Connect with us

Noticias

Cómo simplificar la extracción de datos web con chatgpt

Published

on

Seré honesto: he pasado más horas de las que me gustaría admitir copiar y pegar datos de los sitios web en hojas de cálculo. Si trabaja en ventas, operaciones o casi cualquier función comercial que se basa en los datos web, probablemente conozca la sensación: su mano del mouse comienza a calmar, sus ojos se acristan y se pregunta si hay una mejor manera. Spoiler: hay. Y gracias al surgimiento de la IA, nunca ha sido más fácil para las personas no técnicas automatizar la extracción de datos web y recuperar su tiempo.

Las estadísticas recientes muestran que el empleado promedio de oficinas gasta aproximadamente el 10% de su semana laboral en la entrada de datos manuales, con algunos equipos acumulando más de un millón de acciones de copia al año. Eso no es solo tedioso, es costoso, y se enfoca en el trabajo que realmente mueve la aguja. Entonces, en esta publicación, me estoy sumergiendo en tres métodos prácticos con extracción de datos web: utilizando un raspador web de IA como TruenoDatos de disputas con las habilidades de copia de chatgpt y dejar que Chatgpt escriba scripts de Python para usted. Desglosaré los pros, los contras y los mejores casos de uso para cada uno, por lo que finalmente puede dejar de ahogarse en tareas repetitivas y comenzar a hacer que sus datos funcionen para usted.

¿Qué es la extracción de datos web y por qué usar IA?

Vamos a mantenerlo simple: extracción de datos web (o el raspado web) es solo el proceso de obtener información de los sitios web y convertirla en un formato estructurado: piense en filas en una hoja de cálculo o en una base de datos agradable y ordenada. En lugar de leer una página web y anotar precios, nombres de productos o información de contacto a mano, utiliza una herramienta (o un poco de código) para automatizar el proceso. Es como tener un asistente digital que nunca se aburra o se distraiga.

Pero aquí está la captura: las herramientas de raspado web tradicionales a menudo requieren que te metas con HTML, configure reglas complicadas o incluso de código de escritura. Esa es una gran barrera si no eres un desarrollador. Ingresar Raspadores web ai y chatbots como chatgpt. Estas herramientas utilizan el procesamiento del lenguaje natural y el aprendizaje automático para “leer” las páginas web como lo harían un humano. Puede decirles lo que quiere: “Tome todos los nombres y precios del producto”, y la IA descubre el resto. Sin codificación, sin dolores de cabeza selectores, solo extracción de datos rápida y flexible que se adapte incluso cuando los sitios web cambian sus diseños (lea más sobre los conceptos básicos aquí).

Tres formas de simplificar la extracción de datos web con AI

Después de años de lucha libre con hojas de cálculo y pestañas de navegador, he reducido los tres enfoques principales que realmente funcionan para usuarios comerciales reales:

  1. Herramientas de raspador web de IA
  2. Copiar pete con chatgpt
  3. Scripts de Python generados por chatgpt

Desglosemos cómo funciona cada uno, para quién son los mejores y qué puede esperar.

1. Uso de una herramienta de raspador web de IA

Soy un gran fanático de las herramientas que solo funcionan, y Thunderbit está diseñado para personas que desean resultados sin los dolores de cabeza tecnológicos. Así es como funciona:

  • Instalar el Extensión de cromo.
  • Dirígete al sitio web que quieres raspar.
  • Haga clic en “AI Sugerir Fields”: la IA de Thunderbit lee la página y sugiere las columnas más relevantes (como “nombre”, “precio”, “calificación”).
  • Golpea “Raspe”. El agente de IA toma los datos, incluso siguiendo enlaces a subpáginas o manejo de la paginación si es necesario.
  • Exporte sus resultados directamente a Excel, Google Sheets, AirTable, noción o CSV, sin pasos adicionales, sin costo adicional.

Lo que hace que Thunderbit se destaque es cómo maneja las cosas difíciles: raspado de subpágina (piense en los detalles del producto que requieren hacer clic), extraer datos de PDF o imágenes, e incluso resumir o traducir contenido en la mosca. Es como tener un pasante digital que nunca pide un descanso para tomar un café.

¿Para quién es? Los equipos de ventas que construyen listas de leads, gerentes de comercio electrónico que rastrean a los competidores, agentes de bienes raíces que agregan listados y cualquier persona que desee datos estructurados sin escribir una línea de código. También es un salvavidas para los equipos que necesitan raspar los mismos sitios regularmente: Thunderbit puede incluso programar los rasguños para ejecutarse automáticamente.

Para obtener más información sobre cómo trabaja Thunderbit en la práctica, consulte nuestra inmersión profunda: cómo raspar cualquier sitio web usando AI.

2. Copia Paste con chatgpt para extracción de datos web

A veces, solo necesitas una victoria rápida. Ahí es donde entran las potencias de copia de chatgpt. Aquí está el flujo de trabajo:

  • Copie manualmente el contenido que necesita de un sitio web (como una tabla o lista).
  • Pételo en ChatGPT y solicítelo: “Extraiga el nombre, la dirección y el número de teléfono de la empresa para cada entrada y formatearlo como una tabla”.
  • ChatGPT escupe una mesa estructurada, JSON, o cualquier formato que solicite.

Este método es simple, sin configuración, sin codificación, solo usted, su mouse y chatgpt. Es perfecto para tareas únicas o trabajos pequeños donde configurar un raspador completo se siente como exagerado.

Pero hay algunas grandes limitaciones:

  • Todavía estás haciendo el trabajo pesado copiando y pegando, por lo que no escala para grandes trabajos.
  • ChatGPT solo puede manejar tanto texto a la vez: las páginas o conjuntos de datos grandes pueden necesitar romperse en trozos.
  • La IA podría perder o malinterpretar algunos datos, especialmente si el formato es desordenado o el aviso no está claro.
  • Y, por supuesto, ChatGPT no puede obtener páginas web por URL por sí sola (a menos que esté utilizando complementos o herramientas de desarrollador).

En resumen: ideal para extracciones rápidas y ad-hoc, pero no un reemplazo para un raspador web real si necesita procesar muchas páginas o automatizar el proceso.

3. Escribir scripts de Python para extracción de datos web con chatgpt

Si eres un poco más aventurero (o tienes un amigo desarrollador en Speed ​​Dial), puedes usar CHATGPT para generar scripts de Python personalizados para el raspado web. Así es como suele ser:

  • Describa lo que quiera: “Escriba un script de Python para raspar los nombres y precios de los productos de la primera página de este sitio de comercio electrónico utilizando Beautifulsoup”.
  • ChatGPT escribe el código para usted, a menudo usando bibliotecas como solicitudes y Beautifulsoup.
  • Copia el código en su entorno Python, instala las bibliotecas necesarias y lo ejecuta.
  • Si no funciona perfectamente, puede pedirle a CHATGPT que debuge o ajuste el guión.

Este enfoque le brinda la máxima flexibilidad: puede raspar múltiples páginas, manejar inicios de sesión o integrar el script con sus propias bases de datos o flujos de trabajo. Pero requiere una comodidad técnica: necesitará configurar Python, instalar paquetes y manejar cualquier error que aparezca. Y si el sitio web cambia su estructura, deberá actualizar el script (con la ayuda de ChatGPT, por supuesto).

Para usuarios no técnicos, esto puede ser un poco desalentador. Pero para los usuarios avanzados o equipos con soporte de TI, es una forma de construir exactamente lo que necesita, no más, nada menos.

Mi opinión:

  • Trueno es la opción para los usuarios comerciales que desean ahorrar tiempo, evitar dolores de cabeza técnicos y obtener datos estructurados rápidamente.
  • Chatgpt copy-pet es perfecto para extracciones rápidas y únicas cuando no desea configurar nada nuevo.
  • Scripts generados por chatgpt son los mejores para los usuarios expertos en tecnología que necesitan automatización personalizada y no tienen miedo de ensuciarse un poco las manos.

Control de clave: elegir el enfoque correcto de extracción de datos web de IA

Si estás cansado de los maratones de copia, AI es tu nuevo mejor amigo. Esto es lo que he aprendido (a veces de la manera difícil):

  • AI Web Scrapers como Thunderbit Ofrezca la solución más fácil y escalable para usuarios no técnicos: solo punto, clic y exportación. Son ideales para equipos de ventas, marketing, comercio electrónico y operaciones que necesitan datos confiables sin el alboroto.
  • Método de copia de chatgpt es un atajo útil para pequeñas tareas ad-hoc, pero no está construido para trabajos a granel o automatización.
  • Dejar que chatgpt escriba scripts de python Le brinda control total y automatización, pero necesitará algunas chuletas de codificación (o una voluntad de aprender).

No importa qué ruta tome, el objetivo es el mismo: pasar menos tiempo disputando datos y más tiempo usándolo para impulsar su negocio.

Entonces, la próxima vez que te atrapes en un bucle de copia, recuerda: hay una manera más inteligente. Y tus manos (y tu cordura) te lo agradecerán.

Este artículo fue escrito en cooperación con Thunderbit



Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Vista previa de Google I/O 2025: Gemini AI, Android XR y todo lo demás para esperar

Published

on

Cuando el CEO de Google, Sundar Pichai, suba al escenario en la Conferencia de desarrolladores de Google I/O 2025 la próxima semana para entregar sus comentarios de apertura, espere que dos cartas dominen la discusión: la IA.

La inteligencia artificial se ocupa de gran parte del enfoque en Google en estos días, con características de IA que llegan a través de múltiples productos, proyectos centrados en la IA que capturan gran parte de la atención y predicciones del público sobre el futuro de la IA que asume muchos de los pronunciamientos públicos de la compañía.

Continue Reading

Noticias

AI generativa: todo para saber sobre la tecnología detrás de chatbots como chatgpt

Published

on

Ya sea que se dé cuenta o no, la inteligencia artificial está en todas partes. Se encuentra detrás de los chatbots con los que hablas en línea, las listas de reproducción que transmites y los anuncios personalizados que aparecen en tu desplazamiento. Y ahora está tomando una personalidad más pública. Piense en Meta AI, que ahora está integrado en aplicaciones como Facebook, Messenger y WhatsApp; o Géminis de Google, trabajando en segundo plano en las plataformas de la compañía; o Apple Intelligence, lanzando a través de iPhones ahora.

AI tiene una larga historia, volviendo a una conferencia en Dartmouth en 1956 que primero discutió la inteligencia artificial como una cosa. Los hitos en el camino incluyen Eliza, esencialmente el primer chatbot, desarrollado en 1964 por el informático del MIT Joseph Weizenbaum y, saltando 40 años, cuando la función de autocompleta de Google apareció por primera vez en 2004.

Luego llegó 2022 y el ascenso de Chatgpt a la fama. Los desarrollos generativos de IA y los lanzamientos de productos se han acelerado rápidamente desde entonces, incluidos Google Bard (ahora Gemini), Microsoft Copilot, IBM Watsonx.ai y los modelos de LLAMA de código abierto de Meta.

Desglosemos qué es la IA generativa, cómo difiere de la inteligencia artificial “regular” y si la Generación AI puede estar a la altura de las expectativas.

IA generativa en pocas palabras

En esencia, la IA generativa se refiere a sistemas de inteligencia artificial que están diseñados para producir un nuevo contenido basado en patrones y datos que han aprendido. En lugar de solo analizar números o predecir tendencias, estos sistemas generan salidas creativas como texto, música de imágenes, videos y código de software.

Algunas de las herramientas de IA generativas más populares en el mercado incluyen:

El principal entre sus habilidades, ChatGPT puede crear conversaciones o ensayos similares a los humanos basados ​​en algunas indicaciones simples. Dall-E y MidJourney crean obras de arte detalladas a partir de una breve descripción, mientras que Adobe Firefly se centra en la edición y el diseño de imágenes.

Imagen generada por chatgpt de una ardilla con ojos grandes sosteniendo una bellota

Chatgpt / captura de pantalla por cnet

Ai eso no es generativo

No toda la IA es generativa. Si bien Gen AI se enfoca en crear contenido nuevo, la IA tradicional se destaca por analizar datos y hacer predicciones. Esto incluye tecnologías como el reconocimiento de imágenes y el texto predictivo. También se usa para soluciones novedosas en:

  • Ciencia
  • Diagnóstico médico
  • Pronóstico del tiempo
  • Detección de fraude
  • Análisis financiero para pronósticos e informes

La IA que venció a los grandes campeones humanos en el ajedrez y el juego de mesa no fue una IA generativa.

Es posible que estos sistemas no sean tan llamativos como la Generación AI, pero la inteligencia artificial clásica es una gran parte de la tecnología en la que confiamos todos los días.

¿Cómo funciona Gen AI?

Detrás de la magia de la IA generativa hay modelos de idiomas grandes y técnicas avanzadas de aprendizaje automático. Estos sistemas están capacitados en grandes cantidades de datos, como bibliotecas completas de libros, millones de imágenes, años de música grabada y datos raspados de Internet.

Los desarrolladores de IA, desde gigantes tecnológicos hasta nuevas empresas, son conscientes de que la IA es tan buena como los datos que lo alimenta. Si se alimenta de datos de baja calidad, la IA puede producir resultados sesgados. Es algo con lo que incluso los jugadores más grandes en el campo, como Google, no han sido inmunes.

La IA aprende patrones, relaciones y estructuras dentro de estos datos durante el entrenamiento. Luego, cuando se le solicita, aplica ese conocimiento para generar algo nuevo. Por ejemplo, si le pide a una herramienta Gen AI que escriba un poema sobre el océano, no solo extrae versos preescritos de una base de datos. En cambio, está usando lo que aprendió sobre la poesía, los océanos y la estructura del lenguaje para crear una pieza completamente original.

Un poema de 12 líneas llamado The Ocean's Whisper

Chatgpt / captura de pantalla por cnet

Es impresionante, pero no es perfecto. A veces los resultados pueden sentirse un poco apagados. Tal vez la IA malinterpreta su solicitud, o se vuelve demasiado creativo de una manera que no esperaba. Puede proporcionar con confianza información completamente falsa, y depende de usted verificarla. Esas peculiaridades, a menudo llamadas alucinaciones, son parte de lo que hace que la IA generativa sea fascinante y frustrante.

Las capacidades generativas de IA están creciendo. Ahora puede comprender múltiples tipos de datos combinando tecnologías como el aprendizaje automático, el procesamiento del lenguaje natural y la visión por computadora. El resultado se llama IA multimodal que puede integrar alguna combinación de texto, imágenes, video y habla dentro de un solo marco, ofreciendo respuestas más contextualmente relevantes y precisas. El modo de voz avanzado de ChatGPT es un ejemplo, al igual que el proyecto Astra de Google.

Desafíos con IA generativa

No hay escasez de herramientas de IA generativas, cada una con su talento único. Estas herramientas han provocado la creatividad, pero también han planteado muchas preguntas además del sesgo y las alucinaciones, como, ¿quién posee los derechos del contenido generado por IA? O qué material es un juego justo o fuera de los límites para que las compañías de IA los usen para capacitar a sus modelos de idiomas; vea, por ejemplo, la demanda del New York Times contra Openai y Microsoft.

Otras preocupaciones, no son asuntos pequeños, implican privacidad, responsabilidad en la IA, los profundos profundos generados por IA y el desplazamiento laboral.

“Escribir, animación, fotografía, ilustración, diseño gráfico: las herramientas de IA ahora pueden manejar todo eso con una facilidad sorprendente. Pero eso no significa que estos roles desaparezcan. Simplemente puede significar que los creativos deberán mejorar y usar estas herramientas para amplificar su propio trabajo”, Fang Liu, profesor de la Universidad de Notre Dame Dame y Coeditor-Chief de las transacciones de ACM en las transacciones de Probabilista, contó el aprendizaje en el poderoso de la máquina probabilística, le dijo a Cetnet.

“También ofrece una forma para las personas que tal vez carecen de la habilidad, como alguien con una visión clara que no puede dibujar, pero que puede describirlo a través de un aviso. Así que no, no creo que interrumpa a la industria creativa. Con suerte, será una co-creación o un aumento, no un reemplazo”.

Otro problema es el impacto en el medio ambiente porque la capacitación de grandes modelos de IA utiliza mucha energía, lo que lleva a grandes huellas de carbono. El rápido ascenso de la Generación AI en los últimos años ha acelerado las preocupaciones sobre los riesgos de la IA en general. Los gobiernos están aumentando las regulaciones de IA para garantizar el desarrollo responsable y ético, especialmente la Ley de IA de la Unión Europea.

Recepción de IA generativa

Muchas personas han interactuado con los chatbots en el servicio al cliente o han utilizado asistentes virtuales como Siri, Alexa y Google Assistant, que ahora están en la cúspide de convertirse en Gen AI Power Tools. Todo eso, junto con las aplicaciones para ChatGPT, Claude y otras herramientas nuevas, es poner ai en sus manos. Y la reacción pública a la IA generativa se ha mezclado. Muchos usuarios disfrutan de la conveniencia y la creatividad que ofrece, especialmente para cosas como escribir ayuda, creación de imágenes, soporte de tareas y productividad.

Mientras tanto, en la encuesta global de IA 2024 de McKinsey, el 65% de los encuestados dijo que sus organizaciones usan regularmente IA generativa, casi el doble de la cifra reportada solo 10 meses antes. Industrias como la atención médica y las finanzas están utilizando Gen AI para racionalizar las operaciones comerciales y automatizar tareas mundanas.

Como se mencionó, existen preocupaciones obvias sobre la ética, la transparencia, la pérdida de empleos y el potencial del mal uso de los datos personales. Esas son las principales críticas detrás de la resistencia a aceptar la IA generativa.

Y las personas que usan herramientas de IA generativas también encontrarán que los resultados aún no son lo suficientemente buenos para el tiempo. A pesar de los avances tecnológicos, la mayoría de las personas pueden reconocer si el contenido se ha creado utilizando Gen AI, ya sean artículos, imágenes o música.

AI ha secuestrado ciertas frases que siempre he usado, por lo que debo autocorrectar mi escritura a menudo porque puede parecer una IA. Muchos artículos escritos por AI contienen frases como “en la era de”, o todo es un “testimonio de” o un “tapiz de”. La IA carece de la emoción y la experiencia que viene, bueno, ser una vida humana y viviente. Como explicó un artista en Quora, “lo que AI hace no es lo mismo que el arte que evoluciona de un pensamiento en un cerebro humano” y “no se crea a partir de la pasión que se encuentra en un corazón humano”.

AI generativa: vida cotidiana

La IA generativa no es solo para técnicos o personas creativas. Una vez que obtienes la habilidad de darle indicaciones, tiene el potencial de hacer gran parte del trabajo preliminar por ti en una variedad de tareas diarias.

Digamos que está planeando un viaje. En lugar de desplazarse por páginas de resultados de búsqueda, le pide a un chatbot que planifique su itinerario. En cuestión de segundos, tiene un plan detallado adaptado a sus preferencias. (Ese es el ideal. Por favor, verifique siempre sus recomendaciones).

Un propietario de una pequeña empresa que necesita una campaña de marketing pero que no tiene un equipo de diseño puede usar una IA generativa para crear imágenes llamativas e incluso pedirle que sugiera copia publicitaria.

Un itinerario de viaje para Nueva Orleans, creado por chatgpt

Chatgpt / captura de pantalla por cnet

Gen Ai está aquí para quedarse

No ha habido un avance tecnológico que haya causado tal boom desde Internet y, más tarde, el iPhone. A pesar de sus desafíos, la IA generativa es innegablemente transformadora. Está haciendo que la creatividad sea más accesible, ayudando a las empresas a racionalizar los flujos de trabajo e incluso inspirar formas completamente nuevas de pensar y resolver problemas.

Pero quizás lo más emocionante es su potencial, y estamos rascando la superficie de lo que estas herramientas pueden hacer.

Preguntas frecuentes

¿Cuál es un ejemplo de IA generativa?

ChatGPT es probablemente el ejemplo más popular de IA generativa. Le das un aviso y puede generar texto e imágenes; Código de escritura; Responder preguntas; resumir el texto; borrador de correos electrónicos; y mucho más.

¿Cuál es la diferencia entre la IA y la IA generativa?

La IA generativa crea contenido nuevo como texto, imágenes o música, mientras que la IA tradicional analiza los datos, reconoce patrones o imágenes y hace predicciones (por ejemplo, en medicina, ciencia y finanzas).

Continue Reading

Noticias

Probé 5 sitios gratuitos de ‘chatgpt clon’ – no intentes esto en casa

Published

on

Si busca “CHATGPT” en su navegador, es probable que se tope en sitios web que parecen estar alimentados por OpenAI, pero no lo son. Uno de esos sitios, chat.chatbotapp.ai, ofrece acceso a “GPT-3.5” de forma gratuita y utiliza marca familiar.

Pero aquí está la cosa: no está dirigida por OpenAi. Y, francamente, ¿por qué usar un GPT-3.5 potencialmente falso cuando puedes usar GPT-4O de forma gratuita en el actual ¿Sitio de chatgpt?

Continue Reading

Trending