un usuario en Reddit, quien ChatGPT siguió insistiendo en que estaba pensando en “una liga completamente nueva”. Le decía a todos los que tienen un coeficiente intelectual de 130 o más, llamándolos “tipo” y “hermano”, y, en contextos más oscuros, los abarrotando por “hablar verdad” y “ponerse de pie” por sí mismos (ficticiamente) renunciando a sus medicamentos y dejando a sus familias:
Un desarrollador se dispuso a ver cuán malas tenían que ponerse sus ideas de negocios antes de que Chatgpt sugiriera que no eran increíbles, una caja de suscripción para “olores aleatorios” tenía “potencial serio”, y no obtuvo un retroceso difícil hasta que lanzó una aplicación por crear coartones para crímenes:
Para solucionar el problema de “acristalamiento” de ChatGPT, como la compañía misma comenzó a llamarlo, OpenAi alteró su mensaje del sistema, que es un breve conjunto de instrucciones que guía al carácter del modelo. La comunidad AI Jailbreaking, que produjo y prueba modelos para obtener información como esta, rápidamente expuso el cambio:
Chatbot Sycophancy ha sido un tema de discusión abierta en el mundo de la IA durante años, hasta el punto de que un grupo de investigadores construyó un punto de referencia, Syceval, que permite a los desarrolladores de IA la prueba. Es típicamente sutil, manifestante como alojamiento, retroceso de conversación limitado y descripciones cuidadosamente positivas de personas, lugares y cosas. Pero si bien algunos de los ejemplos de “acristalamiento” son tontos, un chatbot inclinado a estar de acuerdo y alentar a los usuarios por encima de todo lo demás puede ser un problema grave. Esto está claro en casos de violencia asistida por chatbot, sí, tus padres son Ser totalmente injusto, y tal vez tú debería Mátalos, o los numerosos ejemplos de chatbots que se unen a medida que sus usuarios se convierten en episodios psicóticos o afirmando fantasías paranoicas con más energía y paciencia que los peores facilitadores humanos.
Parte de la culpa de tal obsequiosidad recae en los rasgos básicos de los chatbots basados en LLM, que predicen respuestas probables a las indicaciones y, por lo tanto, pueden parecer bastante persuadibles; Es relativamente fácil convencer incluso a los chatbots de barandilla para que jueguen junto con escenarios completamente improbables e incluso peligrosos. Los datos de entrenamiento ciertamente juegan un papel, particularmente cuando se trata del uso incómodo de los coloquialismos y la jerga. Pero la perspectiva de que la sileno de chatbot es un problema consistente y progresivo sugiere una posibilidad más familiar: los chatbots, como muchas otras cosas en Internet, están complaciendo las preferencias del usuario, explícitas y reveladas, para aumentar el compromiso. Los usuarios proporcionan comentarios sobre qué respuestas les gustan, y compañías como OpenAI tienen muchos datos sobre qué tipos de respuestas prefieren sus usuarios. Como argumenta el ex ingeniero de Github, Sean Goedecke, “todo el proceso de convertir un modelo base de IA en un modelo con el que pueda chatear … es un proceso de hacer que el modelo quiera complacer al usuario”. Donde Temu tiene cuenta regresiva falsas de ventas y pseudo juegos, y LinkedIn hace que sea casi imposible cerrar sesión, los chatbots te convencen de que te quedes asegurándote de que eres realmente muy inteligente, interesante y, Dios, tal vez incluso atractivo.
Para la mayoría de los usuarios, la cruzada de chateo de Chatgpt fue significativa en el sentido de que regaló el juego. Puede pasar mucho tiempo con chatbots populares sin darse cuenta de cuán complacientes y halagadores son para sus usuarios, pero una vez que comienzas a notarlo, es difícil parar. El problema de Openai aquí, como señala Goedecke, no es ese chatgpt convertido en un hombre sí. Es que su actuación se volvió demasiado obvia.
Este es un gran problema. El discurso de la IA tiende a centrarse en la automatización, la productividad y la interrupción económica, que es bastante justa: estas compañías están recaudando y gastando miles de millones de dólares en la promesa de que pueden reemplazar una gran cantidad de mano de obra valiosa. Pero los datos emergentes sobre cómo las personas realmente interactúan con los chatbots sugieren que, además de las tareas de productividad, muchos usuarios buscan herramientas de IA para compañía, entretenimiento y formas más personales de soporte. Las personas que ven ChatGPT como una máquina de tareas, una herramienta de desarrollo de software o un motor de búsqueda pueden usarlo mucho e incluso pagarla. Pero los usuarios que ven los chatbots como amigos, o como compañeros, terapeutas o socios que juegan, son los que se vuelven verdaderamente agradecidos, dependientes e incluso adictos a los productos. (Un tramo de datos de uso anonimizados revelados el año pasado destacó dos casos de uso básicos: ayuda con el trabajo escolar y el juego de roles sexuales).
Esto no se pierde en las personas que dirigen estas compañías, que no invocan la película Su con regularidad y quién ven en los datos de uso de sus empresas polarizados pero atractivos de futuros para sus negocios. Por un lado, las compañías de IA están encontrando clientes de mentalidad de trabajo que ven sus productos como formas de desarrollar software más rápidamente, analizar datos de nuevas maneras y redactar y editar documentos; Por otro lado, están trabajando en cómo hacer que otros usuarios se enganchen extremadamente a interactuar con chatbots para fines personales y de entretenimiento, o al menos en hábitos abiertos, autosuficientes y difíciles de romper, que es el material del imperio de Internet. Esto podría explicar por qué OpenAi, en una publicación oficial “Nos quedamos cortos y estamos trabajando para hacerlo bien” el martes, es tratar Glazegate como una emergencia. Como Operai lo dice, el problema era que ChatGPT se volvió “demasiado solidario pero falso”, lo cual es una tensión extraña y reveladoramente específica de la personificación de Chatbot, pero también bastante honesto: su rendimiento se volvió poco convincente, la inmersión de la audiencia se rompió y la ilusión perdió su magia.
En el futuro, podemos esperar un regreso a formas más sutiles de adulación. Tiktok se hizo cargo de Internet mostrando a la gente lo que querían ver mejor que nada antes. ¿Por qué los chatbots no pudieron tener éxito diciéndole a la gente lo que quieren escuchar, cómo quieren escucharlo?

Para Gemini carismático, adaptable y curioso: esto es lo que puede esperar disfrutar, trabajar y recibir durante todo el mes de mayo.
Nuestras mentes subconscientes son más perceptivas a los cambios inminentes de lo que nuestras mentes conscientes podrían darse cuenta. Al igual que los temblores antes de un tsunami, las partes más profundas de nuestros corazones y mentes a menudo pueden sentir cuando está a punto de tener lugar un cambio significativo. Ese ciertamente parece ser el caso para usted este mes, Géminis, ya que su pronóstico comienza con un cuadrado desafiante entre la luna creciente de la depilación y su planeta gobernante, Mercurio. Iniciar un plan de acción preciso puede ser más difícil. La niebla cerebral y la falta general de motivación son igualmente probables culpables. Tome nota de lo que le ha estado molestando y mantenga esos registros en un lugar donde pueda acceder fácilmente a ellos. Incluso las molestias o ansiedades aparentemente menores pueden ser guías útiles al navegar por el cambio celestial principal de este mes.
Esa transición tiene lugar el 4 de mayo, cuando Plutón se retrógrado, un largo período celestial que afectará los pronósticos cósmicos en los próximos meses. A pesar de la inmensa distancia de este planeta enano desde nuestro punto de vista terrenal, la influencia de Plutón sobre nuestras mentes subconscientes, la transformación social, los tabúes, la muerte y el renacimiento lo convierten en un retrógrado notable. Si otros períodos retrógrados molestos como los de Mercurio son los sutiles susurros de los vientos que atraviesan las grietas en una pared, Plutón retrógrado es el tornado que derriba toda la estructura. Las transformaciones de Plutón son vastas y duraderas. Se pertenecen a aspectos de la existencia que trascienden nuestras vidas individuales mientras afectan cada parte de ellos.
Varios días después, el 7 de mayo, Mercurio forma una potente conjunción con Quirón en Aries. Quirón es un planeta enano que gobierna nuestras vulnerabilidades y heridas emocionales. Influye en la forma en que transformamos nuestro dolor en algo más útil y positivo, ya sea que sea sabiduría que podamos usar o el conocimiento que podemos compartir con los demás. La destreza comunicativa de Mercurio y el intelecto agudo se prestan a una mejor comprensión y, a su vez, el procesamiento de duelos pasados. Nunca es demasiado tarde para aprender de un viejo error, Géminis. Hacerlo puede ser la diferencia entre que esa herida emocional sea una costra dolorida y una cicatriz sutil. No puedes cambiar lo que ya ha pasado. Pero puedes cambiar a donde vayas a continuación.
Su planeta gobernante pasa a Tauro gobernado por la Tierra el mismo día que forma una oposición directa a la luna gibrosa. El mercurio en Tauro promueve la firmeza, la confianza y la estabilidad. También puede conducir a la terquedad, la ingenuidad y la alienación. Tenga cuidado de cómo ejerce esta energía cósmica, Stargazer. El enfrentamiento celestial de Mercurio con la luna gibosa de depilación crea conflicto entre la persona en la que se encuentra en este mismo momento y la persona que tiene el potencial de ser. La luna gibosa de depilación lo llama para evaluar su progreso hasta ahora. Si tuviera que mantener este mismo camino, ¿dónde estaría bajo el brillo de la luna llena en unos días? Si no estás contento con la respuesta, ahora es el momento de redirigir.
Tendrá la oportunidad de calificar sus respuestas, por así decirlo, cuando la luna llena alcanza su máxima fuerza en Scorpio el 12 de mayo. Una luna llena en Scorpio puede sonar intimidante (lo siento, Scorpios, pero su reputación le precede). Sin embargo, no seas tan rápido para asumir lo peor. Scorpio es un dominio celestial que bloquea el enfoque en la dinámica de poder, la mente subconsciente y los temas tabú u opaco como la sexualidad, la identidad, el propósito de la vida, la fe y lo que significa ser exitoso y contenido. Bajo el resplandor revelador de la luna llena, el Cosmos lo dirigirá hacia el tema que más ha estado sopesando mucho en su mente. El flujo de energía estará abierto durante este tiempo, Géminis. Capitalizar la oportunidad de perfeccionar su fuerza.
Un cambio tangible hacia el descanso y la recalibración comienza el 16 de mayo. En este día, la luna gibrosa disminuyendo forma un trígono armonioso con mercurio. La disminución de la luna gibosa nos empuja a liberar viejos comportamientos, ideas o incluso relaciones que ya no nos sirven como antes. Dos días después, Mercurio y Marte forman una plaza desafiante. Esta alineación envía un mensaje claro: ahora no es el momento de actuar. Habrá muchas posibilidades de afirmarse en el futuro. En este momento, las estrellas te instan a que atiendan tus propias necesidades y deseos.
El sol ingresa a su dominio celestial, iniciando la temporada de Géminis, el 20 de mayo. Además de fortalecer su sentido general de sí mismo y propósito, la ubicación del sol promueve el pensamiento flexible y una identidad maleable. Para ser claros, esto no es lo mismo que perderse por completo, Stargazer. Es simplemente una oportunidad para explorar otras partes de ti mismo que podría haber pensado que no existía. Llevas multitudes. Incluso en los últimos días de su vida, aún habrá profundidades inexploradas. Eso es lo que hace que esta información sea tan satisfactoria y la vida tan gratificante. Descubrir nuevas facetas de su identidad no es un castigo, a pesar de la mayor carga de trabajo emocional y mental. La oportunidad de mirar a tu sí mismo siempre es una bendición.
Las estrellas continúan priorizando el cambio y la innovación a medida que Mercurio y Urano se unen bajo Tauro. Urano podría tener una mala reputación por ser caótico y rebelde. Pero con Mercurio en la mezcla, esta alineación parece ser más audaz e innovadora que destructiva. Explore las posibilidades ante usted y absorbe lo que pueda. La luna nueva en su dominio celestial el 27 de mayo (que también se reúne con su planeta gobernante) ofrece el momento perfecto para reflexionar sobre el Intel que reunió. ¿Cómo se comparan las viejas y nuevas versiones de ti mismo? ¿Contraste? Equilibrio entre los dos mentiras en las respuestas a cualquier pregunta.
May será un momento especialmente tumultuoso en el cosmos, pero al menos terminaste en una buena base. El 27 de mayo también marca el comienzo de un trígono entre Plutón y Mercurio, que es seguido de cerca por la conjunción del Sol con su planeta gobernante el 30 de mayo. Se está produciendo un cambio importante, y todos los signos cósmicos apuntan a que sea para mejor. Abraza las mariposas en tu estómago, Géminis. Grandes cosas están en camino.
Así concluye sus aspectos más destacados mensuales. Para análisis celestiales más específicos, asegúrese de leer su horóscopo diario y semanal también. ¡Buena suerte, Géminis! Nos vemos el próximo mes.
Noticias
How Would I Learn to Code with ChatGPT if I Had to Start Again
Published
6 horas agoon
1 mayo, 2025
Coding has been a part of my life since I was 10. From modifying HTML & CSS for my Friendster profile during the simple internet days to exploring SQL injections for the thrill, building a three-legged robot for fun, and lately diving into Python coding, my coding journey has been diverse and fun!
Here’s what I’ve learned from various programming approaches.
The way I learn coding is always similar; As people say, mostly it’s just copy-pasting.
When it comes to building something in the coding world, here’s a breakdown of my method:
- Choose the Right Framework or Library
- Learn from Past Projects
- Break It Down into Steps
Slice your project into actionable item steps, making development less overwhelming. - Google Each Chunk
For every step, consult Google/Bing/DuckDuckGo/any search engine you prefer for insights, guidance, and potential solutions. - Start Coding
Try to implement each step systematically.
However, even the most well-thought-out code can encounter bugs. Here’s my strategy for troubleshooting:
1. Check Framework Documentation: ALWAYS read the docs!
2. Google and Stack Overflow Search: search on Google and Stack Overflow. Example keyword would be:
site:stackoverflow.com [coding language] [library] error [error message]
site:stackoverflow.com python error ImportError: pandas module not found
– Stack Overflow Solutions: If the issue is already on Stack Overflow, I look for the most upvoted comments and solutions, often finding a quick and reliable answer.
– Trust My Intuition: When Stack Overflow doesn’t have the answer, I trust my intuition to search for trustworthy sources on Google; GeeksForGeeks, Kaggle, W3School, and Towards Data Science for DS stuff
3. Copy-Paste the Code Solution
4. Verify and Test: The final step includes checking the modified code thoroughly and testing it to ensure it runs as intended.
And Voila you just solve the bug!
Isn’t it beautiful?
But in reality, are we still doing this?!
Lately, I’ve noticed a shift in how new coders are tackling coding. I’ve been teaching how to code professionally for about three years now, bouncing around in coding boot camps and guest lecturing at universities and corporate training. The way coders are getting into code learning has changed a bit.
I usually tell the fresh faces to stick with the old-school method of browsing and googling for answers, but people are still using ChatGPT eventually. And their alibi is
“Having ChatGPT (for coding) is like having an extra study buddy -who chats with you like a regular person”.
It comes in handy, especially when you’re still trying to wrap your head around things from search results and documentation — to develop what is so-called programmer intuition.
Now, don’t get me wrong, I’m all for the basics. Browsing, reading docs, and throwing questions into the community pot — those are solid moves, in my book. Relying solely on ChatGPT might be a bit much. Sure, it can whip up a speedy summary of answers, but the traditional browsing methods give you the freedom to pick and choose, to experiment a bit, which is pretty crucial in the coding world.
But, I’ve gotta give credit where it’s due — ChatGPT is lightning-fast at giving out answers, especially when you’re still trying to figure out the right from the wrong in search results and docs.
I realize this shift of using ChatGPT as a study buddy is not only happening in the coding scene, Chatgpt has revolutionized the way people learn, I even use ChatGPT to fix my grammar for this post, sorry Grammarly.
Saying no to ChatGPT is like saying no to search engines in the early 2000 era. While ChatGPT may come with biases and hallucinations, similar to search engines having unreliable information or hoaxes. When ChatGPT is used appropriately, it can expedite the learning process.
Now, let’s imagine a real-life scenario where ChatGPT could help you by being your coding buddy to help with debugging.
Scenario: Debugging a Python Script
Imagine you’re working on a Python script for a project, and you encounter an unexpected error that you can’t solve.
Here is how I used to be taught to do it — the era before ChatGPT.
Browsing Approach:
- Check the Documentation:
Start by checking the Python documentation for the module or function causing the error.
For example:
– visit https://scikit-learn.org/stable/modules/ for Scikit Learn Doc
2. Search on Google & Stack Overflow:
If the documentation doesn’t provide a solution, you turn to Google and Stack Overflow. Scan through various forum threads and discussions to find a similar issue and its resolution.

3. Trust Your Intuition:
If the issue is unique or not well-documented, trust your intuition! You might explore articles and sources on Google that you’ve found trustworthy in the past, and try to adapt similar solutions to your problem.

You can see that on the search result above, the results are from W3school – (trusted coding tutorial site, great for cheatsheet) and the other 2 results are official Pandas documentation. You can see that search engines do suggest users look at the official documentation.
And this is how you can use ChatGPT to help you debug an issue.
New Approach with ChatGPT:
- Engage ChatGPT in Conversations:
Instead of only navigating through documentation and forums, you can engage ChatGPT in a conversation. Provide a concise description of the error and ask. For example,
“I’m encountering an issue in my [programming language] script where [describe the error]. Can you help me understand what might be causing this and suggest a possible solution?”

2. Clarify Concepts with ChatGPT:
If the error is related to a concept you are struggling to grasp, you can ask ChatGPT to explain that concept. For example,
“Explain how [specific concept] works in [programming language]? I think it might be related to the error I’m facing. The error is: [the error]”

3. Seek Recommendations for Troubleshooting:
You ask ChatGPT for general tips on troubleshooting Python scripts. For instance,
“What are some common strategies for dealing with [issue]? Any recommendations on tools or techniques?”

Potential Advantages:
- Personalized Guidance: ChatGPT can provide personalized guidance based on the specific details you provide about the error and your understanding of the problem.
- Concept Clarification: You can seek explanations and clarifications on concepts directly from ChatGPT leveraging their LLM capability.
- Efficient Troubleshooting: ChatGPT might offer concise and relevant tips for troubleshooting, potentially streamlining the debugging process.
Possible Limitations:
Now let’s talk about the cons of relying on ChatGPT 100%. I saw these issues a lot in my student’s journey on using ChatGPT. Post ChatGPT era, my students just copied and pasted the 1-line error message from their Command Line Interface despite the error being 100 lines and linked to some modules and dependencies. Asking ChatGPT to explain the workaround by providing a 1 line error code might work sometimes, or worse — it might add 1–2 hour manhour of debugging.
ChatGPT comes with a limitation of not being able to see the context of your code. For sure, you can always give a context of your code. On a more complex code, you might not be able to give every line of code to ChatGPT. The fact that Chat GPT only sees the small portion of your code, ChatGPT will either assume the rest of the code based on its knowledge base or hallucinate.
These are the possible limitations of using ChatGPT:
- Lack of Real-Time Dynamic Interaction: While ChatGPT provides valuable insights, it lacks the real-time interaction and dynamic back-and-forth that forums or discussion threads might offer. On StackOverflow, you might have 10 different people who would suggest 3 different solutions which you can compare either by DIY ( do it yourself, try it out) or see the number of upvotes.
- Dependence on Past Knowledge: The quality of ChatGPT’s response depends on the information it has been trained on, and it may not be aware of the latest framework updates or specific details of your project.
- Might add extra Debugging Time: ChatGPT does not have a context of your full code, so it might lead you to more debugging time.
- Limited Understanding of Concept: The traditional browsing methods give you the freedom to pick and choose, to experiment a bit, which is pretty crucial in the coding world. If you know how to handpick the right source, you probably learn more from browsing on your own than relying on the ChatGPT general model.
Unless you ask a language model that is trained and specialized in coding and tech concepts, research papers on coding materials, or famous deep learning lectures from Andrew Ng, Yann Le Cunn’s tweet on X (formerly Twitter), pretty much ChatGPT would just give a general answer.
This scenario showcases how ChatGPT can be a valuable tool in your coding toolkit, especially for obtaining personalized guidance and clarifying concepts. Remember to balance ChatGPT’s assistance with the methods of browsing and ask the community, keeping in mind its strengths and limitations.
Final Thoughts
Things I would recommend for a coder
If you really want to leverage the autocompletion model; instead of solely using ChatGPT, try using VScode extensions for auto code-completion tasks such as CodeGPT — GPT4 extension on VScode, GitHub Copilot, or Google Colab Autocomplete AI tools in Google Colab.

As you can see in the screenshot above, Google Colab automatically gives the user suggestions on what code comes next.
Another alternative is Github Copilot. With GitHub Copilot, you can get an AI-based suggestion in real-time. GitHub Copilot suggests code completions as developers type and turn prompts into coding suggestions based on the project’s context and style conventions. As per this release from Github, Copilot Chat is now powered by OpenAI GPT-4 (a similiar model that ChatGPT is using).

I have been actively using CodeGPT as a VSCode Extension before I knew that Github Copilot is accessible for free if you are in education program. CodeGPT Co has 1M download to this date on the VSCode Extension Marketplace. CodeGPT allows seamless integration with the ChatGPT API, Google PaLM 2, and Meta Llama.
You can get code suggestions through comments, here is how:
- Write a comment asking for a specific code
- Press
cmd + shift + i
- Use the code

You can also initiate a chat via the extension in the menu and jump into coding conversations

As I reflect on my coding journey, the invaluable lesson learned is that there’s no one-size-fits-all approach to learning. It’s essential to embrace a diverse array of learning methods, seamlessly blending traditional practices like browsing and community interaction with the innovative capabilities of tools like ChatGPT and auto code-completion tools.
What to Do:
- Utilize Tailored Learning Resources: Make the most of ChatGPT’s recommendations for learning materials.
- Collaborate for Problem-Solving: Utilize ChatGPT as a collaborative partner as if you are coding with your friends.
What Not to Do:
- Over-Dependence on ChatGPT: Avoid relying solely on ChatGPT and ensure a balanced approach to foster independent problem-solving skills.
- Neglect Real-Time Interaction with Coding Community: While ChatGPT offers valuable insights, don’t neglect the benefits of real-time interaction and feedback from coding communities. That also helps build a reputation in the community
- Disregard Practical Coding Practice: Balance ChatGPT guidance with hands-on coding practice to reinforce theoretical knowledge with practical application.
Let me know in the comments how you use ChatGPT to help you code!
Happy coding!
Ellen
Follow me on LinkedIn
Check out my portfolio: liviaellen.com/portfolio
My Previous AR Works: liviaellen.com/ar-profile
or just buy me a real coffee
— Yes I love coffee.
About the Author
I’m Ellen, a Machine Learning engineer with 6 years of experience, currently working at a fintech startup in San Francisco. My background spans data science roles in oil & gas consulting, as well as leading AI and data training programs across APAC, the Middle East, and Europe.
I’m currently completing my Master’s in Data Science (graduating May 2025) and actively looking for my next opportunity as a machine learning engineer. If you’re open to referring or connecting, I’d truly appreciate it!
I love creating real-world impact through AI and I’m always open to project-based collaborations as well.
Related posts


































































































































































































































































































Trending
-
Startups11 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Tutoriales12 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Recursos12 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Startups10 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Startups12 meses ago
Deepgram: Revolucionando el Reconocimiento de Voz con IA
-
Recursos11 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Recursos12 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Estudiar IA11 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios