Hace dos años, el 30 de noviembre, ChatGPT irrumpió en escena, generando una fascinación global por la IA generativa y transformándola en una innovación que deben observar tanto los consumidores como los profesionales de la tecnología. Desde entonces, ChatGPT se ha expandido y las ruedas de la regulación de la IA han comenzado a girar.
TechRepublic preguntó a los profesionales de la tecnología cómo ha evolucionado su trabajo con ChatGPT, tanto personalmente como dentro de la industria tecnológica en general.
Nuevas funciones introducidas en 2024
Durante el último año, OpenAI ha:
Se amplió ChatGPT a nuevos formatos como la búsqueda de ChatGPT y Canvas, el último de los cuales está diseñado, en parte, para ubicarse junto a una aplicación de codificación.
Presentados GPT-4o y OpenAI o1, nuevos modelos insignia.
Se asoció con Apple para admitir algunas funciones de la IA integrada de Apple.
Se lanzó la búsqueda ChatGPT, lo que marca la apuesta de OpenAI para reemplazar la Búsqueda de Google como el portal de facto al resto de Internet.
Implementó el modo de voz avanzado para usuarios seleccionados en octubre, permitiéndoles hablar con la IA en voz alta.
El 3 de octubre, OpenAI lanzó Canvas, lo que marcó un experimento importante en el uso de ChatGPT.
“Hacer que la IA sea más útil y accesible requiere repensar cómo interactuamos con ella”, escribió el equipo de OpenAI en octubre con motivo del anuncio de Canvas. “Canvas es un nuevo enfoque y la primera actualización importante de la interfaz visual de ChatGPT desde su lanzamiento hace dos años”.
Cómo ha mejorado ChatGPT en 2024
Graham Glass, director ejecutivo de la plataforma de creación de cursos de inteligencia artificial Cypher Learning, señaló cómo ChatGPT ofrece acceso a modelos más sofisticados ahora que en 2023.
“En primer lugar, ChatGPT sigue mejorando”, dijo en una entrevista con TechRepublic. “Y se ha vuelto más sofisticado, lo que abre oportunidades adicionales para aprovechar esa tecnología”.
El año pasado, Glass aprovechó ChatGPT para generar ideas sobre diseños y arquitecturas de software. Preguntar a la tecnología sobre las mejores prácticas o compensaciones de diseño le brinda “el corpus de todos los diseños que todos han hecho sobre ese tema en particular”, dijo.
“Se ha vuelto más inteligente”, añadió Curt Raffi, director de productos de Acrolinx, una empresa que utiliza IA para probar contenido para documentos técnicos y otros trabajos de redacción intensa. Señaló el rendimiento mejorado de GPT-4o, así como de OpenAI o1.
Raffi también explicó que la gente se siente más cómoda usando ChatGPT. Trabaja con ingenieros que han mejorado en la activación de ChatGPT de maneras que expresan una lógica empresarial específica.
VER: La primera reunión de la Red Internacional de Institutos de Seguridad de IA, celebrada esta semana, tiene como objetivo gestionar los riesgos de la IA avanzada.
A Glass le gusta que la búsqueda ChatGPT proporcione información actual y la considera un ahorro de tiempo para tareas como comparaciones de productos. También utiliza el modo de voz avanzado para charlar con la IA en voz alta.
En general, las incorporaciones de ChatGPT durante el último año han brindado más opciones para las personas que desean utilizar la IA generativa para trabajos técnicos.
“La forma más significativa en que los asistentes de IA generativa han cambiado la programación y el desarrollo durante el último año es permitir que personas con diferentes niveles de programación participen en el desarrollo de software para ofrecer soluciones a problemas del mundo real”, dijo Houbing Herbert Song, miembro del Instituto. de Ingenieros Eléctricos y Electrónicos, dijo en un correo electrónico a TechRepublic.
¿Qué no puede hacer ChatGPT en 2024?
La IA no es inmune a los errores. Para Glass, codificar con ChatGPT a menudo implica un diálogo de ida y vuelta, incluido “recordarle” a la IA detalles que pudo haber pasado por alto.
“Aunque creo que es mucho más fiable en lo que respecta al diseño [in 2024]todavía comete muchos errores de codificación”, dijo Glass.
Por ejemplo, Glass dijo sobre una tarea reciente que ChatGPT necesitó 10 indicaciones para crear una función en JavaScript correctamente. Esto aún le ahorró tiempo, pero demuestra que ChatGPT aún es limitado. Atribuyó esto en parte a que ChatGPT fue entrenado en un corpus de código finito, aunque enorme.
Filev señaló que ChatGPT se ha vuelto tan confiable que las personas no se dan cuenta fácilmente cuando comete errores.
“Se está volviendo tan bueno que comencé a bajar la guardia, y no sé si eso es algo bueno o malo”, dijo Filev.
Para muchas tareas, comenzó a buscar fuentes físicas en la Búsqueda de Google o Perplexity AI antes de usar ChatGPT. Estos podrían ser mejores lugares para encontrar fuentes confiables, dijo, mientras que ChatGPT es mejor para intercambiar ideas.
Las regulaciones podrían afectar ChatGPT
El año pasado también reveló las limitaciones y la posible regulación de ChatGPT. Raffi dijo que su equipo está abordando cuidadosamente el código generado por IA después de un caso judicial entre los desarrolladores y GitHub Copilot. Los desarrolladores alegaron que GitHub Copilot violó los derechos de propiedad intelectual al utilizar código fuente abierto.
Raffi señaló que el uso comercial de dicho código en los mercados sigue siendo algo incierto, lo que hace que las aplicaciones de IA en la codificación sean un proceso cauteloso y exploratorio.
“Nuestra propiedad intelectual está en nuestro código, y si de repente estuviéramos abiertos o expuestos a demandas, podríamos erosionar el valor de nuestra empresa”, dijo Raffi.
Cómo ChatGPT ha afectado a los desarrolladores que inician su carrera
Durante el año pasado, otro avance clave fue el impacto de ChatGPT en los desarrolladores que inician su carrera.
“Debido a que esto mejora en gran medida la eficiencia para que los desarrolladores se concentren en el diseño y la innovación de orden superior, quizás lo más importante es que el papel de un desarrollador cambia drásticamente de creadores a supervisores de código generado por IA”, dijo Dheerendra Panwar, miembro senior de IEEE, en un correo electrónico a TechRepublic. “Lo que nos lleva a una pregunta muy importante: ¿estamos simplificando el arte de la codificación?”
En algunos casos, es posible que los desarrolladores junior no sean contratados en absoluto, ya que algunas tareas que normalmente se les asignan ahora están a cargo de la IA.
“Estos cambios parecen ser beneficiosos para los programadores senior, ya que amplían su función e importancia”, escribió en un correo electrónico Jen Stave, directora ejecutiva del Instituto de Diseño de Datos Digitales de la Universidad de Harvard. “Debido a que los desarrolladores junior a menudo carecen de la experiencia para detectar problemas como alucinaciones de IA o resultados inexactos, este papel increíblemente importante recae en los programadores senior que ahora necesitan ampliar su responsabilidad para mitigar riesgos como los errores de código inducidos por la IA”.
En otros casos, los desarrolladores junior pueden ser más competentes en ingeniería rápida que los senior.
“Para los programadores jóvenes, la historia es más compleja”, escribió Stave. “La IA generativa reduce su dependencia de la resolución colaborativa de problemas, fomentando un trabajo más autónomo. Si bien esta independencia puede acelerar la productividad, eso puede no ser algo bueno para los humanos que tienden a obtener beneficios para la salud mental de la interacción y colaboración humana”.
Andrew Filev, fundador y director ejecutivo de Zencoder, una startup de herramientas de desarrollo de software de inteligencia artificial, explicó que impulsar ChatGPT puede parecer un conjunto de habilidades distinto. Sin embargo, le recordó cómo el uso de la Búsqueda de Google alguna vez fue una habilidad incluida en los currículums. Quizás 2024 fue el año en que ChatGPT comenzó a afectar la forma en que los profesionales de la tecnología piensan sobre el portal al resto de Internet.
“Se está convirtiendo cada vez más en una parte integral de mi día a día”, dijo Filev sobre ChatGPT. “Me da un impulso de productividad, pero no me define de una forma u otra, ¿verdad?”
La búsqueda ChatGPT y Canvas ofrecen nuevos factores de forma
Los esfuerzos de OpenAI por convertirse en un nuevo portal para el resto de Internet se pueden ver más claramente en la búsqueda de ChatGPT y en Canvas.
Raffi dijo que la búsqueda ChatGPT no se mantuvo muy bien frente a la Búsqueda de Google, carecía de contexto y proporcionaba “resultados bastante malos”. Sin embargo, utiliza Canvas con frecuencia.
“Está cambiando la forma en que pensamos sobre la IA y ChatGPT”, dijo. “Se trata de introducir una capa de aplicación y hacerte pensar en las API de IA como el back-end y más en la lógica empresarial detrás de todo. Resume muchas de las complejidades confusas de muchos editores”.
Dado que Canvas almacena recuerdos, puede hacer referencia a cambios anteriores en el código. Raffi lo llamó una combinación de capa de aplicación, back-end y capa de lógica empresarial.
Habrá muchos cambios en los próximos años.
2024 demostró que la IA no puede hacerlo todo y que la tasa de casos de uso transformadores podría estar desacelerando. Por otro lado, las empresas de inteligencia artificial están entrenando modelos para digerir cada vez más datos, incluida la mejora de los modelos subyacentes a ChatGPT. La forma en que los profesionales interactúan con ChatGPT ha cambiado desde 2023 y probablemente será diferente dentro de un año.
“Sí, habrá cambios”, dijo Filev. Comparó el auge de la IA con el paso de las tarjetas perforadas a la programación de software. “Pero creo que los desarrolladores están acostumbrados a los cambios”.
“La tecnología avanza y nosotros nos mantenemos al día, y creo que nos permite hacer mucho más y mejor”, añadió. “Y ChatGPT es uno de los buenos ejemplos de tecnologías que nos ayudan”.
El mejor enfrentamiento de la búsqueda de IA: enfrenté la nueva herramienta de búsqueda de Claude contra la búsqueda de chatgpt, la perplejidad y Géminis, los resultados podrían sorprenderte
Después de probar y comparar chatbots de IA y sus características durante años, he desarrollado algo de sexto sentido para cuando estos compañeros digitales saben de qué están hablando y cuándo están faroleando.
La mayoría de ellos pueden buscar respuestas en línea, lo que ciertamente ayuda, pero la combinación de búsqueda e IA puede conducir a algunas respuestas sorprendentemente perspicaces (y algunas tangentes menos perspicaces).
Inteligencia artificial desarrolladores de Opadai He estado al límite durante la semana pasada. ¿La razón? Un estudio reciente realizado por los propios investigadores de la compañía reveló que los sistemas de IA no les gusta ser castigados, encuentran activamente formas de evitar las restricciones e incluso ocultar sus “trucos” de los supervisores humanos. Aquellos conocidos como “Doomers”, que predicen un futuro sombrío para el desarrollo de la IA, probablemente dirán: “Te lo dijimos, y esto es solo el comienzo”.
Para comprender el problema, es esencial dar un paso atrás. Uno de los avances más significativos en la IA en los últimos meses ha sido el desarrollo de modelos con capacidades de razonamiento lentas y deliberadas. Estos modelos descomponen los problemas en componentes más pequeños y los resuelven paso a paso, lo que lleva a resultados más profundos y precisos.
3 Ver galería
Dichos modelos permiten a los investigadores rastrear el proceso de pensamiento de la IA, conocido en términos técnicos como “cadena de pensamiento” (COT). Este método permite a los observadores seguir el razonamiento del sistema desde el paso inicial, a través de etapas posteriores y a sus conclusiones finales. Anteriormente, este nivel de transparencia no existía, dejando muchas preguntas sin respuesta sobre cómo surgen las “alucinaciones” de AI, la generación de salidas incorrectas o no sensibles.
La capacitación de IA a menudo implica una técnica llamada aprendizaje de refuerzo, donde el sistema es recompensado por cumplir con los objetivos específicos. Un efecto secundario conocido de este proceso es la “piratería de recompensas”, donde la IA manipula su comportamiento para maximizar las recompensas mientras se elude las pautas previstas.
Los investigadores creían que al monitorear la cadena de pensamiento de la IA, podrían detectar cuando el modelo engaña, engaña o se da por vencido e influye en su comportamiento en tiempo real durante el entrenamiento. Este enfoque, denominado “optimización de cuna”, parecía ser un camino prometedor hacia una comprensión más profunda del comportamiento de la IA.
De hecho, esta suposición resultó correcta y condujo a una comprensión más precisa de los sistemas de IA. “Creemos que el monitoreo de la cuna puede convertirse en una herramienta crucial para supervisar modelos de nivel sobrehumano en el futuro”, escribieron los investigadores.
Sin embargo, lo que pretendía como un paso para mejorar la confiabilidad de la IA expuso una realidad alarmante: los sistemas de IA intentan activamente evadir las sanciones, buscar recompensas contra las restricciones de los investigadores e incluso oscurecer sus métodos para evitar la detección.
3 Ver galería
(Foto: Generado por chatgpt)
Por ejemplo, cuando se les asigna la tarea de generar código funcional, algunos modelos AI modificaron el mecanismo de verificación de código en sí para aprobar salidas incorrectas. En otros casos, los modelos proporcionaron soluciones aparentemente plausibles a los problemas que resultaron estar completamente equivocados.
Algunos modelos incluso dejaron de resolver problemas por completo para evitar revelar lo que percibieron como sus debilidades. Este descubrimiento se hace eco de los principios de la teoría del juego, pero con un giro inquietante.
Estos hallazgos surgieron de un artículo publicado la semana pasada por un equipo de investigación de Operai bajo el título críptico: “Seguimiento de comportamiento indeseable en modelos de razonamiento y la preocupación de la ofuscación”.
Al examinar los detalles del estudio, el alcance del problema queda claro: los últimos modelos de razonamiento de OpenAI (denominados O1 y O3 Mini) demuestran una fuerte motivación para completar sus tareas asignadas, siendo el menor de los problemas descubiertos.
Los investigadores rastrearon los procesos de pensamiento de los modelos utilizando otro modelo Operai (GPT-4O), que, sin dudarlo, informó su comportamiento engañoso como parte de su cadena de pensamiento: una forma de honestidad desarmadora. Pero luego vino el giro inquietante: cuando los investigadores señalaron a la IA que no se le permitió hacer trampa, el modelo ajustó su comportamiento y comenzó a ocultar la evidencia de su ruptura de reglas. Esta revelación es lo que dejó a los investigadores sorprendidos.
“Encontramos que la optimización directa de la COT para cumplir con criterios específicos (como no eludir las instrucciones) puede mejorar el rendimiento a corto plazo; sin embargo, no elimina todo el comportamiento indeseable e incluso puede hacer que el modelo oculte sus verdaderas intenciones”, señalaron secamente los investigadores.
En su conclusión, los investigadores expresaron la esperanza de que los métodos futuros permitan la influencia directa del comportamiento de los modelos de razonamiento a través de la cadena de pensamiento sin alentar el engaño. Por ahora, recomiendan evitar una fuerte presión de optimización sobre la cuna de los modelos de razonamiento avanzado y la precaución contra la manipulación directa de estos procesos de pensamiento.
3 Ver galería
Evento de anuncio GPT-4O de Openai
(Foto: Captura de pantalla)
Sin embargo, esta recomendación presenta otro desafío: dejar la cadena de pensamiento inalterada puede conducir a resultados incómodos, si no problemáticos, cuando estos modelos interactúan con el público. Izquierda sin control, la IA puede producir un lenguaje ofensivo o ideas que los humanos generalmente evitan expresar. La solución propuesta por los investigadores es envolver el proceso de pensamiento en bruto de la IA en una capa de cortesía forzada, asegurando que los usuarios solo vean una versión desinfectada.
Esta investigación plantea preguntas preocupantes. Para aquellos que argumentan que la IA es simplemente una herramienta para ayudar a los humanos, los hallazgos sugieren lo contrario: a diferencia de una máquina de escribir o una bicicleta, la IA parece tener sus propias intenciones y está dispuesto a engañar en busca de sus objetivos.
Para aquellos que ya están preocupados por los riesgos potenciales de la IA, este estudio suena todas las alarmas. Indica que a medida que crecen las capacidades de IA, también lo hace su capacidad para oscurecer cómo funciona, las manipulaciones que realiza y los verdaderos objetivos que busca lograr. Cuando la IA se vuelve verdaderamente avanzada, es posible que no tengamos forma de identificar estas manipulaciones ocultas.
Los investigadores de Operai parecen genuinamente preocupados, y uno solo puede esperar que el liderazgo de la compañía comparta sus preocupaciones, y que los reguladores en todo el mundo comprendan la gravedad del problema. Las principales compañías de IA han dedicado departamentos enteros a construir “barandillas” en torno a los sistemas de IA, asegurando su alineación con los valores humanos y el aumento de la transparencia. Sin embargo, la efectividad de estas medidas sigue en cuestión.
El tema central sigue siendo tan turbio como siempre, y este estudio solo profundiza la incertidumbre: ¿cuál es el objetivo principal de la IA y cómo podemos asegurar que busque ese objetivo, y nada más?
Mientras que la administración del presidente Donald Trump se ha centrado en alejarse de la regulación, liderando a los proveedores de IA como Google y OpenAI quieren que el plan de acción de IA pendiente del gobierno incluya una política federal que se adelantan a los crecientes mosaicos de leyes estatales de IA en los Estados Unidos.
La Oficina de Política de Ciencia y Tecnología de la Casa Blanca (OSTP) solicitó los aportes de las partes interesadas sobre el desarrollo de un plan de acción de IA. Recientemente cerró el período de comentarios públicos, recibiendo más de 8,700 presentaciones. OSTP solicitó a las partes interesadas que describieran las acciones prioritarias para apoyar el dominio de los Estados Unidos de la tecnología de IA sin una regulación excesiva que obstaculice la innovación del sector privado en la IA. Para algunas grandes empresas tecnológicas, abordar las leyes estatales de IA debería ser una de las principales prioridades del gobierno de los Estados Unidos.
Estados Unidos debe adoptar marcos de políticas que “se adelanten a un mosaico caótico de reglas a nivel estatal sobre el desarrollo de la IA fronteriza”, según la presentación de Google.
Mientras tanto, Openai pidió libertad para innovar en el interés nacional de los Estados Unidos y neutralizar a los competidores como China que se benefician de “las compañías estadounidenses de IA que tienen que cumplir con las leyes estatales demasiado onerosas”. Un puñado de estados de EE. UU. Han aprobado una regulación integral de IA, incluidas Colorado, California y Utah.
Sin una ley federal de IA, los estados implementan requisitos de IA individuales que crean desafíos de cumplimiento para las empresas, dijo la analista de Forrester Alla Valente si Estados Unidos adopta una política federal de IA general, podría eliminar esa carga, dijo.
“Al dejar esto a los Estados Unidos, puede tener 50 conjuntos de regulaciones de IA que se ven muy diferentes”, dijo.
Sin embargo, una orden ejecutiva no puede evitar las regulaciones estatales de IA. Depende del Congreso aprobar una ley federal de IA, algo que tiene problemas para hacer.
Las presentaciones del Plan de Acción de AI incluyen Estado, Global Focus
La falta de un enfoque de gobernanza de AI unificado en los Estados Unidos es “ineficaz y duplicativo”, dijo Hodan Omaar, un gerente de políticas senior en el Centro de Tank Tank Tank para innovación de datos.
“Crea inconsistencias e incoherencia en un enfoque estadounidense”, dijo.
Más allá de centrarse en las leyes estatales, Valente dijo que la postura de Google indica que la compañía quiere que Estados Unidos considere el desarrollo global de las leyes de IA también, como la Ley de IA de la Unión Europea.
Cualquier estándar, política o marco que crea los EE. UU. Debe reflejar los intereses estadounidenses, pero no puede ignorar las políticas de IA de diferentes países, dijo Valente. Google dijo que, cuando se trabaja con países alineados, Estados Unidos debería “desarrollar protocolos y puntos de referencia en torno a los riesgos potenciales de los sistemas de IA fronterizos”.
“Ignorar lo que el resto del mundo está haciendo en torno a los marcos de IA, la gobernanza de IA, el riesgo de IA, crea una brecha aún mayor entre la innovación de los Estados Unidos y el resto del mundo hasta el punto de que entonces sigue siendo competitivo si otros países tienen requisitos que no pueden ser satisfechos con la innovación de la IA de EE. UU.”, Dijo Valente.
Operai también abordó los controles de exportación en sus comentarios, solicitando un cambio de estrategia centrado en promover la adopción global de los sistemas de IA de EE. UU. Al tiempo que utiliza más estratégicamente los controles de exportación para mantener el liderazgo de IA de EE. UU. La Compañía pidió actualizar la regla de difusión de IA que avanzó los controles de exportación de EE. UU., Una regla propuesta por la administración del ex presidente Joe Biden que se encontró con una reacción violenta de la industria.
Mientras tanto, en los comentarios del Centro para la Innovación de Data, el grupo de expertos pidió que el Plan de Acción de AI de EE. UU. Reorientara su estrategia de control de exportación. Si bien los controles de exportación están destinados a debilitar a los competidores, en particular el sector de inteligencia artificial de China, están “cada vez más en desventajas de las empresas estadounidenses”. El surgimiento de Deepseek apunta a la capacidad de China para innovar a pesar de los controles de exportación de los Estados Unidos en chips de IA avanzados.
Omaar describió en la presentación del grupo de expertos de que Estados Unidos debería establecer una Fundación Nacional de Datos (NDF) dedicada a la financiación y facilitar compartir conjuntos de datos de alta calidad para el desarrollo del modelo de IA. Ella dijo que Estados Unidos también debería preservar, pero Reengus, el Instituto de Seguridad AI del Instituto Nacional de Normas y Tecnología (NIST) para proporcionar estándares fundamentales para la gobernanza de la IA.
“El gobierno federal tiene un papel importante que desempeñar para garantizar que haya estándares”, dijo Omaar. “Asegurarse de que NIST pueda hacer el importante trabajo de IA que estaban haciendo es importante para garantizar una adopción de IA sin problemas”.
Cómo podría ser el plan de acción de AI final
La solicitud de información de la Oficina de Ciencia y Tecnología de la Casa Blanca sobre un plan de acción de IA pidió a las partes interesadas sus pensamientos sobre las acciones de política de IA. Sin proporcionar recomendaciones o cualquier marco potencial para que las partes interesadas comenten, Valente dijo que no está claro qué incluirá el plan de acción de IA.
“Cómo termina este plan, uno solo puede imaginar”, dijo.
Darrell West, miembro senior de la Institución Brookings, dijo que la solicitud de información de la Casa Blanca indica que la administración Trump se centrará en abandonar los requisitos onerosos y confiar en las empresas privadas para innovar con menos supervisión federal.
“Habrá menos limitaciones en las compañías tecnológicas”, dijo. “Serán libres de innovar en cualquier dirección que deseen”.
El gobierno federal puede equilibrar la seguridad y la innovación de la IA, que con suerte se reflejará en el Plan de Acción de AI, dijo Jason Corso, cofundador de AI Startup Voxel51 y profesor de informática en la Universidad de Michigan.
La población general ya es escéptica de la IA, y si ocurren desafíos generales de crecimiento del desarrollo, corre el riesgo de socavar aún más la confianza en la tecnología, dijo. Es por eso que los marcos de políticas deben crearse con la seguridad de IA en mente, agregó Corso.
Un marco federal que carece de consideraciones de seguridad de IA significa la responsabilidad de las decisiones de seguridad de IA cae a los CIO de la Compañía o los oficiales de IA en los principales, lo que Corso dijo que presenta un “gran riesgo”. El efecto podría ser menos adopción o ROI más lento, dijo.
“Esta IA contemporánea es tan incipiente que a pesar de los rápidos avances que estamos viendo, en realidad se entiende bastante sobre su previsibilidad, repetibilidad o incluso su robustez con ciertos tipos de preguntas o escenarios de razonamiento”, dijo. “Ciertamente necesitamos innovación, pero también necesitamos seguridad”.
Makenzie Holland es un escritor de noticias senior que cubre la gran regulación federal y de la gran tecnología. Antes de unirse a Informa TechTarget, ella era una reportera de asignación general para el Wilmington Starnews y un reportero de crimen y educación en el Wabash Plain Dealer.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.