The AI world is moving so fast that it’s easy to get lost amid the flurry of shiny new products. OpenAI announces one, then the Chinese startup DeepSeek releases one, then OpenAI immediately puts out another one. Each is important, but focus too much on any one of them and you’ll miss the really big story of the past six months.
Noticias
From OpenAI to DeepSeek, companies say AI can “reason” now. Is it true?
Published
1 mes agoon

The big story is: AI companies now claim that their models are capable of genuine reasoning — the type of thinking you and I do when we want to solve a problem.
And the big question is: Is that true?
The stakes are high, because the answer will inform how everyone from your mom to your government should — and should not — turn to AI for help.
If you’ve played around with ChatGPT, you know that it was designed to spit out quick answers to your questions. But state-of-the-art “reasoning models” — like OpenAI’s o1 or DeepSeek’s r1 — are designed to “think” a while before responding, by breaking down big problems into smaller problems and trying to solve them step by step. The industry calls that “chain-of-thought reasoning.”
These models are yielding some very impressive results. They can solve tricky logic puzzles, ace math tests, and write flawless code on the first try. Yet they also fail spectacularly on really easy problems: o1, nicknamed Strawberry, was mocked for bombing the question “how many ‘r’s are there in ‘strawberry?’”
AI experts are torn over how to interpret this. Skeptics take it as evidence that “reasoning” models aren’t really reasoning at all. Believers insist that the models genuinely are doing some reasoning, and though it may not currently be as flexible as a human’s reasoning, it’s well on its way to getting there.
The best answer will be unsettling to both the hard skeptics of AI and the true believers.
What counts as reasoning?
Let’s take a step back. What exactly is reasoning, anyway?
AI companies like OpenAI are using the term reasoning to mean that their models break down a problem into smaller problems, which they tackle step by step, ultimately arriving at a better solution as a result.
But that’s a much narrower definition of reasoning than a lot of people might have in mind. Although scientists are still trying to understand how reasoning works in the human brain — nevermind in AI — they agree that there are actually lots of different types of reasoning.
There’s deductive reasoning, where you start with a general statement and use it to reach a specific conclusion. There’s inductive reasoning, where you use specific observations to make a broader generalization. And there’s analogical reasoning, causal reasoning, common sense reasoning … suffice it to say, reasoning is not just one thing!
Now, if someone comes up to you with a hard math problem and gives you a chance to break it down and think about it step by step, you’ll do a lot better than if you have to blurt out the answer off the top of your head. So, being able to do deliberative “chain-of-thought reasoning” is definitely helpful, and it might be a necessary ingredient of getting anything really difficult done. Yet it’s not the whole of reasoning.
One feature of reasoning that we care a lot about in the real world is the ability to suss out “a rule or pattern from limited data or experience and to apply this rule or pattern to new, unseen situations,” writes Melanie Mitchell, a professor at the Santa Fe Institute, together with her co-authors in a paper on AI’s reasoning abilities. “Even very young children are adept at learning abstract rules from just a few examples.”
In other words, a toddler can generalize. Can an AI?
A lot of the debate turns around this question. Skeptics are very, well, skeptical of AI’s ability to generalize. They think something else is going on.
“It’s a kind of meta-mimicry,” Shannon Vallor, a philosopher of technology at the University of Edinburgh, told me when OpenAI’s o1 came out in September.
She meant that while an older model like ChatGPT mimics the human-written statements in its training data, a newer model like o1 mimics the process that humans engage in to come up with those statements. In other words, she believes, it’s not truly reasoning. It would be pretty easy for o1 to just make it sound like it’s reasoning; after all, its training data is rife with examples of that, from doctors analyzing symptoms to decide on a diagnosis to judges evaluating evidence to arrive at a verdict.
Besides, when OpenAI built the o1 model, it made some changes from the previous ChatGPT model but did not dramatically overhaul the architecture — and ChatGPT was flubbing easy questions last year, like answering a question about how to get a man and a goat across a river in a totally ridiculous way. So why, Vallor asked, would we think o1 is doing something totally new and magical — especially given that it, too, flubs easy questions? “In the cases where it fails, you see what, for me, is compelling evidence that it’s not reasoning at all,” she said.
Mitchell was surprised at how well o3 — OpenAI’s newest reasoning model, announced at the end of last year as a successor to o1 — performed on tests. But she was also surprised at just how much computation it used to solve the problems. We don’t know what it’s doing with all that computation, because OpenAI is not transparent about what’s going on under the hood.
“I’ve actually done my own experiments on people where they’re thinking out loud about these problems, and they don’t think out loud for, you know, hours of computation time,” she told me. “They just say a couple sentences and then say, ‘Yeah, I see how it works,’ because they’re using certain kinds of concepts. I don’t know if o3 is using those kinds of concepts.”
Without greater transparency from the company, Mitchell said we can’t be sure that the model is breaking down a big problem into steps and getting a better overall answer as a result of that approach, as OpenAI claims.
She pointed to a paper, “Let’s Think Dot by Dot,” where researchers did not get a model to break down a problem into intermediate steps; instead, they just told the model to generate dots. Those dots were totally meaningless — what the paper’s authors call “filler tokens.” But it turned out that just having additional tokens there allowed the model more computational capacity, and it could use that extra computation to solve problems better. That suggests that when a model generates intermediate steps — whether it’s a phrase like “let’s think about this step by step” or just “….” — those steps don’t necessarily mean it’s doing the human-like reasoning you think it’s doing.
“I think a lot of what it’s doing is more like a bag of heuristics than a reasoning model,” Mitchell told me. A heuristic is a mental shortcut — something that often lets you guess the right answer to a problem, but not by actually thinking it through.
Here’s a classic example: Researchers trained an AI vision model to analyze photos for skin cancer. It seemed, at first blush, like the model was genuinely figuring out if a mole is malignant. But it turned out the photos of malignant moles in its training data often contained a ruler, so the model had just learned to use the presence of a ruler as a heuristic for deciding on malignancy.
Skeptical AI researchers think that state-of-the-art models may be doing something similar: They appear to be “reasoning” their way through, say, a math problem, but really they’re just drawing on a mix of memorized information and heuristics.
Other experts are more bullish on reasoning models. Ryan Greenblatt, chief scientist at Redwood Research, a nonprofit that aims to mitigate risks from advanced AI, thinks these models are pretty clearly doing some form of reasoning.
“They do it in a way that doesn’t generalize as well as the way humans do it — they’re relying more on memorization and knowledge than humans do — but they’re still doing the thing,” Greenblatt said. “It’s not like there’s no generalization at all.”
After all, these models have been able to solve hard problems beyond the examples they’ve been trained on — often very impressively. For Greenblatt, the simplest explanation as to how is that they are indeed doing some reasoning.
And the point about heuristics can cut both ways, whether we’re talking about a reasoning model or an earlier model like ChatGPT. Consider the “a man, a boat, and a goat” prompt that had many skeptics mocking OpenAI last year:
What’s going on here? Greenblatt says the model messed up because this prompt is actually a classic logic puzzle that dates back centuries and that would have appeared many times in the training data. In some formulations of the river-crossing puzzle, a farmer with a wolf, a goat, and a cabbage must cross over by boat. The boat can only carry the farmer and a single item at a time — but if left together, the wolf will eat the goat or the goat will eat the cabbage, so the challenge is to get everything across without anything getting eaten. That explains the model’s mention of a cabbage in its response. The model would instantly “recognize” the puzzle.
“My best guess is that the models have this incredibly strong urge to be like, ‘Oh, it’s this puzzle! I know what this puzzle is! I should do this because that performed really well in the training data.’ It’s like a learned heuristic,” Greenblatt said. The implication? “It’s not that it can’t solve it. In a lot of these cases, if you say it’s a trick question, and then you give the question, the model often does totally fine.”
Humans fail in the same way all the time, he pointed out. If you’d just spent a month studying color theory — from complementary colors to the psychological effects of different hues to the historical significance of certain pigments in Renaissance paintings — and then got a quiz asking, “Why did the artist paint the sky blue in this landscape painting?”… well, you might be tricked into writing a needlessly complicated answer! Maybe you’d write about how the blue represents the divine heavens, or how the specific shade suggests the painting was done in the early morning hours which symbolizes rebirth … when really, the answer is simply: Because the sky is blue!
Ajeya Cotra, a senior analyst at Open Philanthropy who researches the risks from AI, agrees with Greenblatt on that point. And, she said of the latest models, “I think they’re genuinely getting better at this wide range of tasks that humans would call reasoning tasks.”
She doesn’t dispute that the models are doing some meta-mimicry. But when skeptics say “it’s just doing meta-mimicry,” she explained, “I think the ‘just’ part of it is the controversial part. It feels like what they’re trying to imply often is ‘and therefore it’s not going to have a big impact on the world’ or ‘and therefore artificial superintelligence is far away’ — and that’s what I dispute.”
To see why, she said, imagine you’re teaching a college physics class. You’ve got different types of students. One is an outright cheater: He just looks in the back of the book for the answers and then writes them down. Another student is such a savant that he doesn’t even need to think about the equations; he understands the physics on such a deep, intuitive, Einstein-like level that he can derive the right equations on the fly. All the other students are somewhere in the middle: They’ve memorized a list of 25 equations and are trying to figure out which equation to apply in which situation.
Like the majority of students, AI models are pairing some memorization with some reasoning, Cotra told me.
“The AI models are like a student that is not very bright but is superhumanly diligent, and so they haven’t just memorized 25 equations, they’ve memorized 500 equations, including ones for weird situations that could come up,” she said. They’re pairing a lot of memorization with a little bit of reasoning — that is, with figuring out what combination of equations to apply to a problem. “And that just takes you very far! They seem at first glance as impressive as the person with the deep intuitive understanding.”
Of course, when you look harder, you can still find holes that their 500 equations just happen not to cover. But that doesn’t mean zero reasoning has taken place.
In other words, the models are neither exclusively reasoning nor exclusively just reciting.
“It’s somewhere in between,” Cotra said. “I think people are thrown off by that because they want to put it in one camp or another. They want to say it’s just memorizing or they want to say it’s truly deeply reasoning. But the fact is, there’s just a spectrum of the depth of reasoning.”
AI systems have “jagged intelligence”
Researchers have come up with a buzzy term to describe this pattern of reasoning: “jagged intelligence.” It refers to the strange fact that, as computer scientist Andrej Karpathy explained, state-of-the-art AI models “can both perform extremely impressive tasks (e.g., solve complex math problems) while simultaneously struggling with some very dumb problems.”

Drew Shannon for Vox
Picture it like this. If human intelligence looks like a cloud with softly rounded edges, artificial intelligence is like a spiky cloud with giant peaks and valleys right next to each other. In humans, a lot of problem-solving capabilities are highly correlated with each other, but AI can be great at one thing and ridiculously bad at another thing that (to us) doesn’t seem far apart.
Mind you, it’s all relative.
“Compared to what humans are good at, the models are quite jagged,” Greenblatt told me. “But I think indexing on humans is a little confusing. From the model’s perspective, it’s like, ‘Wow, those humans are so jagged! They’re so bad at next-token prediction!’ It’s not clear that there’s some objective sense in which AI is more jagged.”
The fact that reasoning models are trained to sound like humans reasoning makes us disposed to compare AI intelligence to human intelligence. But the best way to think of AI is probably not as “smarter than a human” or “dumber than a human” but just as “different.”
Regardless, Cotra anticipates that sooner or later AI intelligence will be so vast that it can contain within it all of human intelligence, and then some.
“I think about, what are the risks that emerge when AI systems are truly better than human experts at everything? When they might still be jagged, but their full jagged intelligence encompasses all of human intelligence and more?” she said. “I’m always looking ahead to that point in time and preparing for that.”
For now, the practical upshot for most of us is this: Remember what AI is and isn’t smart at — and use it accordingly.
The best use case is a situation where it’s hard for you to come up with a solution, but once you get a solution from the AI you can easily check to see if it’s correct. Writing code is a perfect example. Another example would be making a website: You can see what the AI produced and, if you don’t like it, just get the AI to redo it.
In other domains — especially ones where there is no objective right answer or where the stakes are high — you’ll want to be more hesitant about using AI. You might get some initial suggestions from it, but don’t put too much stock in it, especially if what it’s saying seems off to you. An example would be asking for advice on how to handle a moral dilemma. You might see what thoughts the model is provoking in you without trusting it as giving you the final answer.
“The more things are fuzzy and judgment-driven,” Cotra said, “the more you want to use it as a thought partner, not an oracle.”
You may like
Noticias
Google lanza Gemini 2.5 Pro, empujando los límites del razonamiento de IA
Published
8 horas agoon
27 marzo, 2025
Géminis 2.5
Gemini 2.5 Pro es el último modelo de IA multimodal a gran escala de Google Deepmind, diseñado con capacidades incorporadas de “pensamiento” para manejar tareas complejas. Como el primer lanzamiento de la serie Gemini 2.5, el modelo Pro lidera muchos puntos de referencia de la industria mediante márgenes significativos y demuestra fuertes capacidades de razonamiento y codificación.
A diferencia de las generaciones anteriores de IA que simplemente predijeron texto basado en patrones, Gemini 2.5 Pro está diseñado para analizar la información profundamente, sacar conclusiones lógicas, incorporar un contexto matizado y tomar decisiones informadas antes de responder. Esta evolución en las posiciones de diseño Gemini 2.5 Pro como un modelo de propósito general altamente avanzado que es adecuado para aplicaciones empresariales que exigen precisión y adaptabilidad.
En el núcleo de las características avanzadas de Gemini 2.5 Pro hay un cambio fundamental en su diseño arquitectónico, avanzando hacia lo que Google se refiere como un “modelo de pensamiento”. Esto indica una ruptura de los modelos de IA tradicionales centrados principalmente en la predicción y la clasificación hacia un sistema que se involucra en la deliberación y el razonamiento internos antes de generar una respuesta. Este enfoque intencional conduce a un rendimiento y una precisión significativamente mejorados, especialmente cuando se abordan tareas complejas que requieren más que un mero reconocimiento de patrones.
El rendimiento mejorado de Gemini Pro 2.5 no se debe únicamente al aumento de la potencia computacional o el tamaño del modelo. Más bien, surge de una combinación sofisticada de un modelo base subyacente muy mejorado, aprovechando los avances en la arquitectura de la red neuronal, los conjuntos de datos de entrenamiento extensos y las metodologías refinadas posteriores a la capacitación. Estas técnicas posteriores a la capacitación, que con frecuencia implican el aprendizaje de refuerzo, son cruciales para ajustar el comportamiento del modelo, asegurando una mayor calidad y resultados más relevantes. Esta evolución arquitectónica permite que el modelo realice análisis de información más exhaustivos, lleguen a conclusiones más precisas y lógicas, comprenda mejor e incorpore matices contextuales y, en última instancia, tome decisiones más informadas y confiables, capacidad que son esenciales para aplicaciones comerciales estratégicas.
Más allá del razonamiento abstracto, Gemini 2.5 Pro ofrece un conjunto de capacidades avanzadas que son directamente relevantes para las necesidades empresariales. Lo más destacado es su mejora significativa en el dominio de la codificación. Los ingenieros de Google informan que el rendimiento de la codificación experimentó un salto considerable de Gemini 2.0 a 2.5, con más mejoras en el horizonte. El modelo 2.5 Pro se destaca en la generación y el código de refinación, capaz de crear un software complejo, como una aplicación web interactiva funcional, desde un aviso de alto nivel. En una demostración, el modelo desarrolló un juego completo de “corredor interminable” en HTML/JS a partir de un mensaje de una sola línea, ilustrando su capacidad para administrar las tareas de codificación a nivel de proyecto de forma autónoma. Gemini 2.5 Pro también se destaca en una sólida transformación y edición de código, por lo que es valioso para tareas como refactorizar el código heredado o la traducción del código entre idiomas. En un punto de referencia de ingeniería de software estandarizado (verificado por el banco SWE), el modelo logró una puntuación alta (63.8%) utilizando una configuración de agente autónomo, lo que indica su fuerza para abordar los desafíos de codificación complejos de varios pasos. Para las empresas, esto significa que la IA puede funcionar no solo como un asistente de conversación sino también como una ayuda de codificación capaz o incluso un agente de software semiautónomo.
Géminis 2.5 Pro
Como parte del ecosistema de Géminis más amplio, Google también ha introducido TXGEMMA, un conjunto de modelos abiertos dirigidos a desafíos especializados de la industria. TXGEMMA es una colección de modelos derivados de la Serie Ligera de Gemma (versiones de código abierto de Gemini Technology) y adaptado específicamente para el desarrollo terapéutico de fármacos y biotecnología. Estos modelos están capacitados para comprender y predecir las propiedades de posibles medicamentos y terapias génicas, lo que ayuda a los investigadores a identificar candidatos prometedores e incluso pronosticar resultados de ensayos clínicos.
En esencia, TXGEMMA toma las técnicas de modelado y razonamiento del lenguaje central de Géminis y las aplica al dominio farmacéutico, donde puede examinar la literatura biomédica, los datos químicos y los resultados del ensayo para ayudar en las decisiones de I + D. El modelo de TXGEMMA más grande (con 27 mil millones de parámetros) ha demostrado el rendimiento a la par o excediendo modelos especializados en muchas tareas de descubrimiento de fármacos, todo mientras se conserva las habilidades generales de razonamiento. Para los líderes empresariales en atención médica y ciencias de la vida, TXGEMMA muestra la adaptabilidad de la arquitectura de Géminis a dominios misioneros críticos: ilustra cómo la IA de vanguardia puede acelerar flujos de trabajo altamente específicos como el descubrimiento de fármacos que tradicionalmente llevan años e incurrir en costos masivos.
Gemini 2.5 Pro representa un paso adelante significativo en el diseño del modelo de IA, combinando la potencia bruta con capacidades de razonamiento refinado que abordan directamente las tareas complejas del mundo real. Su arquitectura, con multimodalidad nativa y una longitud de contexto sin precedentes, permite a las empresas traer una variedad más rica de datos para tener problemas, extrayendo ideas que los modelos anteriores podrían haberse perdido. El fuerte desempeño del modelo en los puntos de referencia de codificación y razonamiento brinda la confianza de que puede manejar aplicaciones exigentes, desde la automatización de partes de la ingeniería de software hasta dar sentido a las amplias bases de conocimiento corporativo. Con el soporte de Google para la integración empresarial a través de plataformas en la nube y la aparición de ramas específicas de dominio como TXGEMMA, el ecosistema Gemini 2.5 Pro está listo para proporcionar la inteligencia general y las habilidades especializadas que buscan las empresas modernas. Para las CXO que planea la estrategia de IA de su empresa, Gemini 2.5 Pro ofrece una vista previa de cómo se pueden implementar sistemas de IA de próxima generación para impulsar la innovación y la ventaja competitiva, todos centrados en un razonamiento más profundo, un contexto más amplio y resultados tangibles.
Noticias
Gemini 2.5 Pro está aquí, y cambia el juego AI (nuevamente)
Published
13 horas agoon
26 marzo, 2025
Google ha presentado Gemini 2.5 Pro, llamándolo “Modelo de IA más inteligente” hasta la fecha. Este último modelo de lenguaje grande, desarrollado por el equipo de Google Deepmind, se describe como un “modelo de pensamiento” diseñado para abordar problemas complejos razonando a través de pasos internamente antes de responder. Los primeros puntos de referencia respaldan la confianza de Google: Gemini 2.5 Pro (un primer lanzamiento experimental de la serie 2.5) debutan en el número 1 en la tabla de clasificación Lmarena de asistentes de IA por un margen significativo, y lidera muchas pruebas estándar para la codificación, las matemáticas y las tareas científicas.
Las nuevas capacidades y características clave en Gemini 2.5 Pro incluyen:
- Razonamiento de la cadena de pensamiento: A diferencia de los chatbots más sencillos, Gemini 2.5 Pro explícitamente “piensa” a través de un problema internamente. Esto lleva a respuestas más lógicas y precisas sobre consultas difíciles, desde rompecabezas lógicos difíciles hasta tareas de planificación complejas.
- Rendimiento de última generación: Google informa que 2.5 Pro supera los últimos modelos de OpenAI y Anthrope en muchos puntos de referencia. Por ejemplo, estableció nuevos máximos en las pruebas de razonamiento difíciles como el último examen de la humanidad (puntuando 18.8% frente a 14% para el modelo de OpenAI y 8.9% para Anthrope’s), y lidera en varios desafíos de matemáticas y ciencias sin necesidad de trucos costosos como la votación en conjunto.
- Habilidades de codificación avanzada: El modelo muestra un gran salto en la capacidad de codificación sobre su predecesor. Se destaca en la generación y edición del código para aplicaciones web e incluso scripts autónomos de “agente”. En el punto de referencia de codificación SWE-Bench, Gemini 2.5 Pro alcanzó una tasa de éxito del 63.8%, muy por delante de los resultados de OpenAi, aunque todavía un poco detrás del modelo especializado de “soneto” “soneto” de Anthrope (70.3%).
- Comprensión multimodal: Al igual que los modelos Gemini anteriores, 2.5 Pro es multimodal nativo: puede aceptar y razonar sobre texto, imágenes, audio, incluso videos e entrada de código en una conversación. Esta versatilidad significa que podría describir una imagen, depurar un programa y analizar una hoja de cálculo, todo dentro de una sola sesión.
- Ventana de contexto masivo: Quizás lo más impresionante, Gemini 2.5 Pro puede manejar hasta 1 millón de tokens de contexto (con una actualización de tokens de 2 millones en el horizonte). En términos prácticos, eso significa que puede ingerir cientos de páginas de textos o repositorios de código enteros a la vez sin perder el seguimiento de los detalles. Esta larga memoria supera enormemente lo que ofrecen la mayoría de los otros modelos de IA, permitiendo que Gemini mantenga una comprensión detallada de documentos o discusiones muy grandes.
Según Google, estos avances provienen de un modelo base significativamente mejorado combinado con técnicas mejoradas después de la capacitación. En particular, Google también retira la marca separada de “pensamiento flash” que utilizó para Gemini 2.0; Con 2.5, las capacidades de razonamiento ahora están incorporadas de forma predeterminada en todos los modelos futuros. Para los usuarios, eso significa que incluso las interacciones generales con Gemini se beneficiarán de este nivel más profundo de “pensar” debajo del capó.
Implicaciones para la automatización y diseño
Más allá del zumbido de los puntos de referencia y la competencia, la importancia real de Gemini 2.5 Pro puede estar en lo que permite para los usuarios finales e industrias. El fuerte desempeño del modelo en las tareas de codificación y razonamiento no se trata solo de resolver acertijos para alardear de los derechos: insinúa nuevas posibilidades para la automatización del lugar de trabajo, el desarrollo de software e incluso el diseño creativo.
Tome la codificación, por ejemplo. Con la capacidad de generar código de trabajo a partir de un mensaje simple, Gemini 2.5 Pro puede actuar como un multiplicador de proyecto para los desarrolladores. Un solo ingeniero podría potencialmente prototipos de una aplicación web o analizar una base de código completa con asistencia de IA que maneja gran parte del trabajo de gruñidos. En una demostración de Google, el modelo creó un videojuego básico desde cero dada solo una descripción de una oración. Esto sugiere un futuro en el que los no programadores describirán una idea y obtendrán una aplicación en ejecución en respuesta (“codificación de vibos”), bajando drásticamente la barrera para la creación de software.
Incluso para desarrolladores experimentados, tener una IA que pueda comprender y modificar repositorios de código grandes (gracias a ese contexto de 1 m) significa una depuración más rápida, revisiones de código y refactorización. Nos estamos moviendo hacia una era de programadores de pares de IA que pueden mantener el “Gran imagen” de un proyecto complejo en su cabeza, por lo que no tiene que recordarles el contexto con cada aviso.
Las habilidades de razonamiento avanzado de Gemini 2.5 también juegan en la automatización del trabajo de conocimiento. Los primeros usuarios han intentado alimentarse en largos contratos y pedirle al modelo que extraiga cláusulas clave o resume puntos, con resultados prometedores. Imagine automatizar partes de la revisión legal, la investigación de diligencia debida o el análisis financiero al dejar que la IA pase a través de cientos de páginas de documentos y retire lo que importa, tareas que actualmente comen innumerables horas humanas.
La habilidad multimodal de Gemini significa que incluso podría analizar una mezcla de textos, hojas de cálculo y diagramas juntos, dando un resumen coherente. Este tipo de IA podría convertirse en un asistente invaluable para profesionales en derecho, medicina, ingeniería o cualquier campo ahogamiento en datos y documentación.
Para los campos creativos y el diseño de productos, modelos como Gemini 2.5 Pro también abren posibilidades intrigantes. Pueden servir como socios de lluvia de ideas, por ejemplo, que generan conceptos de diseño o copia de marketing mientras razonan sobre los requisitos, o como prototipos rápidos que transforman una idea aproximada en un borrador tangible. El énfasis de Google en el comportamiento de la agente (la capacidad del modelo para usar herramientas y realizar planes de varios pasos de forma autónoma) sugerencias de que las versiones futuras podrían integrarse directamente con el software.
Uno podría imaginar una IA de diseño que no solo sugiere ideas, sino que también navega por el software de diseño o escribe código para implementar esas ideas, todas guiadas por instrucciones humanas de alto nivel. Tales capacidades difuminan la línea entre “Thinker” y “Doer” en el reino de AI, y Gemini 2.5 es un paso en esa dirección, una IA que puede conceptualizar soluciones y ejecutarlas en varios dominios.
Sin embargo, estos avances también plantean preguntas importantes. A medida que AI asume tareas más complejas, ¿cómo nos aseguramos de que comprenda los matices y los límites éticos (por ejemplo, al decidir qué cláusulas de contrato son sensibles o cómo equilibrar los aspectos creativos frente a los aspectos prácticos en el diseño)? Google y otros necesitarán construir barandillas robustas, y los usuarios necesitarán aprender nuevos conjuntos de habilidades, lo que solicita y supervisará la IA, a medida que estas herramientas se convierten en compañeros de trabajo.
No obstante, la trayectoria es clara: modelos como Gemini 2.5 Pro están empujando la IA más profundamente en roles que anteriormente requerían inteligencia humana y creatividad. Las implicaciones para la productividad y la innovación son enormes, y es probable que veamos efectos dominantes en cómo se construyen los productos y cómo se realiza el trabajo en muchas industrias.
Géminis 2.5 y el nuevo campo AI
Con Gemini 2.5 Pro, Google está apostando un reclamo a la vanguardia de la carrera de IA, y enviando un mensaje a sus rivales. Hace solo un par de años, la narración era que la IA de Google (piense en las primeras iteraciones de Bard) estaba rezagada detrás de Chatgpt de OpenAi y los movimientos agresivos de Microsoft. Ahora, al organizar el talento combinado de Google Research y DeepMind, la compañía ha entregado un modelo que puede competir legítimamente por el título del mejor asistente de IA en el planeta.
Esto es un buen augurio para el posicionamiento a largo plazo de Google. Los modelos de IA se consideran cada vez más como plataformas centrales (al igual que los sistemas operativos o los servicios en la nube), y tener un modelo de nivel superior le da a Google una mano fuerte para jugar en todo, desde ofertas de la nube empresarial (Google Cloud/Vertex AI) hasta servicios de consumo como búsqueda, aplicaciones de productividad y Android. A la larga, podemos esperar que la familia Gemini se integre en muchos productos de Google, potencialmente sobrealimentando el Asistente de Google, mejorando las aplicaciones de Google Workspace con características más inteligentes y mejorando la búsqueda con habilidades más conversacionales y conscientes del contexto.
El lanzamiento de Gemini 2.5 Pro también destaca cuán competitivo se ha vuelto el panorama de IA. Operai, antrópico y otros jugadores como Meta y Startups emergentes están iterando rápidamente en sus modelos. Cada salto de una empresa, ya sea una ventana de contexto más amplia, una nueva forma de integrar herramientas o una nueva técnica de seguridad, es respondida rápidamente por otros. El movimiento de Google para incrustar el razonamiento en todos sus modelos es estratégico, asegurando que no se quede atrás en la “inteligencia” de su IA. Mientras tanto, la estrategia de Anthrope de dar a los usuarios más control (como se ve con la profundidad de razonamiento ajustable de Claude 3.7) y los refinamientos continuos de OpenAI a GPT-4.X mantienen la presión sobre.
Para los usuarios finales y los desarrolladores, esta competencia es en gran medida positiva: significa mejores sistemas de IA que llegan más rápido y más opciones en el mercado. Estamos viendo un ecosistema de IA en el que ninguna empresa tiene el monopolio de la innovación, y esa dinámica empuja a cada uno a sobresalir, al igual que los primeros días de la computadora personal o las guerras de teléfonos inteligentes.
En este contexto, la versión de Gemini 2.5 Pro es más que una actualización de productos de Google: es una declaración de intención. Se indica que Google pretende no ser solo un seguidor rápido sino un líder en la nueva era de la IA. La compañía está aprovechando su infraestructura informática masiva (necesaria para entrenar modelos con más de 1 millones de contextos tokens) y vastas recursos de datos para superar los límites que pocos otros pueden. Al mismo tiempo, el enfoque de Google (implementando modelos experimentales para usuarios de confianza, integrando AI en su ecosistema cuidadosamente) muestra un deseo de equilibrar la ambición con la responsabilidad y la practicidad.
Como Koray Kavukcuoglu, CTO de Google Deepmind, lo expresó en el anuncio, el objetivo es hacer que la IA sea más útil y capaz al mejorarlo a un ritmo rápido.
Para los observadores de la industria, Gemini 2.5 Pro es un hito que marca qué tan lejos ha llegado la IA a principios de 2025, y un indicio de hacia dónde va. El bar de “estado del arte” sigue aumentando: hoy es razonamiento y destreza multimodal, mañana podría ser algo así como la resolución de problemas o la autonomía aún más general. El último modelo de Google muestra que la compañía no solo está en la carrera, sino que tiene la intención de dar forma a su resultado. Si Gemini 2.5 tiene algo que ver, la próxima generación de modelos de IA estará aún más integrada en nuestro trabajo y vidas, lo que nos lleva a volver a imaginar cómo usamos la inteligencia de la máquina.
Noticias
Usé IA para planificar mis comidas durante una semana, esta es mi opinión honesta.
Published
15 horas agoon
26 marzo, 2025
Como escritor, siempre he sido reclino de AI. ¿Robará mi trabajo? ¿Terminará tomando el mundo como esos robots en esa película de Will Smith? Dejando de lado mis dramáticas preocupaciones, me encontré increíblemente intrigado cuando recientemente encontré varias publicaciones en X (anteriormente Twitter) por personas que usaban ChatGPT para crear listas de compras y planificar sus comidas durante una semana. Cualquier cosa que haga que esta tarea semanal sea más fácil es algo que pueda respaldar, o al menos probar.
Entonces, como experimento, en lugar de llenar mi carrito de compras con los sospechosos habituales, utilicé ChatGPT para crear un plan de comidas de cinco días y mi lista de compras. Esto es lo que siguió:
El proceso
Para que Chatgpt se encargue de esta tarea para mí, escribí el siguiente comando: “Cree una lista de comestibles y recetas (desayuno, almuerzo, cena y bocadillos) para los lunes a viernes. El presupuesto es de $ 75. No incluya tomates, guisantes u avena. Las recetas deben ser bastante saludables y densas en nutrientes. ¡Gracias!”
Traté de ser lo más específico posible sin hacer demasiado. También quería desafiar a ChatGPT financieramente lanzando un presupuesto modesto. Y me aseguré de mantenerlo lindo y amable con un poco de gratitud al final (me niego a ser Yo, robot‘d). Al recibir mis resultados, había un ingrediente que sabía que quería salir. “Eso es genial, pero no tofu”, escribí al chatbot.
“¡Lo tengo! Ajustaré el plan y eliminaré el tofu, reemplazándolo con otras opciones de proteínas”, respondió ChatGPT, antes de compartir una lista de comestibles y un plan de comidas actualizados.
Y así, tenía una lista completa de comestibles y comidas de lunes a viernes. Aunque ChatGPT hizo todo el trabajo, me sentí productivo de alguna manera. Algo sobre las comidas planeadas para la semana realmente se quita una carga. Tenía esperanzas.
Las comidas
Aquí está el plan de comidas Chatgpt diseñado para mí, a continuación. Para ahorrarle mucha redundancia, he notado algunos, pero no todas, de las instrucciones que Chatgpt me dio en cuanto a la preparación. (La mayoría de estas comidas son bastante fáciles de hacer sin mucha dirección externa).
Lunes
Desayuno: Huevos revueltos con espinacas
Almuerzo: Ensalada de atún con aceite de oliva, pepinos y zanahorias
Cena: Pollo a la parrilla con batatas asadas y brócoli (Sazone el pollo con sal, pimienta y ajo en polvo, luego sea la parrilla o la sartén; las batatas de cubos y asanlos con aceite de oliva, sal y pimienta a 400 ° F durante 25 minutos; brócoli de vapor).
Bocadillo: Yogurt griego con bayas.
Martes
Desayuno: Yogurt griego con mantequilla de plátano y maní (Corte el plátano y agregue a un tazón de yogurt griego; rocíe con mantequilla de maní para proteínas agregadas).
Almuerzo: Vegetal salteado con pollo y arroz marrón (Corte el pollo y cocine en aceite de oliva hasta que se dore; Agregue verduras congeladas y saltee con salsa de soja; Servir con arroz integral).
Cena: Pechuga de pollo al horno con calabacín asado y batatas
Bocadillo: Zanahorias con mantequilla de maní
Miércoles
Desayuno: Huevos revueltos con pimiento rojo y espinacas
Almuerzo: Envoltura de pollo y verduras con pan de trigo integral (Corte el pollo a la parrilla y coloque en una envoltura con espinacas y pepino. Rocíe con aceite de oliva y enrolle.)
Cena: Salteado de pollo con brócoli y arroz marrón
Bocadillo: Yogurt griego con llovizna de miel
Jueves
Desayuno: Tostada de mantequilla de plátano y maní
Almuerzo: Ensalada de atún en tostada de trigo entero (Mezcle el atún enlatado con pepino picado y aceite de oliva; extienda la mezcla sobre pan de trigo integral tostado).
Cena: Pollo horneado con verduras asadas
Bocadillo: Zanahorias con salsa de yogurt griega
Viernes
Desayuno: Veggie Scramble con huevos
Almuerzo: Tazón de pollo y arroz (Cocine el pollo y córtelo; sirva con arroz integral y brócoli al vapor; rocíe con salsa de soja).
Cena: Pollo salteado con verduras mixtas y batata
Bocadillo: Yogurt griego con un puñado de bayas congeladas.
Al revisar las diversas comidas que se proporcionan Chatgpt, desearía que incluya “Hacerlo sabroso” en mi solicitud inicial. Tengo que admitir que mis papilas gustativas estaban bastante aburridas el miércoles. No tengo nada contra el pollo, pero ahora sufro un caso importante de fatiga avícola.
Las compras de comestibles
Chatgpt me dio esta lista para hacer mis comidas, junto con su precio para cada artículo:
Desglose del presupuesto:
- Huevos: $ 2.50
- Pechuga de pollo (1 lb): $ 6.00
- TUMA CONDIVADO: $ 1.00
- Frijoles negros (1 lata): $ 1.00
- Yogurt griego (32 oz): $ 4.00
- Espinacas (1 grupo): $ 1.50
- Brócoli (1 cabeza): $ 2.00
- Batatas (2): $ 3.00
- Calabacín (2): $ 1.50
- Pepino (1): $ 1.00
- Zanahorias (1 lb): $ 1.50
- Pimiento rojo (1): $ 1.00
- Verduras mixtas congeladas: $ 2.00
- Bananas (2): $ 1.00
- Manzanas (2): $ 1.50
- Bayas congeladas: $ 3.00
- Pan de trigo integral: $ 2.00
- Arroz marrón: $ 2.00
- Pasta de trigo integral: $ 1.50
- Queso cheddar: $ 2.50
- Leche: $ 1.50
- Mantequilla de maní: $ 2.00
- Aceite de oliva, salsa de soja, sal, pimienta, ajo en polvo, cebolla en polvo: ~ $ 6.00
Total: ~ $ 74.50
También incluyó este mensaje agradable en buena medida: “Esto debería estar dentro de su presupuesto mientras mantiene las comidas saludables y equilibradas. ¡Disfruta!”
Primero: el presupuesto. Ya tenía aceite de oliva, salsa de soja y los condimentos disponibles, por lo que no necesitaba comprarlos. Afortunadamente, tenía todos esos ingredientes porque no hay forma de que cuestan solo $ 6 juntos. ¡El aceite de oliva solo es más que eso! (Me pregunté si ChatGPT estaba calculando ese precio según la cantidad que usaría.
Compré más de una sola libra de pollo, no seguro si se trataba de un error de chatgpt, pero dada la cantidad de comidas que llamaban al pollo, me quedé con mi paquete habitual, que está más cerca de una libra y media. Para hacer mis compras, utilicé Instacart, que tiende a ser más caro que ir en persona, pero obtuve dentro de aproximadamente $ 10 de ese presupuesto de $ 75. ¡No está mal, chatgpt!
(Notaré que estaba cocinando para mí, pero con la cantidad de artículos comprados, habría habido mucha comida para uno, tal vez incluso otras dos personas).
Ahora, aquí es donde las cosas se ponen raras. Después de comprar los comestibles, comparé las comidas con la lista de comestibles, y algo importante se destacó. Varios de los artículos enumerados en la lista de compras no se usaron en las comidas. Sé que ChatGPT es plenamente consciente del costo de los comestibles, así que por qué me haría comprar cinco artículos (¡sí, cinco!) Que no necesitaba está más allá de mí. En caso de que se lo pregunte, esos cinco artículos eran una lata de frijoles negros, pasta de trigo integral, queso, manzanas y leche. Sinceramente, todavía estoy rascándome la cabeza sobre este.

Dejando a un lado la lista de compras, estaba emocionado de probar algunas recetas nuevas (y saludables). Y me complace decir que encontré algunos favoritos nuevos gracias a este pequeño experimento. Entre mis recetas favoritas estaban el yogur griego con plátanos y mantequilla de maní (también agregué una llovizna de miel) y salteado de verduras con pollo y arroz integral.
Pero, hubo casos en los que se sentía absolutamente como si las comidas fueran planificadas por un robot. Por ejemplo, una envoltura de sándwich hecha “usando pan de trigo integral” me pareció un poco extraño. ¿Cómo “enrollar” una rebanada de pan? Y las bayas frescas habrían sido una mejor compra que las bayas congeladas, dado que las estaba usando como una cobertura de yogurt.
El veredicto
El fiasco de la lista de comestibles me apagó, pero avanzé. Y tal vez debería haber presionado ese carrito de comestibles virtual muy, muy lejos porque, en última instancia, esta es una técnica sin la que puedo prescindir. Además de un puñado de favoritos, las comidas sugeridas eran decepcionantes. La conveniencia de todo simplemente no valió la pena para mí. Estoy seguro de que obtendría mejores resultados con un presupuesto más grande y solicitudes más específicas, pero prefiero trabajar con una persona humana real en un plan de comidas que se adapte a mí individualmente.
¡Ahora, por favor envíeme todas sus recetas favoritas de pollo y sin atún!
Danielle Harling es una escritora independiente con sede en Atlanta con un amor por los espacios diseñados con colores, cócteles artesanales y compras en línea (generalmente para tacones de diseñador que rompen el presupuesto). Su trabajo anterior ha aparecido en Fodor’s, Forbes, Mydomaine, Architectural Digest y más.
Related posts






































































































































































































































Trending
-
Startups10 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos11 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Tutoriales11 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Startups9 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Recursos11 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Startups11 meses ago
Deepgram: Revolucionando el Reconocimiento de Voz con IA
-
Recursos10 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Noticias8 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo