Connect with us

Noticias

Cómo se puede mejorar la investigación profunda de Chatgpt con 8 características clave

Published

on

La herramienta de investigación profunda de Chatgpt es fantástica para profundizar en casi cualquier tema que elija, pero aún necesita algunas mejoras para ser realmente útiles. Utilizo investigaciones profundas todo el tiempo y creo que sería mucho mejor con estas características adicionales.

1

Parámetros personalizables

Cuando uso la investigación de chatgpt profunda, normalmente respondo preguntas de seguimiento para darle a la herramienta más contexto. Sin embargo, desearía poder usar parámetros personalizables en su lugar.

Imaginaría que esta característica funcione como filtros al comprar en línea. Me encantaría elegir cuántos recursos quiero que se analice ChatGPT, junto con los plazos publicados. Además, sería genial si pudiera buscar en función de diferentes palabras clave.

Los parámetros personalizables mantendrían mi investigación mucho más organizada. Siento que los resultados valdrían la pena el tiempo que lleva a ChatGPT realizar investigaciones profundas también. Hasta que esto suceda, hay al menos formas en que puede obligar a ChatGPT a usar fuentes de alta calidad.

2

Opciones de diseño de investigación

La función de investigación profunda de ChatGPT puede establecer información de múltiples maneras. Por ejemplo, utilizará tablas al comparar estadísticas u otros aspectos. En otros casos, la herramienta establecerá información en subsecciones integrales.

Si bien varias opciones de diseño son buenas, desearía que ChatGPT me permita elegir cómo quiero que presente información. A veces, veo contenido presentado en forma de oración cuando prefiero usar tablas.

A veces uso las indicaciones para pedirle a ChatGPT que presente información en mi formato preferido, pero desafortunadamente, no siempre escucha.

3

Una asignación mensual más grande

Quizás mi mayor queja con la herramienta de investigación profunda de Chatgpt es lo fácil que es usar sus créditos mensuales. Aunque esto está bien para los usuarios casuales, 10 consultas mensuales no son suficientes para las personas que regularmente necesitan realizar una investigación integral. Revisé mis consultas en dos días.

Podía entender diez consultas mensuales para usuarios gratuitos; En estos casos, en realidad creo que sería un buen valor. Sin embargo, como alguien que paga $ 20 por mes por ChatGPT, no puedo evitar sentir que no me dan el mejor servicio posible.

Quedarse sin solicitudes en chatgpt

Por lo menos, creo que 15-20 consultas mensuales son justas para un plan positivo. Aumentaría aún más estas asignaciones para suscripciones de nivel superior. Operai podría incentivar a las personas a registrarse para estos planes al hacerlo, lo que resulta en una mejor experiencia del usuario y un aumento de los ingresos.

4

Una sección separada en chatgpt

Utilizo ChatGPT para múltiples conversaciones, ya sea que esté planeando una nueva parte de mi vida o quiero trabajar a través de mis pensamientos actuales. A medida que creo más chats, la interfaz se vuelve torpe y desorganizada. Molesto, no tengo forma de diferenciar entre conversaciones y discusiones ordinarias en las que he usado investigaciones profundas.

Si bien puedo crear nuevos proyectos a través de la barra lateral, prefiero que ChatGPT organice automáticamente mis conversaciones con una investigación profunda. Esta sería una mejora efectiva para la interfaz de usuario de ChatGPT, y no sería particularmente difícil de implementar.

Incluso si la aplicación no tuviera una sección separada, un diferenciador, como un ícono, sería útil.

5

Integración con GPTS personalizados

Los GPT personalizados son la función más subestimada de ChatGPT. Me encanta lo fácil que son para obtener el tipo de respuesta exacto que estaba buscando, y hay útiles GPT personalizados para todo tipo de intereses. Pero desafortunadamente, actualmente no puede integrarlos con la función de investigación profunda.

Siento que las respuestas serían mucho más precisas si tuvieran el contexto de GPT personalizados. Esto es particularmente cierto, considerando que algunos de mis chats normales tienen múltiples temas.

GPT personalizado como asistente de programación

No sé cómo sería posible porque imagino que los dos programas entrarían en conflicto. Pero si hubiera una manera de integrar investigaciones profundas y GPT personalizados, no veo cómo cualquier otra herramienta de IA podría competir en esta área.

6

La capacidad de dividir el texto en trozos más pequeños

He comparado la investigación profunda de ChatGPT con herramientas similares, como el equivalente de Microsoft Copilot. Cuando se trata de respuestas detalladas, la investigación profunda se encuentra en la cabeza y los hombros por encima de su competencia. Pero al mismo tiempo, a veces veo enormes párrafos una vez que la investigación ha concluido.

Encontrar información de la dieta en Chatgpt Investigación profunda

La lectura de Skim en una pantalla es mucho más difícil que con un libro, y a veces pierdo los puntos clave en la investigación. Cuando esto sucede, la investigación tarda más de lo que debería. Romper el texto en trozos más pequeños sería una solución simple pero efectiva.

Si todo el texto es realmente importante, ChatGPT podría dividirlo en más subsecciones. De esa manera, podría identificar la información más esencial fácilmente.

7

La opción de excluir sitios web específicos

La información inexacta es uno de los muchos grandes problemas con ChatGPT, y lamentablemente, esto se extiende a la función de investigación profunda. Puedo examinar ciertos sitios web al investigar a través de motores de búsqueda, pero este no es el caso cuando se utiliza una investigación profunda, lo que significa que debo tener mucho cuidado para verificar los recursos.

He visto características similares en otros tipos de aplicaciones, como bloqueadores de sitios web. La forma en que veo esto, los usuarios podrían ingresar a la URL para excluir un sitio de la búsqueda. Me imagino que esto aumentaría el tiempo que lleva completar estas tareas, pero sería un gran éxito.

8

Audio

ChatGPT tiene algunas características de voz geniales, pero ninguna se aplica a una investigación profunda. Tengo que escribir indicaciones de texto y recibo respuestas escritas. Si bien normalmente estoy contento con estas búsquedas, a veces me gustaría usar audio.

Cambiar la voz del altavoz en el modo de voz en chatgpt.

Además de hablar por una investigación profunda, agradecería las respuestas escritas. Me encantaría que la herramienta me cuente sobre sus hallazgos y proporcione una transcripción más tarde. Esto sería interactivo y beneficioso para las personas que aprenden mejor a través de la escucha que la lectura.

Operai inevitablemente agregará nuevas características a la herramienta de investigación profunda de ChatGPT a su debido tiempo, y creo que debería priorizar algunas adiciones simples pero efectivas. Los parámetros personalizables conducirían a hallazgos más precisos, y tener más control sobre el diseño de información también sería bueno.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Una nueva estrategia de Google AI podría interrumpir el dominio de Openai

Published

on

Hay tantos trabajos de investigación de IA en estos días que es difícil destacarse. Pero un artículo ha programado mucha discusión en toda la industria tecnológica en los últimos días.

“Esto es lo más inspirador que he leído en IA en los últimos dos años”, escribió el fundador de inicio Suhail Doshi en X este fin de semana. Jack Clark, cofundador de Anthrope, presentó el periódico en la edición del lunes de su boletín de importación AI, que es leída de cerca por miles de investigadores de la industria.

Escrito por el investigador de Google David Silver y el científico informático canadiense Rich Sutton, el documento anuncia audazmente una nueva era de AI.

Los autores identifican dos épocas de IA modernas anteriores. El primero fue personificado por Alphago, un modelo de Google AI que aprendió a jugar el juego de mesa “Go” mejor que los humanos en 2015. El segundo es el que estamos en este momento, definido por ChatGPT de Opensei.

Silver y Sutton dicen que ahora estamos entrando en un nuevo período llamado “La era de la experiencia”.


Un gráfico del trabajo de investigación "Bienvenido a la era de la experiencia, 'por David Silver y Richard Sutton

Un gráfico del documento de investigación “Bienvenido a la Era of Experience”, de David Silver y Richard Sutton

David Silver, Richard Sutton



Para mí, esto representa un nuevo intento de Google de abordar uno de los problemas más persistentes de la IA, la escasez de datos de entrenamiento, al tiempo que va más allá de un enfoque tecnológico que OpenAi básicamente ganó.

La era de la simulación

Comencemos con la primera época, que, según los autores, era la “era de la simulación”.

En este período, aproximadamente a mediados de la década de 2010, los investigadores utilizaron simulaciones digitales para que los modelos de IA jueguen repetidamente para aprender a actuar como humanos. Estamos hablando de millones y millones de juegos, como ajedrez, póker, atari y “gran turismo”, jugados una y otra vez, con recompensas colgadas por buenos resultados, enseñando así a las máquinas lo que es bueno versus malo e incentivándolos para seguir mejor estrategias.

Este método de aprendizaje de refuerzo, o RL, produjo Alphago de Google. Y también ayudó a crear otro modelo de Google llamado Alphazero, que descubrió nuevas estrategias para el ajedrez y “ir”, y cambió la forma en que los humanos juegan estos juegos.

El problema con este enfoque: las máquinas entrenadas de esta manera funcionaban bien en problemas específicos con recompensas definidas con precisión, pero no podían abordar problemas más generales y abiertos con pagos vagos, según los autores. Entonces, probablemente no sea realmente completo.

La era de los datos humanos

La siguiente área fue lanzada por otro artículo de investigación de Google publicado en 2017. “La atención es todo lo que necesita” propuesta que los modelos de IA deben ser entrenados en montañas de datos creados por humanos de Internet. Simplemente permitiendo que las máquinas presten “atención” a toda esta información, aprenderían a comportarse como los humanos y desempeñarse tan bien como nosotros en una amplia variedad de tareas diferentes.

Esta es la era en la que estamos ahora, y ha producido ChatGPT y la mayoría de los otros potentes modelos y herramientas de IA generativos que se utilizan cada vez más para automatizar tareas como el diseño gráfico, la creación de contenido y la codificación de software.

La clave de esta época ha sido acumular la mayor calidad posible de datos generados por los humanos, y usar eso en el entrenamiento masivo y intensivo de cómputo se extiende a los modelos IMBue AI con una comprensión del mundo.

Mientras que los investigadores de Google iniciaron esta era de datos humanos, la mayoría de estas personas abandonaron la empresa y comenzaron sus propias cosas. Muchos fueron a OpenAI y trabajaron en tecnología que Ultimate produjo ChatGPT, que es, con mucho, el producto de IA generativo más exitoso de la historia. Otros comenzaron Anthrope, otra startup de IA generativa líder que ejecuta Claude, un poderoso agente de chatbot y IA.

¿Un google dis?

Muchos expertos en la industria de la IA, y algunos inversores y analistas en Wall Street, piensan que Google puede haber dejado caer la pelota aquí. Se le ocurrió este enfoque de IA, pero OpenAi y Chatgpt se han escapado con la mayoría de los botines hasta ahora.

Creo que el jurado todavía está fuera. Sin embargo, no puede evitar pensar en esta situación cuando los autores parecen estar disgustando la era de los datos humanos.

“Se podría argumentar que el cambio en el paradigma ha tirado al bebé con el agua del baño”, escribieron. “Si bien RL centrado en el ser humano ha permitido una amplitud de comportamientos sin precedentes, también ha impuesto un nuevo techo al rendimiento del agente: los agentes no pueden ir más allá del conocimiento humano existente”.

Silver y Sutton tienen razón sobre un aspecto de esto. La oferta de datos humanos de alta calidad ha sido superado por la demanda insaciable de los laboratorios de IA y las grandes compañías tecnológicas que necesitan contenido fresco para capacitar nuevos modelos y hacer avanzar sus habilidades. Como escribí el año pasado, se ha vuelto mucho más difícil y más costoso hacer grandes saltos en la frontera de IA.

La era de la experiencia

Los autores tienen una solución bastante radical para esto, y está en el corazón de la nueva era de la experiencia que proponen en este documento.

Sugieren que los modelos y los agentes deberían salir y crear sus propios datos nuevos a través de interacciones con el mundo real.

Esto resolverá el problema de suministro de datos persistente, argumentan, mientras ayudan al campo a alcanzar AGI, o inteligencia general artificial, un santo grial técnico donde las máquinas superan a los humanos en la mayoría de las actividades útiles.

“En última instancia, los datos experimentales eclipsarán la escala y la calidad de los datos generados por los humanos”, escriben Silver y Sutton. “Este cambio de paradigma, acompañado de avances algorítmicos en RL, desbloqueará en muchos dominios nuevas capacidades que superan a las que poseen cualquier humano”.

Cualquier padre moderno puede pensar en esto como el equivalente a decirle a su hijo que salga del sofá, deje de mirar su teléfono y salga afuera y juegue con sus amigos. Hay experiencias mucho más ricas, satisfactorias y más valiosas para aprender.

Clark, el cofundador antrópico, quedó impresionado por la chutzpah de esta propuesta.

“Documentos como este son emblemáticos de la confianza que se encuentra en la industria de la IA”, escribió en su boletín el lunes, citando “el sentido común de dar a estos agentes la independencia y la latitud suficientes para que puedan interactuar con el mundo y generar sus propios datos”.

Ejemplos y un posible disco final

Los autores flotan algunos ejemplos teóricos de cómo esto podría funcionar en la nueva era de la experiencia.

Un asistente de salud de IA podría fundamentar los objetivos de salud de una persona en una recompensa basada en una combinación de señales como su frecuencia cardíaca en reposo, duración del sueño y niveles de actividad. (Una recompensa en la IA es una forma común de incentivar a los modelos y agentes para que funcionen mejor. Al igual que podrías molestar a tu pareja para hacer más ejercicio diciendo que se fortalecerán y se verán mejor si van al gimnasio).

Un asistente educativo podría usar los resultados del examen para proporcionar un incentivo o recompensa, basado en una recompensa fundamentada por el aprendizaje de idiomas de un usuario.

Un agente científico con el objetivo de reducir el calentamiento global podría usar una recompensa basada en observaciones empíricas de los niveles de dióxido de carbono, sugiere Silver y Sutton.

En cierto modo, este es un retorno a la era anterior de simulación, que Google podría liderar. Excepto esta vez, los modelos y agentes de IA están aprendiendo del mundo real y recopilando sus propios datos, en lugar de existir en un videojuego u otro ámbito digital.

La clave es que, a diferencia de la era de los datos humanos, puede no haber límite para la información que se puede generar y recopilar para esta nueva fase de desarrollo de IA.

En nuestro período de datos humanos actuales, se perdió algo, argumentan los autores: la capacidad de un agente para autodescubrir su propio conocimiento.

“Sin esta base, un agente, sin importar cuán sofisticado, se convertirá en una cámara de eco del conocimiento humano existente”, escribieron Silver y Sutton, en una posible final final para OpenAi.