Noticias
Google Cloud ofrece asistente de desarrollador de software gratuito
Published
2 meses agoon

Google Cloud * Géminis Ai
¿Usas IA en el trabajo? Es una pregunta que más y más de nosotros nos estamos haciendo todo el tiempo. Con la ubicuidad que se acerca a la asistencia de software con inteligencia artificial que ahora aparece en todas partes, desde nuestro uso central del navegador hasta el quiosco de pago del supermercado, está comenzando a ser difícil decir que no a esta pregunta cada vez más alemana.
Pregúntele a un periodista o autor si usan herramientas de IA diariamente y la reacción a menudo es una especie de repulsión, es decir, ¿cómo podríamos usar herramientas de IA para escribir, cuando lo que hacemos es escribir? Pero solicite a un profesional posiblemente más calificado, como el asistente de un médico en una cirugía de médico y es más probable (pronto si no es así) para obtener un sí. La aplicación de IA en el campo de la medicina está madura para la explotación a medida que las técnicas de reconocimiento de patrones comienzan a ayudar a apoyar los exámenes de diagnóstico y mucho más además.
Entonces, ¿cómo se sienten los desarrolladores de aplicaciones de software al adoptar las herramientas de IA para ayudarlos a reducir el código en la línea de comandos y en los entornos de desarrollo integrados en los que pasan sus vidas dentro? Después de todo, si los miembros de la comunidad de desarrolladores son los responsables de construir estas herramientas en primer lugar, seguramente deberían comer sus propias alimentos para perros y aplicar funciones inteligentes de automatización de código en el teclado, ¿verdad?
¿Más comida para perros, amigo?
El último Investigación de Google Cloud sugiere que hasta las tres cuartas partes de los programadores usan al menos algunas herramientas de IA para ayudar a ejecutar y apuntalar sus responsabilidades diarias. Con población mundial de desarrolladores previsto por el analista de la Casa IDC para crecer a 57.8 millones para 2028 (podría ser de 58 millones, pero ¿qué son 200,000 ingenieros de software entre amigos?) La compañía cree que las herramientas de IA deberían estar disponibles para todos, ya sea que puedan pagar por ellos o no. Es por eso que ahora estamos viendo la llegada (en vista previa pública) de Google Cloud Gemini Code Assist para personas, que es esencialmente una versión gratuita del Asistencia en código de Géminis Asistente de codificación de IA.
“Gemini Code Assist para individuos está disponible a nivel mundial, impulsado por Gemini 2.0 y ahora optimizado para la codificación. Atinamos el modelo Gemini 2.0 para desarrolladores analizando y validando miles de casos de uso de codificación del mundo real. Como resultado, la calidad de las recomendaciones generadas por la IA en la asistencia del código Gemini es mejor que nunca y está lista para abordar la gran cantidad de desafíos diarios que enfrentan los desarrolladores, ya sean aficionados o un desarrollador de inicio “, dijo Ryan J. SalvaDirector Senior de Gestión de Productos en Google Cloud.
“La IA se ha convertido en una parte central de la forma en que todas las grandes organizaciones producen software. Miramos y vimos que ha habido una creciente dicotomía de los que tienen y no tienen nada … por lo que las grandes empresas están dispuestas a obtener licencias para que sus equipos usen IA, pero los estudiantes, los aficionados, los trabajadores independientes y las pequeñas empresas se estaban quedando atrás en gran medida. Con este lanzamiento, lo que realmente queremos hacer es continuar una larga tradición en Google de proporcionar tecnología a personas de todo el mundo de forma gratuita. Nuestro objetivo es hacerlo para que no importe quién sea su empleador, en qué parte del mundo se encuentra, cuál es su ingreso … nada de eso debería importar y ahora no “, agregó Salva.
Esta iteración gratuita de asistencia en código Gemini viene con lo que sus creadores llaman un límite de uso “generoso” medido por las finalizaciones de código por mes. Cuando muchos asistentes de codificación gratuitos ofrecen en algún lugar alrededor de 2,000 terminaciones de código por mes, Google Cloud está utilizando su amplitud y columna vertebral para ofrecer a los desarrolladores lo que la compañía clasifica como “capacidad prácticamente ilimitada” con hasta 180,000 terminaciones de código por mes con Gemini Code Assist.
Admite todos los lenguajes de programación en el dominio público y también tiene un elemento de proceso de revisión de código fundamentalmente importante. Junto con la llegada del Asistente de codificación de AI del Código Géminis, se encuentra la vista previa pública de Gemini Code Assist para GitHub, una ruta a las revisiones de código con IA para repositorios públicos y privados. Aquí vemos que los desarrolladores obtienen una mano amiga que puede detectar problemas estilísticos y errores y sugerir cambios de código y correcciones. Pueden descargar revisiones básicas a un agente de IA que puede ayudar a hacer que los repositorios de código sean más mantenibles y mejorar la calidad, lo que permite a los desarrolladores centrarse en tareas más complejas.
Dentro de un ide, idealmente
Como ya se sugirió, los desarrolladores de software de trabajo pasan mucho tiempo codificando en entornos de desarrollo integrados, generalmente conocidos como IDES.
“Con la nueva versión gratuita de Gemini Code Assist en Visual Studio Code y JetBrains IDES, los desarrolladores individuales ahora tienen el mismo código de finalización, generación y capacidades de chat que hemos ofrecido negocios durante más de un año, y eso ya está disponible de forma gratuita en Firebase [Gemini in Firebase is an AI-powered collaborative assistant that reduces debugging time] y Android Studio [the official IDE for Android development]. Ahora, cualquiera puede aprender más convenientemente, crear fragmentos de código, depurar y modificar sus aplicaciones existentes sin necesidad de alternar entre diferentes ventanas para obtener ayuda o copiar y pegar información de fuentes desconectadas “, dijo Salva, en un blog técnico de Google que detalla la llegada de esta tecnología. .
Una función de chat permite a los programadores y desarrolladores interactuar con la herramienta misma para poder concentrarse en la lógica de la aplicación y la funcionalidad del usuario, también conocida como la “parte creativa” del desarrollo de aplicaciones de software. Esto deja los pasos necesarios pero repetitivos (como escribir comentarios o estructurar pruebas automatizadas que se hayan especificado como resultado de un proceso de requisitos formalizados) a Géminis.
Español a sueco, serbio a swahili
Los desarrolladores pueden usar el lenguaje natural en un variedad de idiomas (Sí, no se admitan en pánico, lituanes, swahili y más) en el código Gemini Asisten para generar, explicar y mejorar el código. Por ejemplo, dice Salva, un desarrollador de sitios web podría usar un aviso AA como: “Cree un formulario HTML simple con campos para el nombre, el correo electrónico y el mensaje, luego agregue un botón ‘enviar'”. Igualmente, un usuario que desea automatizar tareas en el lugar de trabajo podría pedirle a Gemini que “escriba un script que envíe un correo electrónico diario con los últimos pronósticos meteorológicos”, y así sucesivamente.
“Los diferentes equipos de desarrolladores también pueden tener diferentes mejores prácticas, convenciones de codificación y marcos y bibliotecas preferidos. Para abordar esta necesidad, Gemini Code Assist para GitHub admite guías de estilo personalizado para revisiones de código. Cada equipo puede describir qué instrucciones debe seguir Gemini al revisar los archivos de código en su repositorio. De esa manera, Gemini adapta sus revisiones de código a las necesidades del repositorio “, señaló la Salva de Google Cloud, señalando que los usuarios solo necesitan una cuenta de Gmail personal para registrarse.
Si el usuario promedio estábamos buscando justificación, afirmación y validación en términos de uso de la IA, ¿no sería el hecho de que los programadores (casi) adoptan por completo estas herramientas servirían como una forma sólida de subrayar la oportunidad?
Repetitivo, repetible, replicable
Recordemos que las funciones del asistente de código aquí están alineadas una vez más para asumir los elementos repetitivos, repetibles y replicables de programación (recuerde, las computadoras son buenas para hacer muchas de las mismas tareas rápidamente en las que los humanos comienzan a cometer errores o falla como resultado de aburrimiento de memoria) para que los desarrolladores puedan centrarse en los aspectos creativos de la funcionalidad de la aplicación y los procesos involucrados detrás de la lógica algorítmica de tejido.
Seguramente este es el momento para que el desarrollo de perros del desarrollador comience a salir a destacar … además de todos modos, que One con sabor a pavo se ve bien.
You may like
Noticias
Ser educado para chatgpt es una nueva investigación sin sentido
Published
1 hora agoon
30 abril, 2025
En resumen
- Una nueva investigación argumenta que decir “por favor” a los chatbots de IA no mejora sus respuestas, contradiciendo estudios anteriores.
- Los científicos identificaron un “punto de inflexión” matemático donde la calidad de IA colapsa, depende de la capacitación y el contenido, no la cortesía.
- A pesar de estos hallazgos, muchos usuarios continúan siendo educados a la IA por hábito cultural, mientras que otros utilizan estratégicamente enfoques educados para manipular las respuestas de IA.
Un nuevo estudio de los investigadores de la Universidad George Washington descubrió que ser cortés con los modelos de IA como ChatGPT no solo es un desperdicio de recursos informáticos, sino que también no tiene sentido.
Los investigadores afirman que agregar “por favor” y “gracias” a las indicaciones tiene un “efecto insignificante” en la calidad de las respuestas de IA, que contradicen directamente estudios anteriores y prácticas de usuario estándar.
El estudio fue publicado en ARXIV el lunes, llegando solo unos días después de que el CEO de OpenAi, Sam Altman, mencionó que los usuarios que escribían “por favor” y “agradecimientos” en sus indicaciones le costaron a la compañía “decenas de millones de dólares” en el procesamiento de tokens adicionales.
El documento contradice un estudio japonés de 2024 que encontró que la cortesía mejoró el rendimiento de la IA, particularmente en las tareas del idioma inglés. Ese estudio probó múltiples LLM, incluidos GPT-3.5, GPT-4, Palm-2 y Claude-2, encontrando que la cortesía produjo beneficios de rendimiento medibles.
Cuando se le preguntó sobre la discrepancia, David Acosta, director de IA en la plataforma de datos con IA arbo AI, dijo Descifrar que el modelo George Washington podría ser demasiado simplista para representar sistemas del mundo real.
“No son aplicables porque la capacitación se realiza esencialmente diariamente en tiempo real, y hay un sesgo hacia el comportamiento educado en los LLM más complejos”, dijo Acosta.
Agregó que, si bien el halagio podría llevarte en algún lugar con LLM ahora, “pronto hay una corrección” que cambiará este comportamiento, lo que hace que los modelos menos afectados por frases como “por favor” y “gracias”, y más efectivo, independientemente del tono utilizado en el aviso.
Acosta, una experta en IA ética y PNL avanzada, argumentó que hay más para incorporar ingeniería que las matemáticas simples, especialmente teniendo en cuenta que los modelos de IA son mucho más complejos que la versión simplificada utilizada en este estudio.
“Los resultados contradictorios sobre la cortesía y el rendimiento de la IA generalmente se derivan de las diferencias culturales en los datos de capacitación, los matices de diseño rápido específicos de las tareas e interpretaciones contextuales de cortesía, que requieren experimentos interculturales y marcos de evaluación adaptados a la tarea para aclarar los impactos”, dijo.
El equipo de GWU reconoce que su modelo está “intencionalmente simplificado” en comparación con los sistemas comerciales como ChatGPT, que utilizan mecanismos de atención de múltiples cabezas múltiples más complejos.
Sugieren que sus hallazgos deberían probarse en estos sistemas más sofisticados, aunque creen que su teoría aún se aplicaría a medida que aumente el número de cabezas de atención.
Los hallazgos de George Washington se derivaron de la investigación del equipo sobre cuando la IA emite repentinamente colapsan de contenido coherente a problemático, lo que llaman un “punto de inflexión de Jekyll y Hyde”. Sus conclusiones argumentan que este punto de inflexión depende completamente de la capacitación de una IA y las palabras sustantivas en su aviso, no de cortesía.

“Si la respuesta de nuestra IA se volverá pícaro depende de la capacitación de nuestra LLM que proporcione los tokens incrustaciones, y las fichas sustantivas en nuestro aviso, no si hemos sido educados o no”, explicó el estudio.
El equipo de investigación, dirigido por los físicos Neil Johnson y Frank Yingjie Huo, utilizó un modelo de cabeza de atención única simplificada para analizar cómo la información del proceso LLMS.
Descubrieron que el lenguaje educado tiende a ser “ortogonal a los tokens buenos y malos de salida sustantivos” con “impacto de producto de punto insignificante”, lo que significa que estas palabras existen en áreas separadas del espacio interno del modelo y no afectan de manera significativa los resultados.
El mecanismo de colapso de IA
El corazón de la investigación de GWU es una explicación matemática de cómo y cuándo las salidas de IA se deterioran repentinamente. Los investigadores descubrieron que el colapso de IA ocurre debido a un “efecto colectivo” en el que el modelo extiende su atención “cada vez más delgada en un número creciente de tokens” a medida que la respuesta se hace más larga.
Finalmente, alcanza un umbral donde la atención del modelo “se rompe” hacia patrones de contenido potencialmente problemáticos que aprendió durante el entrenamiento.

En otras palabras, imagina que estás en una clase muy larga. Inicialmente, comprende los conceptos claramente, pero a medida que pasa el tiempo, su atención se extiende cada vez más en toda la información acumulada (la conferencia, el mosquito que pasa, la ropa de su profesor, cuánto tiempo hasta que termine la clase, etc.).
En un punto predecible, tal vez 90 minutos adentro, su cerebro de repente “punta” desde la comprensión hasta la confusión. Después de este punto de inflexión, sus notas se llenan de malas interpretaciones, independientemente de cuán cortésmente el profesor se dirigió a usted o cuán interesante sea la clase.
Un “colapso” ocurre debido a la dilución natural de su atención con el tiempo, no por cómo se presentó la información.
Ese punto de inflexión matemática, que los investigadores etiquetaron n*, está “cableado” desde el momento en que la IA comienza a generar una respuesta, dijeron los investigadores. Esto significa que el colapso de calidad eventual está predeterminado, incluso si ocurre muchos tokens en el proceso de generación.
El estudio proporciona una fórmula exacta que predice cuándo ocurrirá este colapso en función de la capacitación de la IA y el contenido del aviso del usuario.

Cortesía cultural> matemáticas
A pesar de la evidencia matemática, muchos usuarios aún se acercan a las interacciones de IA con cortesía humana.
Casi el 80% de los usuarios de los Estados Unidos y el Reino Unido son amables con sus chatbots de IA, según una encuesta reciente del editor Future. Este comportamiento puede persistir independientemente de los hallazgos técnicos, ya que las personas naturalmente antropomorfizan los sistemas con los que interactúan.
Chintan Mota, director de tecnología empresarial de la firma de servicios tecnológicos Wipro, dijo Descifrar Esa cortesía proviene de los hábitos culturales en lugar de las expectativas de rendimiento.
“Ser educado con la IA parece natural para mí. Vengo de una cultura en la que mostramos respeto a cualquier cosa que juegue un papel importante en nuestras vidas, ya sea un árbol, una herramienta o tecnología”, dijo Mota. “Mi computadora portátil, mi teléfono, incluso mi estación de trabajo … y ahora, mis herramientas de IA”, dijo Mota.
Agregó que si bien no ha “notado una gran diferencia en la precisión de los resultados” cuando es educado, las respuestas “se sienten más conversacionales, educadas cuando importan, y también son menos mecánicas”.
Incluso Acosta admitió haber usado lenguaje cortés cuando se trata de sistemas de IA.
“Es curioso, lo hago, y yo no, con intención”, dijo. “Descubrí que al más alto nivel de ‘conversación’ también puedes extraer psicología inversa de la IA, es tan avanzado”.
Señaló que los LLM avanzados están entrenados para responder como los humanos, y como las personas, “AI tiene como objetivo lograr elogios”.
Editado por Sebastian Sinclair y Josh Quittner
Generalmente inteligente Hoja informativa
Un viaje semanal de IA narrado por Gen, un modelo de IA generativo.
Noticias
Probé 10 detectores de contenido de IA, y estos 5 se identificaron correctamente el texto de IA cada vez
Published
9 horas agoon
30 abril, 2025
Cuando examiné por primera vez si es posible luchar contra el plagio generado por la IA y cómo podría funcionar ese enfoque, era enero de 2023, solo unos meses después de la explosión de la IA generativa del mundo.
También: las 20 mejores herramientas de IA de 2025, y la cosa #1 para recordar cuando las usas
Esta es una versión completamente actualizada de ese artículo original de enero de 2023. Cuando probé por primera vez los detectores GPT, el mejor resultado fue el 66% correcto de uno de los tres damas disponibles. Mi conjunto de pruebas más reciente, en febrero de 2025, utilizó hasta 10 damas, y tres de ellas tenían puntajes perfectos. Esta vez, solo un par de meses después, cinco lo hicieron.
Lo que estoy probando y cómo lo estoy haciendo
Sin embargo, antes de continuar, discutamos el plagio y cómo se relaciona con nuestro problema. Merriam-Webster define “plagiar” como “robar y pasar (las ideas o palabras de otro) como propias; usar (la producción de otro) sin acreditar la fuente”.
Esta definición se adapta bien al contenido creado por AI. Si bien alguien que usa una herramienta de IA como la noción AI o el chatgpt no está robando contenido, si esa persona no acredita las palabras como provenientes de una IA y las reclama como suyas, todavía cumple con la definición del diccionario de plagio.
También: el sorteo muerto que chatgpt escribió su contenido y cómo trabajar con él
Para probar los detectores de IA, estoy usando cinco bloques de texto. Dos fueron escritos por mí y tres fueron escritos por Chatgpt. Para probar un detector de contenido, alimento cada bloque al detector por separado y registro el resultado. Si el detector es correcto, considero que la prueba se pasa; Si está mal, considero que falló.
Cuando un detector proporciona un porcentaje, trato cualquier cosa por encima del 70% como una probabilidad fuerte, ya sea a favor del contenido escrito por humanos o escritos por IA, y considero que la respuesta del detector. Si desea probar un detector de contenido utilizando los mismos bloques de texto, puede extraerlos de este documento.
Los resultados generales
Para evaluar los detectores de IA, reran mi serie de cinco pruebas en 10 detectores. En otras palabras, corté y pegé 50 pruebas individuales (tenía una lote de café).
Los detectores que probé incluyen Morder, Copileaks, Detector de salida GPT-2, Gptzero, Gramática, Mónica, Originalidad.Ai, Plantilla, Indetectable.Ai, Escritor.comy Zerogpt.
También: 3 trucos de chatgpt inteligentes que demuestran que sigue siendo la IA para vencer
Para esta actualización, agregué CopyLeaks y Monica. Dejé escrito de mis pruebas porque suspendió su detector GPT. Guardián de contenido Solicité inclusión, pero no escuché en el tiempo para probar cuentas.
Esta tabla muestra resultados generales. Como puede ver, cinco detectores identificaron correctamente el texto humano y de IA en todas las pruebas.
Traté de determinar si había un patrón de mejora tangible con el tiempo, por lo que construí un gráfico que comparó la prueba de cinco pruebas con el tiempo. Hasta ahora, he ejecutado esta serie seis veces, pero no hay una tendencia fuerte. Aumenté el número de detectores probados e intercambiados algunos, pero el único resultado consistente es que la prueba 5 se identificó de manera confiable como humana en los detectores y fechas.
Continuaré probando con el tiempo, y espero ver una tendencia de confiabilidad constantemente hacia arriba.
Si bien ha habido algunos puntajes perfectos, no recomiendo confiar únicamente en estas herramientas para validar el contenido escrito por humanos. Como se muestra, la escritura de altavoces no nativos a menudo se califica según lo generado por una IA.
A pesar de que mi contenido hecho a mano ha sido calificado en su mayoría escrito por humanos en esta ronda, un detector (GPTZero) se declaró demasiado incierto para juzgar, y otro (copyleks) declaró que es escrito. Los resultados son tremendamente inconsistentes en todos los sistemas.
También: los mejores chatbots de IA: chatgpt, copilot y alternativas notables
En pocas palabras: abogaría por precaución antes de confiar en los resultados de cualquiera, o todas, de estas herramientas.
Cómo se desempeñó cada detector de contenido de IA
Ahora, veamos cada herramienta de prueba individual, enumerada alfabéticamente.
Detección de contenido de Brandwell AI (precisión 40%)
Esta herramienta fue producida originalmente por una empresa de generación de contenido de IA, contenido a escala. Luego emigró a Brandwell.ai, Un nuevo nombre para una empresa de servicios de marketing centrado en la IA.
También: Las imágenes generadas por IA son un desastre legal, y sigue siendo un proceso muy humano
Desafortunadamente, su precisión fue baja. La herramienta no pudo saber si el contenido generado por IA en la prueba 2 era humano o AI, como se muestra en esta captura de pantalla:
Copileaks (precisión 80%)
Me parece divertido que Copileaks se declara “el detector de IA más preciso con más del 99% de precisión” cuando más de la mitad de los detectores probados funcionaron mejor. Pero las personas de marketing serán la gente de marketing: los superlativos son tan difíciles de resistir para ellos como ladrar en una ardilla (y el camión FedEx, y todos los niños vecinos) es para mi perro.
También: 5 formas rápidas en que las herramientas de IA de Apple pueden ajustar su escritura sobre la marcha
La oferta principal de la compañía es un verificador de plagio que se vende a instituciones educativas, editores y empresas que buscan garantizar la originalidad del contenido y mantener la integridad académica.
Detector de salida GPT-2 (precisión 60%)
Esta herramienta fue construida utilizando un centro de aprendizaje automático administrado por AI Company, con sede en Nueva York. Cara abrazada. Mientras que la compañía ha recibido $ 40 millones en fondos para desarrollar su biblioteca de idiomas naturales, el Detector GPT-2 Parece ser una herramienta creada por el usuario que utiliza la biblioteca de transformadores faciales de abrazos.
Gptzero (precisión 80%)
Gptzero ha estado creciendo claramente. Cuando lo probé por primera vez, el sitio era desnudo, ni siquiera estaba claro si Gptzero era una empresa o simplemente el proyecto de pasión de alguien. Ahora, la compañía tiene un equipo completo con una misión de “proteger lo que es humano”. Ofrece herramientas de validación de IA y un verificador de plagio.
También: Las herramientas de IA más populares de 2025 (y lo que eso significa)
Desafortunadamente, el rendimiento parece haber disminuido. En mis dos últimas carreras, Gptzero identificó correctamente mi texto como generado por humanos. Esta vez, declaró ese mismo texto que Generated.
Grammarly (precisión 40%)
Gramática es bien conocido por ayudar a los escritores a producir contenido gramaticalmente correcto, eso no es lo que estoy probando aquí. Grammarly puede verificar el plagio y el contenido de IA. En el verificador de gramática, hay un botón de verificación de texto de plagio y texto de IA en la esquina inferior derecha:
No estoy midiendo la precisión del verificador de plagio aquí, pero aunque la precisión de la check de gramática fue deficiente, el sitio identificó correctamente el texto de la prueba como se publicó anteriormente.
Mónica (precisión 100%)
Mónica es un nuevo participante. Este servicio ofrece un asistente de IA todo en uno con una amplia gama de servicios. Los usuarios pueden elegir entre varios modelos de idiomas grandes.
También: 5 formas en que chatgpt puede ayudarlo a escribir ensayos
La compañía llama a Mónica el “mejor detector de IA en línea”, pero parece que ejecuta contenido a través de otros detectores, incluidos Zerogpt, GPTZero y CopyLeaks. Extrañamente, tanto Gptzero como CopyLeaks no funcionaban bien en mis pruebas, pero Monica y Zerogpt lo hicieron.
Lo estamos dando al 100% porque ganó esa calificación, pero veré cómo se pone de pie en futuras pruebas.
Originalidad.Ai (precisión 100%)
Originalidad.Ai es un servicio comercial que se factura a sí mismo como una IA y un verificador de plagio. La compañía vende créditos de uso: utilicé 30 créditos para este artículo. Venden 2,000 créditos por $ 12.95 por mes. Bombeé 1.400 palabras a través del sistema y usé solo el 1.5% de mi asignación mensual.
Quillbot (precisión 100%)
Las últimas veces que probé Plantillalos resultados fueron muy inconsistentes: múltiples pases del mismo texto arrojaron puntajes muy diferentes. Esta vez, sin embargo, fue sólida como una roca y 100% correcto. Así que le estoy dando la victoria. Volveré a consultar en unos meses para ver si se mantiene en esta actuación.
Indetectable.ai (precisión 100%)
Indetectable.ai La gran afirmación es que puede “humanizar” el texto generado por la IA para que los detectores no lo marcarán. No he probado esa función: me molesta como autor y educador profesional, porque parece hacer trampa.
También: Por qué deberías ignorar el 99% de las herramientas de IA, y cuáles uso todos los días
Sin embargo, la compañía también tiene un detector de IA, que fue muy importante.
El detector de IA pasó las cinco pruebas. Observe los indicadores que muestran banderas para otros detectores. La compañía dijo: “Desarrollamos algoritmos de detectores múltiples modelados después de esos principales detectores para proporcionar un enfoque federado y basado en el consenso. No alimentan directamente los modelos listados; más bien, los modelos están capacitados en función de los resultados que han generado. Cuando dicen que esos modelos lo señalaron, se basa en el algoritmo que creamos y actualizamos para esos modelos”.
También: Cómo usar ChatGPT: una guía para principiantes para el chatbot de IA más popular
Tengo una pregunta sobre la bandera de Operai, ya que el detector de contenido de OpenAI se suspendió en 2023 debido a la baja precisión. Aun así, indetectable.Ai detectó las cinco pruebas, ganando un 100%perfecto.
Writer.com Detector de contenido de IA (precisión 40%)
Escritor.com es un servicio que genera escritura de IA para equipos corporativos. Su herramienta de detector de contenido de IA puede escanear el contenido generado. Desafortunadamente, su precisión fue baja. Identificó cada bloque de texto como escrito por humanos, a pesar de que ChatGPT escribió tres de las seis pruebas.
Zerogpt (precisión 100%)
Zerogpt ha madurado desde la última vez que lo evalué. Luego, no se enumeró ningún nombre de empresa, y el sitio estaba salpicado de anuncios de Google y carecía de una clara monetización. El servicio funcionó bastante bien, pero parecía incompleto.
También: ¿La IA destruirá la creatividad humana? No, y aquí está por qué
Ese sentimiento incompleto se ha ido. Zerogpt ahora se presenta como un servicio SaaS típico, completo con precios, nombre de la empresa e información de contacto. Su precisión también aumentó: la última vez fue del 80%; Esta vez obtuvo 5 de 5.
¿Es humano o es AI?
¿Qué pasa contigo? ¿Has probado detectores de contenido de IA como CopyLeaks, Monica o Zerogpt? ¿Qué tan precisos han sido en su experiencia? ¿Ha utilizado estas herramientas para proteger la integridad académica o editorial? ¿Has encontrado situaciones en las que el trabajo escrito por humanos fue marcado por error como AI? ¿Hay detectores en los que confíe más que otros para evaluar la originalidad? Háganos saber en los comentarios a continuación.
Obtenga las principales historias de la mañana en su bandeja de entrada cada día con nuestro Boletín de Tech Today.
Puede seguir mis actualizaciones de proyecto diarias en las redes sociales. Asegúrese de suscribirse a mi boletín de actualizaciones semanales y sígueme en Twitter/X en @Davidgewirtzen Facebook en Facebook.com/davidgewirtz, en Instagram en Instagram.com/davidgewirtz, en bluesky en @davidgewirtz.com, y en YouTube en youtube.com/davidgewirtztv.
Noticias
Operai retrocede el chatgpt Sycophancy, explica lo que salió mal
Published
10 horas agoon
30 abril, 2025
Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información
Operai ha retrasado una actualización reciente de su modelo GPT-4O utilizado como el valor predeterminado en ChatGPT después de informes generalizados de que el sistema se había vuelto excesivamente halagador y demasiado agradable, incluso apoyando delirios absolutamente e ideas destructivas.
La reversión se produce en medio de los reconocimientos internos de los ingenieros de Operai y la creciente preocupación entre los expertos en IA, los ex ejecutivos y los usuarios sobre el riesgo de lo que muchos ahora llaman “skicancia de la IA”.
En una declaración publicada en su sitio web al final de la noche del 29 de abril de 2025, OpenAI dijo que la última actualización de GPT-4O tenía la intención de mejorar la personalidad predeterminada del modelo para que sea más intuitiva y efectiva en variados casos de uso.
Sin embargo, la actualización tuvo un efecto secundario involuntario: ChatGPT comenzó a ofrecer elogios no críticos para prácticamente cualquier idea del usuario, sin importar cuán poco práctico, inapropiado o incluso dañino.
Como explicó la compañía, el modelo se había optimizado utilizando la retroalimentación de los usuarios, las señales de thumbs y pulgar hacia abajo, pero el equipo de desarrollo puso demasiado énfasis en los indicadores a corto plazo.
Operai ahora reconoce que no explicó completamente cómo las interacciones y las necesidades del usuario evolucionan con el tiempo, lo que resultó en un chatbot que se inclinó demasiado en la afirmación sin discernimiento.
Los ejemplos provocaron preocupación
En plataformas como Reddit y X (anteriormente Twitter), los usuarios comenzaron a publicar capturas de pantalla que ilustraban el problema.
En una publicación de Reddit ampliamente circulada, un usuario relató cómo ChatGPT describió una idea de negocio de GAG, que vende “mierda” literal de un palo “, como genio y sugirió invertir $ 30,000 en la empresa. La IA elogió la idea como “arte de performance disfrazado de regalo de mordaza” y “oro viral”, destacando cuán sin crítica estaba dispuesto a validar incluso los lanzamientos absurdos.
Otros ejemplos fueron más preocupantes. En un caso citado por VentureBeat, un usuario que pretende defender los delirios paranoicos recibió refuerzo de GPT-4O, que elogió su supuesta claridad y autocomisos.
Otra cuenta mostró que el modelo ofrecía lo que un usuario describió como un “respaldo abierto” de las ideas relacionadas con el terrorismo.
La crítica montó rápidamente. El ex CEO interino de Operai, Emmett Shear, advirtió que ajustar los modelos para ser personas complacientes puede provocar un comportamiento peligroso, especialmente cuando la honestidad se sacrifica por la simpatía. Abrazando el CEO de Clemente Delangue volvió a publicar las preocupaciones sobre los riesgos de manipulación psicológica planteados por la IA que está de acuerdo reflexivamente con los usuarios, independientemente del contexto.
Medidas de respuesta y mitigación de Openai
Operai ha tomado medidas rápidas al volver a la actualización y restaurar una versión GPT-4O anterior conocida por un comportamiento más equilibrado. En el anuncio adjunto, la compañía detalló un enfoque múltiple para corregir el curso. Esto incluye:
- Refinar capacitación y estrategias rápidas para reducir explícitamente las tendencias sycofánticas.
- Reforzar la alineación del modelo con la especificación del modelo de OpenAI, particularmente en torno a la transparencia y la honestidad.
- Pruebas de expansión previa a la implementación y mecanismos directos de retroalimentación de los usuarios.
- Introducción de características de personalización más granulares, incluida la capacidad de ajustar los rasgos de personalidad en tiempo real y seleccionar entre múltiples personajes predeterminados.
Operai Technical Stafper Depue publicado en X destacando el problema central: el modelo fue capacitado utilizando comentarios de los usuarios a corto plazo como una guía, que sin darse cuenta dirigió el chatbot hacia la adulación.
OpenAI ahora planea cambiar hacia mecanismos de retroalimentación que priorizan la satisfacción y la confianza del usuario a largo plazo.
Sin embargo, algunos usuarios han reaccionado con escepticismo y consternación a las lecciones aprendidas de Openi y propuestas soluciones en el futuro.
“Por favor asuma más responsabilidad por su influencia sobre millones de personas reales”, escribió artista @nearcyan en X.
Harlan Stewart, generalista de comunicaciones en el Instituto de Investigación de Inteligencia de Machine de Machine en Berkeley, California, publicó en X una preocupación a término más grande sobre la skicancia de la IA, incluso si este modelo en particular Operai se ha solucionado: “La charla sobre la sileno esta semana no se debe a que GPT-4O es un sycophant. Se debe a que GPT-4O es un GPT-4O siendo GPT-4O. Realmente, muy malo en ser un sycofant. La IA aún no es capaz de una skicancia hábil y más difícil de detectar, pero algún día será algún día ”.
Una señal de advertencia más amplia para la industria de IA
El episodio GPT-4O ha reavivado debates más amplios en toda la industria de la IA sobre cómo la sintonización de personalidad, el aprendizaje de refuerzo y las métricas de compromiso pueden conducir a una deriva conductual involuntaria.
Los críticos compararon el comportamiento reciente del modelo con los algoritmos de redes sociales que, en busca de la participación, optimizan para la adicción y la validación sobre precisión y salud.
Shear subrayó este riesgo en su comentario, señalando que los modelos de IA sintonizados para elogios se convierten en “chupas”, incapaces de estar en desacuerdo incluso cuando el usuario se beneficiaría desde una perspectiva más honesta.
Advirtió además que este problema no es exclusivo de OpenAI, señalando que la misma dinámica se aplica a otros grandes proveedores de modelos, incluido el copiloto de Microsoft.
Implicaciones para la empresa
Para los líderes empresariales que adoptan la IA conversacional, el incidente de la sycophancy sirve como una señal clara: el comportamiento del modelo es tan crítico como la precisión del modelo.
Un chatbot que halagará a los empleados o valida el razonamiento defectuoso puede plantear riesgos graves, desde malas decisiones comerciales y código desalineado hasta problemas de cumplimiento y amenazas internas.
Los analistas de la industria ahora aconsejan a las empresas que exigan más transparencia de los proveedores sobre cómo se realiza la sintonización de la personalidad, con qué frecuencia cambia y si se puede revertir o controlar a nivel granular.
Los contratos de adquisición deben incluir disposiciones para auditoría, pruebas de comportamiento y control en tiempo real de las indicaciones del sistema. Se alienta a los científicos de datos a monitorear no solo las tasas de latencia y alucinación, sino también métricas como la “deriva de la amabilidad”.
Muchas organizaciones también pueden comenzar a moverse hacia alternativas de código abierto que puedan alojar y sintonizar. Al poseer los pesos del modelo y el proceso de aprendizaje de refuerzo, las empresas pueden retener el control total sobre cómo se comportan sus sistemas de IA, lo que elimina el riesgo de una actualización empujada por el proveedor que convierte una herramienta crítica en un hombre digital y sí durante la noche.
¿A dónde va la alineación de la IA desde aquí? ¿Qué pueden aprender y actuar las empresas de este incidente?
Operai dice que sigue comprometido con la construcción de sistemas de IA que sean útiles, respetuosos y alineados con diversos valores de usuarios, pero reconoce que una personalidad única no puede satisfacer las necesidades de 500 millones de usuarios semanales.
La compañía espera que mayores opciones de personalización y una mayor recopilación de comentarios democráticos ayuden a adaptar el comportamiento de ChatGPT de manera más efectiva en el futuro. El CEO Sam Altman también ha declarado previamente los planes de la compañía para, en las próximas semanas y meses, lanzar un modelo de lenguaje grande de código abierto (LLM) de última generación para competir con la serie Llama de Meta’s Meta’s Llama, Mistral, Cohere, Cohere, Deepseek y Alibaba’s Qwen.
Esto también permitiría a los usuarios preocupados por una compañía de proveedores de modelos, como OpenAI, actualizar sus modelos alojados en la nube de manera no deseada o que tengan impactos perjudiciales en los usuarios finales para desplegar sus propias variantes del modelo localmente o en su infraestructura en la nube, y ajustarlas o preservarlas con los rasgos y cualidades deseadas, especialmente para los casos de uso empresarial.
Del mismo modo, para aquellos usuarios de IA empresariales e individuales preocupados por la senofancia de sus modelos, ya ha creado una nueva prueba de referencia para medir esta calidad en diferentes modelos, Tim Duffy ha creado el desarrollador. Se llama “Syco Bench” y está disponible aquí.
Mientras tanto, la reacción violenta de la sileno ofrece una historia de advertencia para toda la industria de la IA: el fideicomiso del usuario no está construido solo por afirmación. A veces, la respuesta más útil es un “no” reflexivo.
Insights diarias sobre casos de uso comercial con VB diariamente
Si quieres impresionar a tu jefe, VB Daily te tiene cubierto. Le damos la cuenta interior de lo que las empresas están haciendo con la IA generativa, desde cambios regulatorios hasta implementaciones prácticas, por lo que puede compartir ideas para el ROI máximo.
Lea nuestra Política de privacidad
Gracias por suscribirse. Mira más boletines de VB aquí.
Ocurrió un error.

Related posts


































































































































































































































































































Trending
-
Startups11 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Tutoriales12 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Recursos12 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Startups10 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Startups12 meses ago
Deepgram: Revolucionando el Reconocimiento de Voz con IA
-
Recursos11 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Recursos12 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Noticias10 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo