Google Veo 2 vs OpenAI Sora – which AI video tool comes out top?
getty
It’s impossible to scroll through social media or attend any technology conference without encountering the dramatic shift happening in video production. Text-to-video AI has arrived, and the titans of tech are racing to bring their versions to market. At the forefront of this revolution are two powerhouse tools–OpenAI’s Sora (released in the UK and EU just this Friday) and Google’s Veo 2—each representing vastly different visions for the future of digital content creation. The implications for industries from fashion to gaming, advertising to independent filmmaking are profound and immediate.
Sora vs Veo 2: Two Visions for AI-Generated Video
Since both tools are relatively new to the market, certainly with UK and EU audiences, I spoke to three different expert users who have had early access to these tools for a number of months to tell me about their experiences with them and to compare and contrast their relative merits and features. My key takeaway is that the battle between Sora and Veo 2 isn’t just about technical specs—it’s a clash of philosophies. One aims to replicate reality, the other to transcend it. These tools represent a pivotal moment where the barriers between imagination and execution are dissolving at an unprecedented rate.
The contrast between Sora and Veo 2 represents more than just competing products—it embodies divergent philosophies about what matters most in creative tools. OpenAI has prioritized user interface and control, while Google has focused on output quality and physics simulation.
“Sora has a huge advantage, because they put a lot of work into the interface and the user interface,” explains David Sheldrick, founder at PS Productions and Sheldrick.ai, who is an early tester of both platforms. “Veo 2, even though the rendering output quality is obviously incredible…Sora itself, when you go on the website, feels way more like a real, sort of refined product.”
This distinction becomes immediately apparent to users encountering both platforms. Sora offers a comprehensive suite of creator-friendly features—timelines, keyframing, and editing capabilities that feel familiar to anyone with video production experience. It prioritizes creative control and workflow integration over raw technical performance.
OpenAI’s Sora video model launch caused a lot of excitement
Future Publishing via Getty Images
Leo Kadieff, Gen AI Lead Artist at Wolf Games, a studio pioneering AI-driven gaming experiences, has also had early access to both platforms and describes Veo 2 as “phenomenal, with web access, and API access which enables much more experimental stuff. It’s really the number one tool”. His enthusiasm for Veo 2’s capabilities stems from its exceptional output quality and physics modeling, even if the interface isn’t as polished as Sora’s.
This reflects a key question for creative tools: is it better to provide a familiar, robust interface or to focus on generating the highest quality outputs possible? The answer, as is often the case with emerging technologies, depends entirely on what you’re trying to create.
Technical Strengths: Physics, Consistency and Hallucinations
The real-world performance of these tools reveals their distinct technical approaches. Sora impresses with its cinematic quality and extended duration capabilities, while Veo 2 excels at physics simulation and consistency.
“The image quality is pretty damn good,” notes Sheldrick about Veo 2, while adding that “Sora already has nailed photo realism. It’s got this image fidelity, which is super, super high.” Both platforms are clearly pushing the boundaries of what’s possible, but they handle technical challenges differently.
One particularly revealing area is how each platform deals with the “hallucinations” inherent to AI generation—those moments when the physics or continuity breaks down in unexpected ways.
Kadieff explains the difference vividly: “When Veo 2 hallucinates, it just clips to kind of like a similar set that it has in its memory, but you might lose, like, consistency, or you might get a whole different, weird angle. So, for example, if you make a drone shot flying over a location, and it’s like 10 seconds, it will do five seconds perfectly, and then it’s going to clip to some rainforest”.
Bilawal Sidhu, a creative technologist and AI/VFX creator on YouTube and other platforms, with over a decade of experience, doesn’t mince words about Sora’s limitations: “the physics are completely borked, like, absolutely horrendous”. He explains that while Sora offers longer duration videos (10-15 seconds), its physical simulation often falls short, particularly with human movement and interactions.
Speaking on his YouTube channel, Sidhu declares, “Nothing comes close to what Google Deep Mind has dropped… Veo 2 now speaks cinematographer. You can ask for a low angle tracking shot 18 mm lens and put a bunch of detail in there and it will understand what you mean. You just ask it with terms you already know… I feel like Sora doesn’t really follow your instructions. Sora definitely does pretty well at times, but in general it tends to be really bad at physics.”
Behind every AI video generator lies mountains of training data that shapes what each tool excels at creating. Hypothesising why the physics outputs of Veo 2 are superior in the video outputs, he states, “Google owns YouTube, and so even if you pull out a bunch of the copyrighted stuff, that still leaves a massive corpus compared to what anyone else has to train on.”
The battle for training data supremacy extends beyond quantity to quality and diversity. OpenAI has remained relatively secretive about Sora’s full training dataset, raising questions about potential biases and limitations.
For commercial applications where physical accuracy is non-negotiable, this distinction matters enormously. Video quality and physical realism are essential for products that need to be represented accurately, highlighting why industries with strict visual requirements might lean toward Veo 2 despite its more limited interface.
Sora vs Veo 2: Prompt Control and Generation Quality
By coming out first, Sora had a first-mover advantage of sorts, but it also set the bar for other models to work towards—and then transcend. Sidhu was very impressed when he first saw the outputs: “watching the first Sora video, the underwater diver discovering like a crashed spaceship underwater, if you remember that video, that blew my mind, because I feel like Sora showed us that you could cross this chasm of quality with video content that we just hadn’t seen.”
Explaining more of the positives for Sora, Sidhu adds, “Sora is very powerful. Their user experience is far better than their actual quality. They’ve got this like storyboard editor view, where you can basically lay out prompts on a timeline—you can outline, hey, I want a character to enter, the scene from the left, walk down and sit down on this table over here, and then at this point in time, I want somebody else to walk up and suddenly get their attention.”
The ability to translate text prompts into intended visuals varies significantly between platforms. Veo 2 appears to be winning the battle for prompt adherence—the ability to faithfully translate textual descriptions into corresponding visuals.
“Veo 2 is very good at prompt adherence, you can give very long prompts, and it’ll kind of condition the generation to encapsulate all the things that you asked for,” Sidhu explains, expressing genuine surprise at Veo 2’s capabilities. “Like Runway and Luma, and pretty much anything that you’ve used out there, the hit rate is very bad… for Veo 2, it is by far the best. It’s like, kind of insane, how good it is”.
This predictability and control fundamentally changes the user experience. Rather than treating AI video generation as a slot machine where creators must roll repeatedly hoping for a usable result, Veo 2 provides more consistent, controlled outputs—particularly valuable for commercial applications with specific requirements.
Consistency extends beyond single clips as well. Sidhu notes that “the four clips you get [as an output from Veo 2], you put in a text prompts, as long as you want them to be, and with a very detailed text prompt, you get very close to character consistency too”, allowing for multi-clip productions featuring the same characters and settings without dramatic variations.
Kadieff is also a huge fan of Veo 2’s generation quality: “”Veo 2 has generally been trained on very good, cinematic content. So almost like all the shots you do with it feel super cinematic, and the animation quality is phenomenal.”
Beyond this, the resolution quality of Veo 2’s outputs is also a cause for celebration, as Sidhu states, “this model can natively output 4K. If you used any other video generation tool, Sora, Luma, whatever it is, you end up exporting your clips into some other upscaling tool whether that’s Krea or Topaz, what have you — this model can do 4K natively, that’s amazing.”
Industry Applications: From Fashion to Gaming
Different industries are discovering unique applications for these tools, with their specific requirements guiding platform selection. Fashion brands prize consistency and physical accuracy, while gaming and entertainment often value creative flexibility and surrealism.
“What I’m really excited about is not just the ability, indies are going to be able to rival the outputs of studios, but studios are going to set whole new standards,” says Sidhu. “But then also, these tools are changing the nature of content itself, like we’re moving into this era of just-in-time disposable content.”
For fashion and retail, the ability to quickly generate variations of a single concept represents enormous value. Creating multiple versions of product videos tailored to different markets is now possible without the expense of multiple production shoots.
Meanwhile, gaming and entertainment applications embrace different capabilities. Kadieff describes how AI is transforming creative approaches: “The intersection of art, games and films, is not just about games and films anymore – it’s about hybrid experiences”. This represents a fundamental shift in how interactive media can be conceived and produced.
Sheldrick predicts significant industry adoption this year: “I think this is the year that AI video and AI imagery in general will kind of break into the advertising market and a bit more into commercial space.” He warns that “the companies that have got on board with it, will start to reap the rewards, and the companies that have neglected to take this seriously, will suffer in this year.”
The Human-AI Collaboration Model
Despite these tools’ remarkable capabilities, the most successful implementations combine AI generation with human creativity and oversight. The emerging workflow models suggest letting AI handle repetitive elements while humans focus on the aspects requiring artistic judgment.
As these platforms continue to develop, creative teams are adapting how they work, with new hybrid roles emerging at the intersection of traditional creativity and technical AI expertise.
The learning curve remains steep, but the productivity gains can be substantial once teams develop effective workflows. Kadieff notes how transformative these tools have been: “when I saw transformer-based art, like three, four years ago, I mean, it changed my life. I knew instantly that this is the biggest media transformation of my lifetime”.
Looking Forward: AI Video in 2026 and Beyond
As these platforms continue evolving at breakneck speed, our experts envision transformative developments over the next few years. Specialized models tailored to specific industries, greater customization capabilities, and integration with spatial computing all feature prominently in their predictions.
With Sidhu’s earlier visions of independent creators rivalling the outputs of studios, this democratization of high-quality content creation tools doesn’t mean the end of major studios, but rather a raising of the bar across the entire creative landscape.
Sheldrick remains enthusiastic about the competitive landscape driving innovation: “I’m just most excited to watch these massive, sort of frontier labs just going at it. I’ve enjoyed watching this sort of AI arms race for years now, and it hasn’t got old. It’s still super exciting.”
David Sheldrick has used OpenAI’s Sora tool to create fashion videos
Perhaps the most transformative potential lies in how these tools will reshape our understanding of content itself. As Sidhu explains, “I think content authoring will look almost like a world model, one of the characteristics or attributes of it is like, here’s a scene graph, here are the three scenes that I have. Here are the characters that are within it. Here are the props. Here’s the time of day”. This structured approach would allow content to be personalized and localized at unprecedented scales.
The Democratization of Visual Storytelling
As we look toward the future of AI-generated video, it’s clear that neither Sora nor Veo 2 represents a definitive solution for all creative needs. The choice depends on specific requirements, risk tolerance, and creative objectives.
What’s undeniable is the democratizing effect these tools are having on visual storytelling. “Now we’re coming to a place where everybody, anybody with an incredible imagination, whether they’re in India, China, Pakistan or South Africa, or anywhere else, and access to these tools can tell incredible stories,” Kadieff observes.
Sidhu agrees, noting that “YouTube creators are punching way above their weight class already. And so I think that trend is going to continue, where we’ll see like the Netflix’s of the world look a lot more like YouTube, where more content is going to get greenlit”.
These tools are enabling a new generation of creators to produce content that would have been prohibitively expensive just a few years ago. The traditional barriers to high-quality video production are falling rapidly.
As AI video tools like Sora and Veo 2 continue to evolve and become increasingly accessible, we stand at the beginning of a fundamental shift in how visual stories are told, who gets to tell them, and how they reach their audiences. The tools may be artificial, but the imagination they unlock is profoundly human.
Ya sea que se dé cuenta o no, la inteligencia artificial está en todas partes. Se encuentra detrás de los chatbots con los que hablas en línea, las listas de reproducción que transmites y los anuncios personalizados que aparecen en tu desplazamiento. Y ahora está tomando una personalidad más pública. Piense en Meta AI, que ahora está integrado en aplicaciones como Facebook, Messenger y WhatsApp; o Géminis de Google, trabajando en segundo plano en las plataformas de la compañía; o Apple Intelligence, lanzando a través de iPhones ahora.
AI tiene una larga historia, volviendo a una conferencia en Dartmouth en 1956 que primero discutió la inteligencia artificial como una cosa. Los hitos en el camino incluyen Eliza, esencialmente el primer chatbot, desarrollado en 1964 por el informático del MIT Joseph Weizenbaum y, saltando 40 años, cuando la función de autocompleta de Google apareció por primera vez en 2004.
Luego llegó 2022 y el ascenso de Chatgpt a la fama. Los desarrollos generativos de IA y los lanzamientos de productos se han acelerado rápidamente desde entonces, incluidos Google Bard (ahora Gemini), Microsoft Copilot, IBM Watsonx.ai y los modelos de LLAMA de código abierto de Meta.
Desglosemos qué es la IA generativa, cómo difiere de la inteligencia artificial “regular” y si la Generación AI puede estar a la altura de las expectativas.
IA generativa en pocas palabras
En esencia, la IA generativa se refiere a sistemas de inteligencia artificial que están diseñados para producir un nuevo contenido basado en patrones y datos que han aprendido. En lugar de solo analizar números o predecir tendencias, estos sistemas generan salidas creativas como texto, música de imágenes, videos y código de software.
Algunas de las herramientas de IA generativas más populares en el mercado incluyen:
El principal entre sus habilidades, ChatGPT puede crear conversaciones o ensayos similares a los humanos basados en algunas indicaciones simples. Dall-E y MidJourney crean obras de arte detalladas a partir de una breve descripción, mientras que Adobe Firefly se centra en la edición y el diseño de imágenes.
Chatgpt / captura de pantalla por cnet
Ai eso no es generativo
No toda la IA es generativa. Si bien Gen AI se enfoca en crear contenido nuevo, la IA tradicional se destaca por analizar datos y hacer predicciones. Esto incluye tecnologías como el reconocimiento de imágenes y el texto predictivo. También se usa para soluciones novedosas en:
Ciencia
Diagnóstico médico
Pronóstico del tiempo
Detección de fraude
Análisis financiero para pronósticos e informes
La IA que venció a los grandes campeones humanos en el ajedrez y el juego de mesa no fue una IA generativa.
Es posible que estos sistemas no sean tan llamativos como la Generación AI, pero la inteligencia artificial clásica es una gran parte de la tecnología en la que confiamos todos los días.
¿Cómo funciona Gen AI?
Detrás de la magia de la IA generativa hay modelos de idiomas grandes y técnicas avanzadas de aprendizaje automático. Estos sistemas están capacitados en grandes cantidades de datos, como bibliotecas completas de libros, millones de imágenes, años de música grabada y datos raspados de Internet.
Los desarrolladores de IA, desde gigantes tecnológicos hasta nuevas empresas, son conscientes de que la IA es tan buena como los datos que lo alimenta. Si se alimenta de datos de baja calidad, la IA puede producir resultados sesgados. Es algo con lo que incluso los jugadores más grandes en el campo, como Google, no han sido inmunes.
La IA aprende patrones, relaciones y estructuras dentro de estos datos durante el entrenamiento. Luego, cuando se le solicita, aplica ese conocimiento para generar algo nuevo. Por ejemplo, si le pide a una herramienta Gen AI que escriba un poema sobre el océano, no solo extrae versos preescritos de una base de datos. En cambio, está usando lo que aprendió sobre la poesía, los océanos y la estructura del lenguaje para crear una pieza completamente original.
Chatgpt / captura de pantalla por cnet
Es impresionante, pero no es perfecto. A veces los resultados pueden sentirse un poco apagados. Tal vez la IA malinterpreta su solicitud, o se vuelve demasiado creativo de una manera que no esperaba. Puede proporcionar con confianza información completamente falsa, y depende de usted verificarla. Esas peculiaridades, a menudo llamadas alucinaciones, son parte de lo que hace que la IA generativa sea fascinante y frustrante.
Las capacidades generativas de IA están creciendo. Ahora puede comprender múltiples tipos de datos combinando tecnologías como el aprendizaje automático, el procesamiento del lenguaje natural y la visión por computadora. El resultado se llama IA multimodal que puede integrar alguna combinación de texto, imágenes, video y habla dentro de un solo marco, ofreciendo respuestas más contextualmente relevantes y precisas. El modo de voz avanzado de ChatGPT es un ejemplo, al igual que el proyecto Astra de Google.
Desafíos con IA generativa
No hay escasez de herramientas de IA generativas, cada una con su talento único. Estas herramientas han provocado la creatividad, pero también han planteado muchas preguntas además del sesgo y las alucinaciones, como, ¿quién posee los derechos del contenido generado por IA? O qué material es un juego justo o fuera de los límites para que las compañías de IA los usen para capacitar a sus modelos de idiomas; vea, por ejemplo, la demanda del New York Times contra Openai y Microsoft.
Otras preocupaciones, no son asuntos pequeños, implican privacidad, responsabilidad en la IA, los profundos profundos generados por IA y el desplazamiento laboral.
“Escribir, animación, fotografía, ilustración, diseño gráfico: las herramientas de IA ahora pueden manejar todo eso con una facilidad sorprendente. Pero eso no significa que estos roles desaparezcan. Simplemente puede significar que los creativos deberán mejorar y usar estas herramientas para amplificar su propio trabajo”, Fang Liu, profesor de la Universidad de Notre Dame Dame y Coeditor-Chief de las transacciones de ACM en las transacciones de Probabilista, contó el aprendizaje en el poderoso de la máquina probabilística, le dijo a Cetnet.
“También ofrece una forma para las personas que tal vez carecen de la habilidad, como alguien con una visión clara que no puede dibujar, pero que puede describirlo a través de un aviso. Así que no, no creo que interrumpa a la industria creativa. Con suerte, será una co-creación o un aumento, no un reemplazo”.
Otro problema es el impacto en el medio ambiente porque la capacitación de grandes modelos de IA utiliza mucha energía, lo que lleva a grandes huellas de carbono. El rápido ascenso de la Generación AI en los últimos años ha acelerado las preocupaciones sobre los riesgos de la IA en general. Los gobiernos están aumentando las regulaciones de IA para garantizar el desarrollo responsable y ético, especialmente la Ley de IA de la Unión Europea.
Recepción de IA generativa
Muchas personas han interactuado con los chatbots en el servicio al cliente o han utilizado asistentes virtuales como Siri, Alexa y Google Assistant, que ahora están en la cúspide de convertirse en Gen AI Power Tools. Todo eso, junto con las aplicaciones para ChatGPT, Claude y otras herramientas nuevas, es poner ai en sus manos. Y la reacción pública a la IA generativa se ha mezclado. Muchos usuarios disfrutan de la conveniencia y la creatividad que ofrece, especialmente para cosas como escribir ayuda, creación de imágenes, soporte de tareas y productividad.
Mientras tanto, en la encuesta global de IA 2024 de McKinsey, el 65% de los encuestados dijo que sus organizaciones usan regularmente IA generativa, casi el doble de la cifra reportada solo 10 meses antes. Industrias como la atención médica y las finanzas están utilizando Gen AI para racionalizar las operaciones comerciales y automatizar tareas mundanas.
Como se mencionó, existen preocupaciones obvias sobre la ética, la transparencia, la pérdida de empleos y el potencial del mal uso de los datos personales. Esas son las principales críticas detrás de la resistencia a aceptar la IA generativa.
Y las personas que usan herramientas de IA generativas también encontrarán que los resultados aún no son lo suficientemente buenos para el tiempo. A pesar de los avances tecnológicos, la mayoría de las personas pueden reconocer si el contenido se ha creado utilizando Gen AI, ya sean artículos, imágenes o música.
AI ha secuestrado ciertas frases que siempre he usado, por lo que debo autocorrectar mi escritura a menudo porque puede parecer una IA. Muchos artículos escritos por AI contienen frases como “en la era de”, o todo es un “testimonio de” o un “tapiz de”. La IA carece de la emoción y la experiencia que viene, bueno, ser una vida humana y viviente. Como explicó un artista en Quora, “lo que AI hace no es lo mismo que el arte que evoluciona de un pensamiento en un cerebro humano” y “no se crea a partir de la pasión que se encuentra en un corazón humano”.
AI generativa: vida cotidiana
La IA generativa no es solo para técnicos o personas creativas. Una vez que obtienes la habilidad de darle indicaciones, tiene el potencial de hacer gran parte del trabajo preliminar por ti en una variedad de tareas diarias.
Digamos que está planeando un viaje. En lugar de desplazarse por páginas de resultados de búsqueda, le pide a un chatbot que planifique su itinerario. En cuestión de segundos, tiene un plan detallado adaptado a sus preferencias. (Ese es el ideal. Por favor, verifique siempre sus recomendaciones).
Un propietario de una pequeña empresa que necesita una campaña de marketing pero que no tiene un equipo de diseño puede usar una IA generativa para crear imágenes llamativas e incluso pedirle que sugiera copia publicitaria.
Chatgpt / captura de pantalla por cnet
Gen Ai está aquí para quedarse
No ha habido un avance tecnológico que haya causado tal boom desde Internet y, más tarde, el iPhone. A pesar de sus desafíos, la IA generativa es innegablemente transformadora. Está haciendo que la creatividad sea más accesible, ayudando a las empresas a racionalizar los flujos de trabajo e incluso inspirar formas completamente nuevas de pensar y resolver problemas.
Pero quizás lo más emocionante es su potencial, y estamos rascando la superficie de lo que estas herramientas pueden hacer.
Preguntas frecuentes
¿Cuál es un ejemplo de IA generativa?
ChatGPT es probablemente el ejemplo más popular de IA generativa. Le das un aviso y puede generar texto e imágenes; Código de escritura; Responder preguntas; resumir el texto; borrador de correos electrónicos; y mucho más.
¿Cuál es la diferencia entre la IA y la IA generativa?
La IA generativa crea contenido nuevo como texto, imágenes o música, mientras que la IA tradicional analiza los datos, reconoce patrones o imágenes y hace predicciones (por ejemplo, en medicina, ciencia y finanzas).
Si busca “CHATGPT” en su navegador, es probable que se tope en sitios web que parecen estar alimentados por OpenAI, pero no lo son. Uno de esos sitios, chat.chatbotapp.ai, ofrece acceso a “GPT-3.5” de forma gratuita y utiliza marca familiar.
Pero aquí está la cosa: no está dirigida por OpenAi. Y, francamente, ¿por qué usar un GPT-3.5 potencialmente falso cuando puedes usar GPT-4O de forma gratuita en el actual ¿Sitio de chatgpt?
In the summer of 2023, Ilya Sutskever, a co-founder and the chief scientist of OpenAI, was meeting with a group of new researchers at the company. By all traditional metrics, Sutskever should have felt invincible: He was the brain behind the large language models that helped build ChatGPT, then the fastest-growing app in history; his company’s valuation had skyrocketed; and OpenAI was the unrivaled leader of the industry believed to power the future of Silicon Valley. But the chief scientist seemed to be at war with himself.
Sutskever had long believed that artificial general intelligence, or AGI, was inevitable—now, as things accelerated in the generative-AI industry, he believed AGI’s arrival was imminent, according to Geoff Hinton, an AI pioneer who was his Ph.D. adviser and mentor, and another person familiar with Sutskever’s thinking. (Many of the sources in this piece requested anonymity in order to speak freely about OpenAI without fear of reprisal.) To people around him, Sutskever seemed consumed by thoughts of this impending civilizational transformation. What would the world look like when a supreme AGI emerged and surpassed humanity? And what responsibility did OpenAI have to ensure an end state of extraordinary prosperity, not extraordinary suffering?
By then, Sutskever, who had previously dedicated most of his time to advancing AI capabilities, had started to focus half of his time on AI safety. He appeared to people around him as both boomer and doomer: more excited and afraid than ever before of what was to come. That day, during the meeting with the new researchers, he laid out a plan.
“Once we all get into the bunker—” he began, according to a researcher who was present.
“I’m sorry,” the researcher interrupted, “the bunker?”
“We’re definitely going to build a bunker before we release AGI,” Sutskever replied. Such a powerful technology would surely become an object of intense desire for governments globally. The core scientists working on the technology would need to be protected. “Of course,” he added, “it’s going to be optional whether you want to get into the bunker.”
This essay has been adapted from Hao’s forthcoming book, Empire of AI.
Two other sources I spoke with confirmed that Sutskever commonly mentioned such a bunker. “There is a group of people—Ilya being one of them—who believe that building AGI will bring about a rapture,” the researcher told me. “Literally, a rapture.” (Sutskever declined to comment.)
Sutskever’s fears about an all-powerful AI may seem extreme, but they are not altogether uncommon, nor were they particularly out of step with OpenAI’s general posture at the time. In May 2023, the company’s CEO, Sam Altman, co-signed an open letter describing the technology as a potential extinction risk—a narrative that has arguably helped OpenAI center itself and steer regulatory conversations. Yet the concerns about a coming apocalypse would also have to be balanced against OpenAI’s growing business: ChatGPT was a hit, and Altman wanted more.
When OpenAI was founded, the idea was to develop AGI for the benefit of humanity. To that end, the co-founders—who included Altman and Elon Musk—set the organization up as a nonprofit and pledged to share research with other institutions. Democratic participation in the technology’s development was a key principle, they agreed, hence the company’s name. But by the time I started covering the company in 2019, these ideals were eroding. OpenAI’s executives had realized that the path they wanted to take would demand extraordinary amounts of money. Both Musk and Altman tried to take over as CEO. Altman won out. Musk left the organization in early 2018 and took his money with him. To plug the hole, Altman reformulated OpenAI’s legal structure, creating a new “capped-profit” arm within the nonprofit to raise more capital.
Since then, I’ve tracked OpenAI’s evolution through interviews with more than 90 current and former employees, including executives and contractors. The company declined my repeated interview requests and questions over the course of working on my book about it, which this story is adapted from; it did not reply when I reached out one more time before the article was published. (OpenAI also has a corporate partnership with The Atlantic.)
OpenAI’s dueling cultures—the ambition to safely develop AGI, and the desire to grow a massive user base through new product launches—would explode toward the end of 2023. Gravely concerned about the direction Altman was taking the company, Sutskever would approach his fellow board of directors, along with his colleague Mira Murati, then OpenAI’s chief technology officer; the board would subsequently conclude the need to push the CEO out. What happened next—with Altman’s ouster and then reinstatement—rocked the tech industry. Yet since then, OpenAI and Sam Altman have become more central to world affairs. Last week, the company unveiled an “OpenAI for Countries” initiative that would allow OpenAI to play a key role in developing AI infrastructure outside of the United States. And Altman has become an ally to the Trump administration, appearing, for example, at an event with Saudi officials this week and onstage with the president in January to announce a $500 billion AI-computing-infrastructure project.
Altman’s brief ouster—and his ability to return and consolidate power—is now crucial history to understand the company’s position at this pivotal moment for the future of AI development. Details have been missing from previous reporting on this incident, including information that sheds light on Sutskever and Murati’s thinking and the response from the rank and file. Here, they are presented for the first time, according to accounts from more than a dozen people who were either directly involved or close to the people directly involved, as well as their contemporaneous notes, plus screenshots of Slack messages, emails, audio recordings, and other corroborating evidence.
The altruistic OpenAI is gone, if it ever existed. What future is the company building now?
Before ChatGPT, sources told me, Altman seemed generally energized. Now he often appeared exhausted. Propelled into megastardom, he was dealing with intensified scrutiny and an overwhelming travel schedule. Meanwhile, Google, Meta, Anthropic, Perplexity, and many others were all developing their own generative-AI products to compete with OpenAI’s chatbot.
Many of Altman’s closest executives had long observed a particular pattern in his behavior: If two teams disagreed, he often agreed in private with each of their perspectives, which created confusion and bred mistrust among colleagues. Now Altman was also frequently bad-mouthing staffers behind their backs while pushing them to deploy products faster and faster. Team leads mirroring his behavior began to pit staff against one another. Sources told me that Greg Brockman, another of OpenAI’s co-founders and its president, added to the problems when he popped into projects and derailed long-standing plans with last-minute changes.
The environment within OpenAI was changing. Previously, Sutskever had tried to unite workers behind a common cause. Among employees, he had been known as a deep thinker and even something of a mystic, regularly speaking in spiritual terms. He wore shirts with animals on them to the office and painted them as well—a cuddly cat, cuddly alpacas, a cuddly fire-breathing dragon. One of his amateur paintings hung in the office, a trio of flowers blossoming in the shape of OpenAI’s logo, a symbol of what he always urged employees to build: “A plurality of humanity-loving AGIs.”
But by the middle of 2023—around the time he began speaking more regularly about the idea of a bunker—Sutskever was no longer just preoccupied by the possible cataclysmic shifts of AGI and superintelligence, according to sources familiar with his thinking. He was consumed by another anxiety: the erosion of his faith that OpenAI could even keep up its technical advancements to reach AGI, or bear that responsibility with Altman as its leader. Sutskever felt Altman’s pattern of behavior was undermining the two pillars of OpenAI’s mission, the sources said: It was slowing down research progress and eroding any chance at making sound AI-safety decisions.
Meanwhile, Murati was trying to manage the mess. She had always played translator and bridge to Altman. If he had adjustments to the company’s strategic direction, she was the implementer. If a team needed to push back against his decisions, she was their champion. When people grew frustrated with their inability to get a straight answer out of Altman, they sought her help. “She was the one getting stuff done,” a former colleague of hers told me. (Murati declined to comment.)
During the development of GPT‑4, Altman and Brockman’s dynamic had nearly led key people to quit, sources told me. Altman was also seemingly trying to circumvent safety processes for expediency. At one point, sources close to the situation said, he had told Murati that OpenAI’s legal team had cleared the latest model, GPT-4 Turbo, to skip review by the company’s Deployment Safety Board, or DSB—a committee of Microsoft and OpenAI representatives who evaluated whether OpenAI’s most powerful models were ready for release. But when Murati checked in with Jason Kwon, who oversaw the legal team, Kwon had no idea how Altman had gotten that impression.
In the summer, Murati attempted to give Altman detailed feedback on these issues, according to multiple sources. It didn’t work. The CEO iced her out, and it took weeks to thaw the relationship.
By fall, Sutskever and Murati both drew the same conclusion. They separately approached the three board members who were not OpenAI employees—Helen Toner, a director at Georgetown University’s Center for Security and Emerging Technology; the roboticist Tasha McCauley; and one of Quora’s co-founders and its CEO, Adam D’Angelo—and raised concerns about Altman’s leadership. “I don’t think Sam is the guy who should have the finger on the button for AGI,” Sutskever said in one such meeting, according to notes I reviewed. “I don’t feel comfortable about Sam leading us to AGI,” Murati said in another, according to sources familiar with the conversation.
That Sutskever and Murati both felt this way had a huge effect on Toner, McCauley, and D’Angelo. For close to a year, they, too, had been processing their own grave concerns about Altman, according to sources familiar with their thinking. Among their many doubts, the three directors had discovered through a series of chance encounters that he had not been forthcoming with them about a range of issues, from a breach in the DSB’s protocols to the legal structure of OpenAI Startup Fund, a dealmaking vehicle that was meant to be under the company but that instead Altman owned himself.
If two of Altman’s most senior deputies were sounding the alarm on his leadership, the board had a serious problem. Sutskever and Murati were not the first to raise these kinds of issues, either. In total, the three directors had heard similar feedback over the years from at least five other people within one to two levels of Altman, the sources said. By the end of October, Toner, McCauley, and D’Angelo began to meet nearly daily on video calls, agreeing that Sutskever’s and Murati’s feedback about Altman, and Sutskever’s suggestion to fire him, warranted serious deliberation.
As they did so, Sutskever sent them long dossiers of documents and screenshots that he and Murati had gathered in tandem with examples of Altman’s behaviors. The screenshots showed at least two more senior leaders noting Altman’s tendency to skirt around or ignore processes, whether they’d been instituted for AI-safety reasons or to smooth company operations. This included, the directors learned, Altman’s apparent attempt to skip DSB review for GPT-4 Turbo.
By Saturday, November 11, the independent directors had made their decision. As Sutskever suggested, they would remove Altman and install Murati as interim CEO. On November 17, 2023, at about noon Pacific time, Sutskever fired Altman on a Google Meet with the three independent board members. Sutskever then told Brockman on another Google Meet that Brockman would no longer be on the board but would retain his role at the company. A public announcement went out immediately.
For a brief moment, OpenAI’s future was an open question. It might have taken a path away from aggressive commercialization and Altman. But this is not what happened.
After what had seemed like a few hours of calm and stability, including Murati having a productive conversation with Microsoft—at the time OpenAI’s largest financial backer—she had suddenly called the board members with a new problem. Altman and Brockman were telling everyone that Altman’s removal had been a coup by Sutskever, she said.
It hadn’t helped that, during a company all-hands to address employee questions, Sutskever had been completely ineffectual with his communication.
“Was there a specific incident that led to this?” Murati had read aloud from a list of employee questions, according to a recording I obtained of the meeting.
“Many of the questions in the document will be about the details,” Sutskever responded. “What, when, how, who, exactly. I wish I could go into the details. But I can’t.”
“Are we worried about the hostile takeover via coercive influence of the existing board members?” Sutskever read from another employee later.
“Hostile takeover?” Sutskever repeated, a new edge in his voice. “The OpenAI nonprofit board has acted entirely in accordance to its objective. It is not a hostile takeover. Not at all. I disagree with this question.”
Shortly thereafter, the remaining board, including Sutskever, confronted enraged leadership over a video call. Kwon, the chief strategy officer, and Anna Makanju, the vice president of global affairs, were leading the charge in rejecting the board’s characterization of Altman’s behavior as “not consistently candid,” according to sources present at the meeting. They demanded evidence to support the board’s decision, which the members felt they couldn’t provide without outing Murati, according to sources familiar with their thinking.
In rapid succession that day, Brockman quit in protest, followed by three other senior researchers. Through the evening, employees only got angrier, fueled by compounding problems: among them, a lack of clarity from the board about their reasons for firing Altman; a potential loss of a tender offer, which had given some the option to sell what could amount to millions of dollars’ worth of their equity; and a growing fear that the instability at the company could lead to its unraveling, which would squander so much promise and hard work.
Faced with the possibility of OpenAI falling apart, Sutskever’s resolve immediately started to crack. OpenAI was his baby, his life; its dissolution would destroy him. He began to plead with his fellow board members to reconsider their position on Altman.
Meanwhile, Murati’s interim position was being challenged. The conflagration within the company was also spreading to a growing circle of investors. Murati now was unwilling to explicitly throw her weight behind the board’s decision to fire Altman. Though her feedback had helped instigate it, she had not participated herself in the deliberations.
By Monday morning, the board had lost. Murati and Sutskever flipped sides. Altman would come back; there was no other way to save OpenAI.
I was already working on a book about OpenAI at the time, and in the weeks that followed the board crisis, friends, family, and media would ask me dozens of times: What did all this mean, if anything? To me, the drama highlighted one of the most urgent questions of our generation: How do we govern artificial intelligence? With AI on track to rewire a great many other crucial functions in society, that question is really asking: How do we ensure that we’ll make our future better, not worse?
The events of November 2023 illustrated in the clearest terms just how much a power struggle among a tiny handful of Silicon Valley elites is currently shaping the future of this technology. And the scorecard of this centralized approach to AI development is deeply troubling. OpenAI today has become everything that it said it would not be. It has turned into a nonprofit in name only, aggressively commercializing products such as ChatGPT and seeking historic valuations. It has grown ever more secretive, not only cutting off access to its own research but shifting norms across the industry to no longer share meaningful technical details about AI models. In the pursuit of an amorphous vision of progress, its aggressive push on the limits of scale has rewritten the rules for a new era of AI development. Now every tech giant is racing to out-scale one another, spending sums so astronomical that even they have scrambled to redistribute and consolidate their resources. What was once unprecedented has become the norm.
As a result, these AI companies have never been richer. In March, OpenAI raised $40 billion, the largest private tech-funding round on record, and hit a $300 billion valuation. Anthropic is valued at more than $60 billion. Near the end of last year, the six largest tech giants together had seen their market caps increase by more than $8 trillion after ChatGPT. At the same time, more and more doubts have risen about the true economic value of generative AI, including a growing body of studies that have shown that the technology is not translating into productivity gains for most workers, while it’s also eroding their critical thinking.
In a November Bloomberg article reviewing the generative-AI industry, the staff writers Parmy Olson and Carolyn Silverman summarized it succinctly. The data, they wrote, “raises an uncomfortable prospect: that this supposedly revolutionary technology might never deliver on its promise of broad economic transformation, but instead just concentrate more wealth at the top.”
Meanwhile, it’s not just a lack of productivity gains that many in the rest of the world are facing. The exploding human and material costs are settling onto wide swaths of society, especially the most vulnerable, people I met around the world, whether workers and rural residents in the global North or impoverished communities in the global South, all suffering new degrees of precarity. Workers in Kenya earned abysmal wages to filter out violence and hate speech from OpenAI’s technologies, including ChatGPT. Artists are being replaced by the very AI models that were built from their work without their consent or compensation. The journalism industry is atrophying as generative-AI technologies spawn heightened volumes of misinformation. Before our eyes, we’re seeing an ancient story repeat itself: Like empires of old, the new empires of AI are amassing extraordinary riches across space and time at great expense to everyone else.
To quell the rising concerns about generative AI’s present-day performance, Altman has trumpeted the future benefits of AGI ever louder. In a September 2024 blog post, he declared that the “Intelligence Age,” characterized by “massive prosperity,” would soon be upon us. At this point, AGI is largely rhetorical—a fantastical, all-purpose excuse for OpenAI to continue pushing for ever more wealth and power. Under the guise of a civilizing mission, the empire of AI is accelerating its global expansion and entrenching its power.
As for Sutskever and Murati, both parted ways with OpenAI after what employees now call “The Blip,” joining a long string of leaders who have left the organization after clashing with Altman. Like many of the others who failed to reshape OpenAI, the two did what has become the next-most-popular option: They each set up their own shops, to compete for the future of this technology.
This essay has been adapted from Karen Hao’s forthcoming book, Empire of AI.
Empire Of AI – Dreams And Nightmares In Sam Altman’s OpenAI
By Karen Hao
*Illustration by Akshita Chandra / The Atlantic. Sources: Nathan Howard / Bloomberg / Getty; Jack Guez / AFP / Getty; Jon Kopaloff / Getty; Manuel Augusto Moreno / Getty; Yuichiro Chino / Getty.
When you buy a book using a link on this page, we receive a commission. Thank you for supporting The Atlantic.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.