Connect with us

Noticias

DeepSeek desafía la cadena de pensamiento o1 de OpenAI, pero le faltan algunos eslabones

Published

on

akinbostanci/Getty Images

Consideremos un tren que sale de Chicago y viaja hacia el oeste a setenta millas por hora, y otro tren que sale de San Francisco y viaja hacia el este a ochenta millas por hora. ¿Puedes averiguar cuándo y dónde se encontrarán?

Es un problema matemático clásico de la escuela primaria, y los programas de inteligencia artificial (IA), como el modelo de lenguaje grande “o1” lanzado recientemente por OpenAI, actualmente en versión preliminar, no solo encontrarán la respuesta sino que también explicarán un poco cómo llegaron a ella.

Las explicaciones son parte de un enfoque cada vez más popular en la IA generativa conocido como cadena de pensamiento.

Aunque la cadena de pensamiento puede ser muy útil, también tiene el potencial de ser totalmente desconcertante dependiendo de cómo se haga, como descubrí mediante un poco de experimentación.

También: OpenAI amplía la disponibilidad del modelo o1: aquí se explica quién obtiene acceso y cuánto

La idea detrás del procesamiento de la cadena de pensamiento es que el modelo de IA puede detallar la secuencia de cálculos que realiza en busca de la respuesta final, logrando en última instancia una IA “explicable”. Una IA tan explicable podría posiblemente dar a los humanos una mayor confianza en las predicciones de la IA al revelar la base de una respuesta.

Por contexto, un modelo de IA se refiere a parte de un programa de IA que contiene numerosos parámetros de red neuronal y funciones de activación que comprenden los elementos clave de cómo funciona el programa.

Para explorar el asunto, comparé o1 de OpenAI con R1-Lite, el modelo más nuevo de la startup DeepSeek con sede en China. R1-Lite va más allá que o1 al dar declaraciones detalladas de la cadena de pensamiento, lo que contrasta con el estilo bastante conciso de o1.

Además: ChatGPT escribe mi rutina en los 12 principales lenguajes de programación. Esto es lo que me dicen los resultados

DeepSeek afirma que R1-Lite puede superar a o1 en varias pruebas de referencia, incluida MATH, una prueba desarrollada por UC Berkeley que consta de 12.500 conjuntos de preguntas y respuestas de matemáticas.

La luminaria de la IA Andrew Ng, fundador de Landing.ai, explicó que la introducción de R1-Lite es “parte de un movimiento importante” que va más allá de simplemente hacer que los modelos de IA sean más grandes para hacer que hagan un trabajo adicional para justificar sus resultados.

Pero descubrí que R1-Lite también puede ser desconcertante y tedioso en formas que no lo son.

Además: las pruebas de software basadas en IA ganan más defensores, pero persisten las preocupaciones

Envié la pregunta de matemáticas sobre trenes famosos anterior a la vista previa de R1-Lite y o1. Puede probar R1-Lite de forma gratuita creando una cuenta gratuita en el sitio web de DeepSeek y puede acceder a la vista previa de o1 como parte de una cuenta ChatGPT paga con OpenAI. (R1-Lite aún no se ha lanzado como código abierto, aunque hay otros proyectos de DeepSeek disponibles en GitHub).

deepseek-versus-openai-si-un-tren-sale-chicago-2024.png

Ambos chatbots comienzan con rutas bastante simples hacia una solución al famoso problema de los trenes en matemáticas de la escuela primaria.

Ambos modelos obtuvieron respuestas similares, aunque el modelo o1 fue notablemente más rápido, tardando cinco segundos en dar una respuesta, mientras que el R1-Lite de DeepSeek tardó 21 segundos (cada uno de los dos modelos te dice cuánto tiempo “pensaron”). o1 también utilizó un número más preciso de millas entre Chicago y San Francisco en su cálculo.

La diferencia más interesante llegó en la siguiente ronda.

También: ¿Qué tan bien puede funcionar el código de vista previa o1 de OpenAI? Superó mis 4 pruebas y mostró su trabajo con sorprendente detalle.

Cuando pedí a ambos modelos que calcularan aproximadamente dónde se encontrarían los dos trenes, es decir, en qué pueblo o ciudad de Estados Unidos, el modelo o1 rápidamente produjo Cheyenne, Wyoming. En el proceso, o1 telegrafió su cadena de pensamiento mostrando brevemente mensajes cortos como “Analizando el viaje de los trenes”, “Mapeando el viaje” o “Determinando el punto de encuentro”.

Estos no eran realmente informativos sino más bien un indicador de que algo estaba pasando.

Por el contrario, el DeepSeek R1-Lite pasó casi un minuto en su cadena de pensamiento y, como en otros casos, fue muy detallado, dejando un rastro de descripciones de “pensamientos” que suman un total de 2200 palabras. Estos se volvieron cada vez más complicados a medida que el modelo avanzaba a través de la cadena. El modelo comenzó de manera bastante simple, postulando que dondequiera que llegara cada tren al final de 12 horas sería aproximadamente donde ambos trenes estarían cerca uno del otro, en algún lugar entre los dos orígenes.

Pero luego el R1-Lite de DeepSeek se descarriló completamente, por así decirlo. Probó muchas formas extrañas y extravagantes de calcular la ubicación y narró cada método con un detalle insoportable.

deepseek-versus-openai-dónde-se-encuentran-los-trenes-2024.png

Mientras que el modelo o1 de OpenAI concluye su trabajo con bastante rapidez, el R1-Lite de DeepSeek, a la izquierda, pasa por un proceso de “pensamiento” largo y sinuoso que se vuelve cada vez más complicado y distrae.

Primero, calculó distancias desde Chicago a varias ciudades diferentes en el camino a San Francisco, así como las distancias entre ciudades, para aproximar una ubicación.

Además: probé 9 detectores de contenido de IA, y estos 2 identificaron correctamente el texto de IA en todo momento.

Luego recurrió al uso longitud en el mapa y calculando los grados de longitud que viajó el tren de Chicago. Luego retrocedió e intentó calcular distancias distancia de conducción.

En medio de todo esto, la modelo escupió la afirmación: “Espera, me estoy confundiendo”, lo que probablemente sea cierto para el ser humano que mira todo esto.

deepseek-confundido-por-su-propio-razonamiento-2024

El R1-Lite de DeepSeek expresa confusión: el modelo de IA no está literalmente confundido, pero el ser humano que lo usa podría estarlo.

Cuando R1-Lite produjo la respuesta – “en el oeste de Nebraska o el este de Colorado”, que es una aproximación aceptable – el razonamiento era tan abstruso que ya no era “explicable” sino desalentador.

Además: la IA no está chocando contra una pared; simplemente se está volviendo demasiado inteligente para los puntos de referencia, dice Anthropic

Al explicar un supuesto proceso de razonamiento con laborioso detalle, a diferencia del modelo o1, que mantiene la respuesta bastante breve, el R1-Lite de DeepSeek en realidad termina siendo complejo y confuso.

Es posible que con indicaciones más precisas que incluyan detalles como rutas de tren reales, la cadena de pensamiento pueda ser mucho más limpia. El acceso a bases de datos externas para las coordenadas del mapa también podría hacer que el R1-Lite tenga menos eslabones en la cadena de pensamiento.

La prueba demuestra que en estos primeros días de razonamiento en cadena de pensamiento, los humanos que trabajan con chatbots probablemente terminen confundidos incluso si finalmente obtienen una respuesta aceptable del modelo de IA.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Gemini 2.5 Pro + Notebooklm: Herramientas de IA para la productividad e investigación

Published

on


Las herramientas con IA de Google, Gemini 2.5 Pro y Notebooklm, están redefiniendo cómo aborda la productividad, la investigación y la creación de contenido. Estas herramientas integran capacidades de codificación avanzada, evaluación de fuente inteligente y procesamiento multimodal para simplificar tareas complejas. Ya sea que sea un desarrollador, educador o estratega, proporcionan soluciones intuitivas que mejoran la eficiencia sin requerir una amplia experiencia técnica. Al usar estas herramientas, puede racionalizar los flujos de trabajo, mejorar la precisión y centrarse en la creatividad y la estrategia.

En este tutorial, Grace Leung desglosa las fortalezas únicas de Gemini 2.5 Pro y Notebooklm, y cómo su integración puede ayudarlo a lograr más con menos esfuerzo. Desde la creación de visualizaciones interactivas y contenido educativo hasta racionalizar la investigación y la creación de prototipos, descubrirá formas procesables para aprovechar estas herramientas para el máximo impacto. Espere aprender cómo el modo de lienzo de Gemini convierte las ideas en salidas funcionales y cómo NotebookLM garantiza que su trabajo se basa en fuentes creíbles y de alta calidad. Al final, verá cómo esta poderosa combinación puede ahorrarle tiempo, aumentar la creatividad y ayudarlo a concentrarse en lo que realmente importa: entregar resultados.

Combinación de Google Notebooklm y Gemini 2.5 Pro

TL; DR Key Takeaways:

  • Gemini 2.5 Pro ofrece características avanzadas como el modo de lienzo, el procesamiento multimodal y una ventana de contexto de token ampliado, lo que lo hace ideal para manejar tareas complejas en todas las industrias.
  • NotebookLM se centra en la investigación y la evaluación de la fuente, proporcionando herramientas como mapeo mental y descubrimiento de fuentes creíble para optimizar la síntesis de información.
  • La sinergia entre Gemini 2.5 Pro y NotebookLM permite aplicaciones prácticas como la creación de visualizaciones interactivas, contenido educativo y herramientas de planificación estratégica.
  • Estas herramientas optimizan los flujos de trabajo combinando las capacidades de investigación de NotebookLM con la capacidad de Gemini para generar resultados pulidos, reduciendo el tiempo y el esfuerzo para los resultados profesionales.
  • Las mejoras futuras, como la integración más profunda y las actualizaciones sincronizadas, podrían mejorar aún más la transición perfecta de la investigación a la ejecución.

Características clave de Gemini 2.5 Pro

Gemini 2.5 Pro es una plataforma robusta diseñada para manejar tareas exigentes con precisión y facilidad. Ajusta a las necesidades técnicas y creativas, ofreciendo una gama de características que lo distinguen:

  • Modo de lienzo: Esta característica le permite crear salidas funcionales y listas para usar, como prototipos o aplicaciones interactivas, directamente dentro de la plataforma, ahorrando tiempo y esfuerzo.
  • Procesamiento multimodal: Analice y procese texto, imágenes y documentos largos sin problemas. Esta capacidad es ideal para resumir patentes, crear visualizaciones o administrar conjuntos de datos complejos.
  • Ventana de contexto de token expandido: Con soporte para hasta 1 millón de tokens, expandibles a 2 millones, puede abordar proyectos a gran escala, como generar informes detallados o analizar conjuntos de datos extensos, sin interrupciones.
  • Accesibilidad: Gemini 2.5 Pro está disponible de forma gratuita a través de la aplicación Gemini o AI Studio, asegurándose de que sus potentes características sean accesibles para una audiencia amplia.

Estas características hacen que Gemini 2.5 Pro sea una herramienta versátil para profesionales en todas las industrias. Al automatizar procesos complejos, le permite centrarse en tareas de alto nivel, como la planificación estratégica y la resolución de problemas creativos.

Notebooklm: Mejora de la investigación y la organización

NotebookLM sirve como una herramienta complementaria para Géminis, centrándose en la investigación, la organización y la evaluación de la fuente. Está diseñado para ayudarlo a sintetizar la información de manera efectiva y garantizar que su trabajo se basa en datos creíbles. Sus características destacadas incluyen:

  • Descubra fuentes: Identifique y evalúe fuentes web creíbles para garantizar que su investigación se base en información verificada de alta calidad.
  • Funcionalidad del mapa mental: Cree diagramas estructurados para visualizar ideas y conexiones, lo que facilita explorar y comprender conceptos complejos.
  • Integración perfecta con Géminis: Use NotebookLM para recopilar y evaluar datos, luego transición a Gemini para crear resultados procesables como prototipos, visualizaciones o materiales educativos.

Al combinar estas capacidades, NotebookLM optimiza el proceso de investigación, lo que le permite organizar la información de manera eficiente y producir resultados impactantes. Su enfoque en la credibilidad de la fuente garantiza que su trabajo mantenga un alto nivel de precisión y confiabilidad.

Combinando el modo de lienzo de IA y cuaderno

Aquí hay guías adicionales de nuestra expansiva biblioteca de artículos que puede encontrar útil en Notebooklm.

Aplicaciones prácticas en todas las industrias

La sinergia entre Gemini 2.5 Pro y Notebooklm desbloquea una amplia gama de aplicaciones prácticas, lo que las convierte en herramientas valiosas en varios campos. Aquí hay algunos ejemplos de cómo puede usar estas herramientas de manera efectiva:

  • Visualizaciones interactivas: Convierta documentos complejos, como trabajos de investigación o patentes, en infografías o micrositios para una comprensión y compromiso más fácil.
  • Investigación y creación de prototipos: Use Notebooklm para reunir ideas y Géminis para crear prototipos, mapas de oportunidad o páginas de destino adaptadas a sus objetivos.
  • Contenido educativo: Desarrolle cuestionarios, módulos de aprendizaje interactivos u otros materiales educativos combinando las ideas estructuradas de NotebookLM con las capacidades de codificación y visualización de Gemini.
  • Creación de contenido: Genere scripts de podcasts, pistas de audio o transcripciones de reutilización en diversos formatos para llegar a diferentes audiencias de manera efectiva.
  • Planificación estratégica: Visualice las tendencias, las prioridades y las estrategias de contenido utilizando los mapas mentales de NotebookLM y las herramientas de visualización avanzada de Gemini.

Estos casos de uso destacan la adaptabilidad de Gemini 2.5 Pro y NotebookLM, lo que demuestra su potencial para mejorar los flujos de trabajo en la educación, los negocios y las industrias creativas.

Optimización de la eficiencia del flujo de trabajo

Cuando se usan juntos, Gemini 2.5 Pro y Notebooklm pueden optimizar significativamente su flujo de trabajo. Notebooklm asegura que su investigación se basa en fuentes creíbles y curadas, mientras que Gemini transforma esas ideas en salidas pulidas y funcionales. Ya sea que esté creando un módulo prototipo, infográfico o educativo, esta combinación reduce el tiempo y el esfuerzo requeridos para lograr resultados profesionales. Al automatizar tareas repetitivas y simplificar procesos complejos, estas herramientas le permiten centrarse en la innovación y la toma de decisiones estratégicas.

Potencial futuro y oportunidades para el crecimiento

Si bien Gemini 2.5 Pro y NotebookLM ya son herramientas poderosas, existe el potencial de una mayor mejora. Una integración más profunda entre las dos plataformas podría crear un flujo de trabajo más perfecto, lo que le permite hacer la transición sin esfuerzo de la investigación a la ejecución. Las características como la transferencia de datos automática, las actualizaciones sincronizadas en proyectos compartidos o herramientas de colaboración mejoradas podrían optimizar aún más la experiencia del usuario. Estas mejoras harían que las herramientas sean aún más efectivas, capacitando a los usuarios para alcanzar sus objetivos con mayor eficiencia y precisión.

Crédito de los medios: Grace Leung

Archivado en: AI, guías





Últimas ofertas de gadgets geek

Divulgación: Algunos de nuestros artículos incluyen enlaces de afiliados. Si compra algo a través de uno de estos enlaces, los gadgets geek pueden ganar una comisión de afiliación. Aprenda sobre nuestra política de divulgación.

Continue Reading

Noticias

Usé estas 5 indicaciones para ver lo que Chatgpt sabe sobre mí, y estoy sorprendido

Published

on

Si bien compañías como Google y Meta han estado recopilando nuestros datos personales, ahora vivimos en un mundo donde alimentamos activamente la información a los modelos de IA.

Por un lado, vale la pena pensar en lo que te sientes cómodo compartiendo con herramientas como ChatGPT. Pero los chats largos y reflexivos con una IA también podrían surgir cosas sobre ti que ni siquiera has notado.

Continue Reading

Noticias

‘Uno de los mejores investigadores de IA’ negó la tarjeta verde después de 12 años en EE. UU.

Published

on

Un investigador de inteligencia artificial (IA) canadiense que ha vivido en los Estados Unidos durante 12 años y trabajó en ChatGPT se le negó una tarjeta verde, según los empleados de la empresa matriz OpenAI a través de una serie de publicaciones en X, anteriormente Twitter.

Newsweek comunicado con los servicios de ciudadanía e inmigración de los Estados Unidos (USCIS) por correo electrónico fuera del horario comercial normal el sábado por la mañana para hacer comentarios.

Por que importa

El presidente Donald Trump se comprometió a promulgar la mayor represión contra la inmigración en la historia del país, iniciando deportaciones masivas que permanecen sumidas en el estancamiento legal en medio de desafíos de varios estados y autoridades legales.

Sin embargo, Elon Musk y Vivek Ramaswamy, ambos inicialmente aprovechados por Trump para liderar el Departamento de Eficiencia del Gobierno (DOGE), defendieron un enfoque en una expansión de programas como la visa H-1B, una visa temporal y no inmigrante que permite a los empleadores estadounidenses contratar trabajadores extranjeros para trabajos estacionales o no intraficulturales, para aumentar el número de inmigrantes altos en escéquidos.

Que saber

Noam Brown, un investigador de Openai, el viernes por la mañana escribió en X que estaba “profundamente preocupado” por el estado migratorio de Kai Chen, un ciudadano canadiense que ha vivido y trabajado en los Estados Unidos durante 12 años que se vio obligado a irse después de que su solicitud de tarjeta verde fue negada.

“Es profundamente preocupante que uno de los mejores investigadores de IA con los que he trabajado, [Kai Chen]se le negó una tarjeta verde de EE. UU. Hoy “, escribió Brown, y agregó:” Estamos arriesgando el liderazgo de IA de Estados Unidos cuando rechazamos el talento como este “.

Dylan Hunn, otro empleado de Operai, se hizo eco del sentimiento de Brown solo unas horas después, diciendo que Chen era “increíblemente importante para OpenAi”, ya que era “crucial para GPT-4.5”.

“Nuestro sistema de inmigración se ha vuelto * loco * para patearla”, escribió Hunn. “¡Estados Unidos la necesita!”

Brown luego escribió en X que Chen planeaba trabajar de forma remota desde un Airbnb en Vancouver y ir al “modo de monje completo” para mantenerse al día con sus proyectos mientras el problema de inmigración se resolvió. Chen trató de conocer el momento con optimismo, escribiendo en respuesta a Brown de que ella estaría en Vancouver “por una cantidad de tiempo indeterminada” y estaría “entusiasmada con conocer a nuevas personas”.

“Esperemos que regrese a casa en algún momento de este año, pero si no lo hará lo mejor”, escribió Chen, luego agregando en una publicación separada de que OpenAi ha sido “increíblemente solidario durante esta kerfuffle”.

Brown proporcionó una actualización poco antes de la medianoche de que parecía que “podría haber habido problemas de papeleo con la presentación de tarjeta verde inicial” realizado dos años antes.

“Es una pena que esto signifique [Chen] Tiene que dejar a los Estados Unidos por un tiempo, pero hay una razón para el optimismo de que esto se resolverá “, escribió Brown en X.

Chen aclaró aún más la situación, diciendo que había solicitado la tarjeta verde hace tres años antes de su tiempo en OpenAi.

“Realmente apesta ser negado después de esperar tanto tiempo y no poder regresar a casa, pero en general se siente muy afortunado de estar donde estoy”, escribió.

Una persona muestra el logotipo de ChatGPT en la pantalla de un teléfono inteligente con el logotipo de OpenAI en el fondo el 29 de diciembre de 2024 en Chongqing, China.

Cheng Xin/Getty Images

¿Qué protecciones tienen los titulares de tarjetas verdes?

El USCIS dice que un titular de la tarjeta verde tiene derecho a vivir permanentemente en los EE. UU. Siempre que no cometan ninguna acción que “lo haga removible bajo la ley de inmigración”. Esto incluye romper las leyes y no presentar impuestos.

Un titular de la tarjeta verde está protegido por todas las leyes de los Estados Unidos, incluidas las de los niveles estatales y locales, y pueden solicitar trabajos más libremente que aquellos que pueden estar en los EE. UU. En visas basadas en el trabajo.

Viajar también es mucho más fácil con una tarjeta verde que con otras visas temporales, pero los titulares deben asegurarse de que no se van por más de seis meses a la vez.

“Hay una razón por la cual alguien querría una tarjeta verde en lugar de estar aquí con una visa temporal porque es una residencia permanente legal, le brinda la capacidad de vivir y trabajar permanentemente en los Estados Unidos. Pero dicho eso, no es ciudadanía”, Eliss Taub, socio de la firma de abogados de inmigración Siskind, contada, contada. Newsweek.

Los titulares de tarjetas verdes deben renovar sus tarjetas cada 10 años y pueden solicitar la ciudadanía después de tres años si están casados ​​con un ciudadano estadounidense o cinco si no.

Lo que la gente dice

Un portavoz de OpenAi dijo Newsweek En una respuesta por correo electrónico a una solicitud de comentarios: “Esta solicitud se presentó algún tiempo antes de que nuestro empleado se uniera a OpenAI y no estábamos involucrados en el caso. Sin embargo, nuestra evaluación inicial, basada en la información que nos proporciona, muestra que puede haber algunos problemas de papeleo en la presentación. Continuamos trabajando estrechamente con nuestro empleado en su situación”.

Noam Brown, un empleado de Operai, Escribí en X el sábado: “He estado en IA desde 2012, y he visto suficientes historias de terror de visa desde entonces para saber que la ruptura de la inmigración altamente calificada en Estados Unidos es persistente. Es particularmente doloroso ver que la ruptura ralentiza a mi compañero de equipo durante más de 2 meses cuando el progreso de la IA es semana a semana”.

CEO de Operai Sam Altman en 2023 Escribió en X: “Una de las victorias de política más fáciles que puedo imaginar para los Estados Unidos es reformar la inmigración de alta habilidad. El hecho de que muchas de las personas más talentosas del mundo quieran estar aquí es un regalo ganado con fuerza; abrazarlos es la clave para mantenerlo así. Es difícil recuperar esto si lo perdemos”.

Shaun Ralston, un contratista independiente que brinda soporte para los clientes de API de Openai, escribió en X el viernes: …@Openai presentó más de 80 más H-1BS el año pasado solo. ¿Cuántas mentes más brillantes se alejará la administración Trump a otros países? Hola, Maga, arregle la tubería de talento o deja de hablar sobre el liderazgo de IA “.

Matt Tegarden, el CEO de la Asociación Kansas Livestock, A principios de este mes le dijo Newsweek: “Las empresas se están asegurando de que sus archivos de documentos de empleo están en orden. También están confirmando sus derechos y responsabilidades en esta área, así como ayudando a sus empleados a comprender sus derechos”.

¿Qué pasa después?

La aplicación de la tarjeta verde de Chen tomará tiempo para resolverse, pero parece que el problema raíz ha sido identificado, lo que hace que sea más probable que pueda regresar a los Estados Unidos más temprano que tarde.

Actualización, 26/04/25 a las 4:52 PM ET: Este artículo se ha actualizado para incluir una declaración de OpenAI.

Continue Reading

Trending