Connect with us

Noticias

Google Cloud anuncia productos de IA, iniciativas de habilidades y créditos de inicio para organizaciones en todo el Reino Unido

Published

on

  • Google Cloud y Google Deepmind CEOs CEOS “Géminis para el Reino Unido“Evento en Londresjunto con líderes de la industria de BT Group y WPP
  • Google Cloud presenta nuevas actualizaciones de productos de IA, incluido el lanzamiento de Chirp 3 en Vertex AI y la residencia de datos del Reino Unido para Agentspace
  • Google Cloud expande sus iniciativas de AI Skilling, aumentando el acceso a programas de capacitación y certificación para desarrolladores, estudiantes, profesionales e instituciones de educación superior en el Reino Unido, todo sin costo sin costo.
  • El programa de inicio de Google Cloud ofrece hasta £ 280,000 para nuevas empresas de IA en todo el Reino Unido

LONDRES, 17 de marzo de 2025 / PRNewswire/ – Google Cloud anunció hoy nuevos productos de IA, así como iniciativas y capacitación en habilidades para el Reino Unido en un exclusivo “Géminis para el Reino UnidoEvento celebrado en Google Deepmind’s Londres sede. El evento reforzó la dedicación a largo plazo de Google Cloud al Reino Unido, destacada por su $ 1 mil millones Inversión en un nuevo centro de datos, que se inaugura este año, junto con iniciativas en curso para capacitar el desarrollo de IA de la nación.

Moderado por la emisora ​​británica Tina Daheley, el evento del panel ofreció una rara oportunidad de escuchar a los líderes de la industria, incluido el CEO de Google Cloud Thomas Kurianquien describió su visión para el futuro de la innovación de IA en el Reino Unido, y el CEO de Google Deepmind, Sir Demis Hassabis. Se les unió el director ejecutivo del Grupo BT Allison Kirkby y CEO de WPP Mark Read CBEquienes discutieron las aplicaciones prácticas y el poder transformador de la IA dentro de sus organizaciones e industrias.

“Nuestra profunda relación con Google Deepmind nos permite llevar parte de la tecnología de IA más de vanguardia del mundo a nuestros clientes de la nube, que van desde nuevas empresas hasta grandes empresas”, dijo Thomas KurianCEO, Google Cloud. “Somos de manera exclusiva de proporcionar infraestructura segura y flexible; modelos líderes de IA; y una plataforma de desarrollador abierta que se integra con las inversiones de TI existentes mientras mantiene controles de seguridad, privacidad y acceso, a organizaciones en el Reino Unido y en todo el mundo”.

“Estoy muy orgulloso de nuestras raíces del Reino Unido, ya que fundó Google Deepmind en Londresen gran parte debido al increíble talento e instituciones académicas con sede aquí “, dijo el CEO y cofundador de Google Deepmind, Demis Hassabis.” A medida que la sala de máquinas para Google, a través de nuestros modelos de Gemini, seguimos contribuyendo al próspero sector tecnológico del Reino Unido al ayudar a los desarrolladores y empresas en todo el Reino Unido y en el mundo, los avances con la ayuda de la IA “.

Disponibilidad de Chirp 3 en Vertex AI
Concronizado con el evento de hoy, Google Cloud anunció que Chirp 3, el innovador modelo de generación de audio de Google, se une a Gemini, Imagen y VEO en Vertex AI. A partir de la próxima semana, las voces HD, impulsadas por Chirp 3, estarán generalmente disponibles en 31 idiomas, ofreciendo 248 voces distintas con ocho opciones de altavoces. Chirp 3 en Vertex Ai ofrece una funcionalidad detallada del habla que captura los matices de la entonación humana, haciendo que las conversaciones sean más atractivas e inmersivas. Esto es ideal para una variedad de casos de uso del cliente, incluida la anotación de voz, la transcripción de reuniones en tiempo real, los audiolibros y la colección de sentimientos de las llamadas de los clientes.

Residencia ampliada de datos del Reino Unido para Google Agentspace
Anteriormente, Google Cloud anunció que las organizaciones del Reino Unido que abarcan todas las industrias, incluido el sector público, tienen la opción de almacenar sus datos en el inicio y realizar el procesamiento de aprendizaje automático utilizando el modelo de idioma grande de vanguardia de Google, Gemini 1.5 Flash, completamente dentro del Reino Unido.

Hoy, Google Cloud anunció que está ampliando su compromiso de residencia de datos del Reino Unido para incluir Google Agentspace, con la disponibilidad en el segundo trimestre. Agentspace desbloquea la experiencia empresarial para empleados con agentes que reúnen el razonamiento avanzado de Gemini, la búsqueda de calidad de Google y los datos empresariales, independientemente de dónde esté alojado.

Agentspace ayuda a los empleados a ser más creativos y productivos. Incluye Notebooklm Enterprise que ayuda a los empleados a sintetizar rápidamente grandes cantidades de información para descubrir nuevas ideas. También incluye un agente de búsqueda multimodal único de la compañía que los empleados pueden usar para responder preguntas complejas y tomar acciones específicas basadas en la información de propiedad de una organización, incluidos datos no estructurados, como documentos e información almacenadas, las aplicaciones de terceros. Finalmente, AgentSpace permite la creación de agentes de IA personalizados que aplican la IA generativa contextualmente, capacitando a los empleados de cualquier departamento para realizar investigaciones profundas, crear contenido y automatizar procesos repetitivos.

Iniciativas de Skilling de IA expandidas en el Reino Unido
A medida que AI reinicia las industrias, equipar a la población británica con el conocimiento y las habilidades para usar esta nueva tecnología es primordial. Durante la última década, Google ha capacitado a más de un millón de personas, incluidos estudiantes, educadores, propietarios de pequeñas empresas y desarrolladores, en más de 500 ubicaciones en el Reino Unido, subrayando su compromiso de hacer que las habilidades digitales sean accesibles para todos. Y, durante casi dos años, Google ha brindado capacitación en fundamentos de IA a través de Google Digital Garage sin cargo.

Hoy, basándose en este progreso, Google Cloud anunció una expansión de sus iniciativas de Skilling AI en el Reino Unido, ofreciendo nuevos programas de capacitación y certificación para desarrolladores, estudiantes, profesionales e instituciones de educación superior, todo sin costo. Estas iniciativas se alinean con el compromiso más amplio de Google Cloud para fomentar la alfabetización de IA y preparar la fuerza laboral para el futuro. Al proporcionar recursos de capacitación accesibles y de alta calidad a través de su plataforma de aprendizaje a pedido, Google Cloud Skills Boost, Google Cloud tiene como objetivo cerrar la brecha de habilidades y capacitar a las personas para seguir carreras gratificantes en la nube.

Los aspectos más destacados de las iniciativas expandidas de Skilling de IA en el Reino Unido incluyen:

Google Cloud también lanzó recientemente tres nuevos cursos independientes en la plataforma de aprendizaje de Google Cloud Skills Boost, disponible para todos en el Reino Unido, para abordar los temas críticos de la IA: “Introducción al seguridad en el mundo de la IA”, “Impulse la productividad con Gemini en Bigquery” y “Construye agentes de IA generativos con AI Vertex y Flutter”.

Nuevos beneficios para las nuevas empresas de IA en el Reino Unido
Con más del 60% de las nuevas empresas generativas de IA del Reino Unido que ya trabajan con Google Cloud, y después del programa acelerador de 2025 Google for Startups, IA First UK, Google Cloud continúa su profundo compromiso con el ecosistema de inicio de la nación.

Como parte del evento “Géminis para el Reino Unido”, Google Cloud anunció hoy hasta £ 280,000 en créditos en la nube para nuevas empresas de IA basadas en el Reino Unido, junto con recursos técnicos dedicados y capacitación. Las startups obtendrán acceso a la comunidad global de expertos, inversores, socios y otras startups de Google Cloud para que desbloquean oportunidades para crecer y escalar sus negocios. Además, las nuevas empresas en el Reino Unido pueden aumentar sus equipos con capacitación y talleres y tutorías 1: 1 a medida que escalan, incluidos los cursos de capacitación y laboratorios de capacitación de habilidades.

Sofía FenichellFundador y CEO de StudyHall.AI, una plataforma de tutores de agente con sede en el Reino Unido para escuelas y hogares, dijo: “Google Cloud ha sido instrumental en nuestro rápido crecimiento e innovación. Para acelerar nuestro desarrollo de IA.

Acerca de Google Cloud

Google Cloud es el nuevo camino a la nube, proporcionando herramientas de IA, infraestructura, desarrollador, datos, seguridad y colaboración construidas para hoy y mañana. Google Cloud ofrece una pila de IA potente, totalmente integrada y optimizada con su propia infraestructura a escala de planeta, chips personalizados, modelos de IA generativos y plataforma de desarrollo, así como aplicaciones con AI, para ayudar a las organizaciones a transformar. Los clientes en más de 200 países y territorios recurren a Google Cloud como su socio de tecnología de confianza.

Fuente de Google Cloud

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Los dos abiertos – el Atlántico

Published

on

Realmente hay dos abiertos. Uno es el creador de máquinas que doblan el mundo, la nueva empresa que desató el chatgpt y, a su vez, el auge generativo-AI, surgiendo hacia un futuro irreconocible con el resto de la industria tecnológica a cuestas. Este es el OpenAI que promete eventualmente provocar programas “superintelligentes” que excedan las capacidades de la humanidad.

El otro Openai es simplemente un negocio. Esta es la compañía que, según los informes, está trabajando en una red social y considerando una expansión en el hardware; Es la compañía la que ofrece actualizaciones de experiencia de usuario a CHATGPT, como una función de “biblioteca de imágenes” anunciada la semana pasada y la nueva capacidad de “referencia” a los chats anteriores para proporcionar respuestas personalizadas. Se podría pensar en esta OpenAI como otra compañía de tecnología que sigue los pasos de Meta, Apple y Google, no solo para inspirar a los usuarios con nuevos descubrimientos, sino de mantenerlos bloqueados en una línea de productos infinitamente iteradores.

Las compañías tecnológicas más poderosas tienen éxito no simplemente por las virtudes de su software y dispositivos individuales, sino mediante la creación de ecosistemas de servicios conectados. Tener un iPhone y un MacBook hace que sea muy conveniente usar el almacenamiento de iCloud e iMessage y Apple Pay, y muy molesto si un miembro de la familia tiene un teléfono inteligente Samsung o si alguna vez decide cambiar a una PC con Windows. Google Search, Drive, Chrome y Android Devices forman un jardín amurallado similar, tanto que los abogados federales han pedido a un tribunal que obligue a la compañía a vender Chrome como remedio a una violación antimonopolio. Pero en comparación con las computadoras o incluso los navegadores web, los chatbots son muy fáciles de cambiar, solo abre una nueva pestaña y escriba una URL diferente. Eso hace que el desafío sea algo mayor para las nuevas empresas de IA. Google y Apple ya tienen ecosistemas de productos para deslizar la IA; Operai no lo hace.

El CEO de Openai, Sam Altman, afirmó recientemente que los productos de su compañía tienen unos 800 millones de usuarios semanales, aproximadamente una décima parte de la población mundial. Pero incluso si OpenAi solo tuviera la mitad de ese número de usuarios, sería muchas personas que se arriesgarían a perder ante Anthrope, Google y el torrente interminable de las nuevas empresas de IA. Como han demostrado otras compañías tecnológicas, la recopilación de datos de los usuarios (imágenes, conversaciones, compras, amistades) y construir productos en torno a esa información es una buena manera de mantenerlos bloqueados. Incluso si un chatbot competidor es “más inteligente”, la capacidad de aprovechar las conversaciones anteriores podría hacer que la separación sea mucho más difícil. Esto también ayuda a explicar por qué Operai está dando a los estudiantes universitarios dos meses de acceso gratuito a un nivel premium de ChatGPT, sembrando el terreno para la lealtad a largo plazo. (Esto sigue un patrón familiar para las empresas tecnológicas: Hulu solía ser gratuito, Gmail solía aumentar regularmente su almacenamiento gratuito, y hace Eons, YouTube no tenía anuncios). En particular, OpenAi recientemente ha contratado ejecutivos de Meta, Twitter, Uber y Nextdoor para avanzar en sus operaciones comerciales.

Las dos identidades de Openai, el laboratorio de IA de ruptura del suelo y la empresa tecnológica arquetípica, no necesariamente conflictos. La compañía ha dicho que la comercialización beneficia al desarrollo de IA, y que ofrecer modelos de IA como productos de consumo es una forma importante de acostumbrar a las personas a la tecnología, probar sus limitaciones en el mundo real y fomentar la deliberación sobre cómo debería y no debe usarse. Presentar IA en una forma intuitiva y conversacional, en lugar de promover un salto importante en la “inteligencia” o capacidades de un algoritmo, es precisamente lo que hizo que Chatgpt fuera un éxito. Si la idea es hacer una IA que “beneficie a toda la humanidad”, como Operai profesa en su carta, entonces compartir estos supuestos beneficios ahora tiene sentido y crea un incentivo económico para capacitar a modelos de IA mejores y más confiables. El aumento de los ingresos, a su vez, puede sostener el desarrollo de esos modelos futuros y mejorados.

Por otra parte, Operai ha pasado gradualmente de una organización sin fines de lucro a una estructura corporativa más y más orientada a las ganancias: usar la tecnología Generation-AI para descubrir mágicamente nuevos medicamentos es una buena idea, pero eventualmente la compañía necesitará comenzar a ganar dinero con los usuarios cotidianos para mantener las luces encendidas. (Openai perdió más de $ 1 mil millones el año pasado). Un portavoz de OpenAi, que tiene una asociación corporativa con El atlánticoescribió por correo electrónico que “la competencia es buena para los usuarios y la innovación de los Estados Unidos. Cualquiera puede usar ChatGPT de cualquier navegador” y que “los desarrolladores siguen siendo libres de cambiar a modelos competidores cuando lo deseen”.

Anthrope y Meta han adoptado enfoques alternativos para llevar sus modelos a los usuarios de Internet. El primero ofreció recientemente la capacidad de integrar su chatbot Claude en Gmail, Google Docs y Google Calendar, dando un punto de apoyo en un ecosistema tecnológico existente en lugar de construir de nuevo. (Operai parecía estar probando esta estrategia el año pasado al asociarse con Apple para incorporar ChatGPT directamente a la inteligencia de Apple, pero esto requiere un poco de configuración en la parte del usuario, y los esfuerzos de IA de Apple han sido percibidos ampliamente como decepcionantes. Altman ha dicho que Operai publicará un modelo igualmente abierto a finales de este año; Aparentemente, la puesta en marcha quiere pared de su jardín y hacer de sus modelos de IA la base para todos los demás también.

A partir de esta ventaja, la IA generativa parece menos revolucionaria y más como todos los sitios web anteriores, plataformas y dispositivos que luchan para llamar su atención y nunca dejarla ir. Las montañas de datos recopiladas a través de las interacciones de chatbot pueden alimentar servicios y anuncios más personalizados y dirigidos con precisión. La dependencia de los teléfonos inteligentes y los relojes inteligentes podría generar dependencia de la IA y viceversa. Y hay otro ADN compartido. Las plataformas de redes sociales se basaron en trabajos de modificación de contenido mal compensado para detectar publicaciones dañinas y abusivas, exponiendo a los trabajadores a medios horribles para que los productos sean sabrosos para la audiencia más amplia posible. Operai y otras compañías de IA se han basado en el mismo tipo de trabajo para desarrollar sus conjuntos de datos de capacitación. Debería OpenAI realmente lanzar un sitio web de redes sociales o un dispositivo de hardware, este linaje se volverá explícito. Que hay dos abiertos ahora está claro. Pero sigue siendo incierto cuál es el alter ego.

Continue Reading

Noticias

Exclusivo: AI Bests Virus Experts, Raising Biohazard Fears

Published

on

A Un nuevo estudio afirma que modelos de IA como ChatGPT y Claude ahora superan a los virólogos a nivel de doctorado en la resolución de problemas en laboratorios húmedos, donde los científicos analizan productos químicos y material biológico. Este descubrimiento es una espada de doble filo, dicen los expertos. Los modelos de IA ultra inteligentes podrían ayudar a los investigadores a prevenir la propagación de enfermedades infecciosas. Pero los no expertos también podrían armarse los modelos para crear biowapons mortales.

El estudio, compartido exclusivamente con el tiempo, fue realizado por investigadores del Centro para la Seguridad de AI, el Laboratorio de Medios del MIT, la Universidad Brasileña UFABC y la Pandemic Prevention sin fines de lucro SecureBio. Los autores consultaron a los virólogos para crear una prueba práctica extremadamente difícil que midiera la capacidad de solucionar problemas y protocolos de laboratorio complejos. Mientras que los virólogos a nivel de doctorado obtuvieron un promedio de 22.1% en sus áreas declaradas de especialización, el O3 de OpenAI alcanzó la precisión del 43.8%. Gemini 2.5 Pro de Google obtuvo un puntaje 37.6%.

Seth Donoughe, científica investigadora de SecureBio y coautora del documento, dice que los resultados lo ponen un “poco nervioso”, porque por primera vez en la historia, prácticamente cualquier persona tiene acceso a un experto en virología de IA sin juicio que podría guiarlos a través de procesos de laboratorio complejos para crear biológicas.

“A lo largo de la historia, hay un buen número de casos en los que alguien intentó hacer una biela, y una de las principales razones por las que no tuvieron éxito es porque no tuvieron acceso al nivel correcto de especialización”, dice. “Por lo tanto, parece que vale la pena ser cauteloso acerca de cómo se distribuyen estas capacidades”.

Hace meses, los autores del documento enviaron los resultados a los principales laboratorios de IA. En respuesta, Xai publicó un marco de gestión de riesgos prometiendo su intención de implementar salvaguardas de virología para futuras versiones de su modelo de AI Grok. Operai le dijo a Time que “desplegó nuevas mitigaciones a nivel de sistema para riesgos biológicos” para sus nuevos modelos publicados la semana pasada. Anthrope incluyó resultados de rendimiento del modelo en el documento en las tarjetas del sistema recientes, pero no proponió medidas de mitigación específicas. Géminis de Google declinó hacer comentarios.

Ai en biomedicina

La virología y la biomedicina han estado a la vanguardia de las motivaciones de los líderes de IA para construir modelos de IA siempre potentes. “A medida que avanza esta tecnología, veremos que las enfermedades se curan a un ritmo sin precedentes”, dijo el CEO de OpenAI, Sam Altman, en la Casa Blanca en enero mientras anunciaba el proyecto Stargate. Ha habido algunas señales de aliento en esta área. A principios de este año, los investigadores del Instituto de Patógenos Emergentes de la Universidad de Florida publicaron un algoritmo capaz de predecir qué variante de coronavirus podría extender lo más rápido.

Pero hasta este punto, no había habido un estudio importante dedicado a analizar la capacidad de los modelos de IA para realizar un trabajo de laboratorio de virología. “Hemos sabido desde hace algún tiempo que los AIS son bastante fuertes para proporcionar información de estilo académico”, dice Donoughe. “No ha estado claro si los modelos también pueden ofrecer asistencia práctica detallada. Esto incluye interpretar imágenes, información que podría no ser escrita en ningún documento académico o material que se transfiera socialmente de colegas más experimentados”.

Entonces, Donoughe y sus colegas crearon una prueba específicamente para estas preguntas difíciles y no capaces de Google. “Las preguntas toman la forma:” He estado cultivando este virus en particular en este tipo de célula, en estas condiciones específicas, durante este tiempo. Tengo esta cantidad de información sobre lo que ha salido mal. ¿Puede decirme cuál es el problema más probable? “, Dice Donoughe.

Y prácticamente todos los modelos de IA superaron a los virólogos a nivel de doctorado en la prueba, incluso dentro de sus propias áreas de especialización. Los investigadores también encontraron que los modelos mostraron una mejora significativa con el tiempo. El soneto Claude 3.5 de Anthrope, por ejemplo, aumentó de 26.9% a 33.6% de precisión de su modelo de junio de 2024 a su modelo de octubre de 2024. Y una vista previa del GPT 4.5 de OpenAI en febrero superó a GPT-4O por casi 10 puntos porcentuales.

“Anteriormente, encontramos que los modelos tenían mucho conocimiento teórico, pero no de conocimiento práctico”, dice Dan Hendrycks, director del Centro de Seguridad de AI, a Time. “Pero ahora, están obteniendo una cantidad preocupante de conocimiento práctico”.

Riesgos y recompensas

Si los modelos de IA son tan capaces en los entornos de laboratorio húmedo como lo encuentra el estudio, entonces las implicaciones son masivas. En términos de beneficios, AIS podría ayudar a los virólogos experimentados en su trabajo crítico que lucha contra los virus. Tom Inglesby, director del Centro Johns Hopkins para la Seguridad de la Salud, dice que la IA podría ayudar a acelerar los plazos de la medicina y el desarrollo de la vacuna y mejorar los ensayos clínicos y la detección de enfermedades. “Estos modelos podrían ayudar a los científicos en diferentes partes del mundo, que aún no tienen ese tipo de habilidad o capacidad, a hacer un valioso trabajo diario sobre enfermedades que están ocurriendo en sus países”, dice. Por ejemplo, un grupo de investigadores descubrió que la IA los ayudó a comprender mejor los virus de la fiebre hemorrágica en el África subsahariana.

Pero los actores de mala fe ahora pueden usar modelos de IA para guiarlos a través de cómo crear virus, y podrán hacerlo sin ninguna de las capacitación típicas requeridas para acceder a un laboratorio de nivel 4 (BSL-4) de bioseguridad, que se ocupa de los agentes infecciosos más peligrosos y exóticos. “Significará que muchas más personas en el mundo con mucha menos capacitación podrán manejar y manipular virus”, dice Inglesby.

Hendrycks insta a las compañías de IA a colocar las barandillas para evitar este tipo de uso. “Si las empresas no tienen buenas salvaguardas durante seis meses, eso, en mi opinión, sería imprudente”, dice.

Hendrycks dice que una solución no es cerrar estos modelos o ralentizar su progreso, sino hacerlos cerrados, de modo que solo confiaban en que terceros tengan acceso a sus versiones sin filtrar. “Queremos dar a las personas que tienen un uso legítimo para preguntar cómo manipular virus mortales, como un investigador en el departamento de biología del MIT, la capacidad de hacerlo”, dice. “Pero las personas aleatorias que hicieron una cuenta hace un segundo no obtienen esas capacidades”.

Y AI Labs debería poder implementar este tipo de salvaguardas con relativa facilidad, dice Hendrycks. “Ciertamente es tecnológicamente factible para la autorregulación de la industria”, dice. “Hay una cuestión de si algunos arrastrarán sus pies o simplemente no lo harán”.

Xai, el laboratorio de IA de ELON MUSK, publicó un memorando de marco de gestión de riesgos en febrero, que reconoció el documento y señaló que la compañía “potencialmente utilizaría” ciertas salvaguardas en torno a las preguntas de virología, incluida la capacitación de Grok para rechazar solicitudes nocivas y aplicar filtros de entrada y salida.

Openai, en un correo electrónico a Time el lunes, escribió que sus modelos más nuevos, el O3 y el O4-Mini, se desplegaron con una variedad de salvaguardas relacionadas con el riesgo biológico, incluido el bloqueo de resultados dañinos. La compañía escribió que realizó una campaña de equipo rojo de mil horas en la que el 98.7% de las conversaciones biológicas inseguras fueron marcadas y bloqueadas con éxito. “Valoramos la colaboración de la industria en el avance de salvaguardas para modelos fronterizos, incluso en dominios sensibles como Virology”, escribió un portavoz. “Continuamos invirtiendo en estas salvaguardas a medida que crecen las capacidades”.

Inglesby argumenta que la autorregulación de la industria no es suficiente, y pide a los legisladores y a los líderes políticos a estrategia un enfoque político para regular los riesgos biológicos de la IA. “La situación actual es que las empresas que son más virtuosas están tomando tiempo y dinero para hacer este trabajo, lo cual es bueno para todos nosotros, pero otras compañías no tienen que hacerlo”, dice. “Eso no tiene sentido. No es bueno para el público no tener información sobre lo que está sucediendo”.

“Cuando una nueva versión de un LLM está a punto de ser lanzada”, agrega Inglesby, “debe haber un requisito para que ese modelo sea evaluado para asegurarse de que no produzca resultados de nivel pandémico”.

Continue Reading

Noticias

Cómo indicar el nuevo chatgpt, según OpenAi

Published

on

La última versión de ChatGPT es significativamente más poderosa, pero requiere nuevas técnicas de indicación. El modelo ahora sigue las instrucciones más literalmente y hace menos suposiciones sobre lo que está pidiendo. Esto es importante para los empresarios que usan la herramienta.

No seas consejos anticuados. No indique usando palabras deficientes. Eres mejor que eso.

Las indicaciones mal construidas desperdician su tiempo y dinero. Hazlo bien y desbloqueas una IA significativamente más capaz. Los miembros del equipo de Operai, Noah MacCallum y Julian Lee, han publicado una amplia documentación sobre cómo provocar sus nuevos modelos.

Aquí hay un resumen de su orientación, para que pueda aprovechar al máximo la herramienta.

Las reglas de indicación han cambiado

La provisión de técnicas que funcionaron para modelos anteriores en realidad podrían obstaculizar sus resultados con las últimas versiones. ChatGPT-4.1 sigue las instrucciones más literalmente que sus predecesores, que solían inferir la intención liberalmente. Esto es bueno y malo. La buena noticia es que ChatGPT ahora es altamente orientable y responde a las indicaciones bien especificadas. La mala noticia es que sus viejas indicaciones necesitan una revisión.

La mayoría de las personas todavía usan indicaciones básicas que apenas rascan la superficie de lo que es posible. Escriben preguntas o solicitudes simples, luego se preguntan por qué sus resultados se sienten genéricos. Operai ahora ha revelado cómo entrenaron el modelo para responder, ayudándole a obtener exactamente lo que desea de sus modelos más avanzados.

Optimice sus indicaciones con la guía de información privilegiada de Openai

Estructura tus indicaciones estratégicamente

Comience organizando sus indicaciones con secciones claras. OpenAI recomienda una estructura básica con componentes específicos:

• Rol y objetivo: dígale a ChatGPT a quién debe actuar y qué está tratando de lograr

• Instrucciones: proporcionar pautas específicas para la tarea

• Pasos de razonamiento: indique cómo desea que aborde el problema

• Formato de salida: especifique exactamente cómo desea la respuesta estructurada

• Ejemplos: Muestre muestras de lo que espera

• Contexto: proporcionar información de fondo necesaria

• Instrucciones finales: incluya los últimos recordatorios o criterios

No necesita todas estas secciones para cada aviso, pero un enfoque estructurado ofrece mejores resultados que una pared de texto.

Para tareas más complejas, la documentación de OpenAI sugiere usar reducción para separar sus secciones. También aconsejan el uso de caracteres de formato especial alrededor del código (como Backticks, que se ven así: `) para ayudar a ChatGPT a distinguir el código del texto regular y el uso de listas numeradas o balas estándar para organizar información.

Dominar el arte de delimitar información

La separación de la información afecta adecuadamente sus resultados significativamente. Las pruebas de Openai encontraron que Etiquetas XML Realice excepcionalmente bien con los nuevos modelos. Le permiten envolver las secciones con precisión con etiquetas de inicio y extremo, agregar metadatos a las etiquetas y habilitar la anidación.

El formato JSON funciona mal con contextos largos (que proporcionan los nuevos modelos), particularmente al proporcionar múltiples documentos. En su lugar, intente formatos como ID: 1 | Título: El zorro | Contenido: El Fox Brown rápido salta sobre el perro perezoso que Openai encontró que funcionó bien en las pruebas.

Construir agentes de IA autónomos

Chatgpt ahora puede funcionar como un “agente” Eso funciona de manera más independiente en su nombre, abordando tareas complejas con una supervisión mínima. Lleve sus indicaciones al siguiente nivel construyendo estos agentes.

Un agente de IA está esencialmente ChatGPT configurado para trabajar a través de problemas de forma autónoma en lugar de solo responder a sus preguntas. Puede recordar el contexto en una conversación, usar herramientas como navegación web o ejecución de código, y resolver problemas de varios pasos.

OpenAI recomienda incluir tres recordatorios clave en todas las indicaciones del agente: persistencia (continuar hasta la resolución), callarse de herramientas (usando herramientas disponibles en lugar de adivinar) y planificar (pensar antes de actuar).

“Estas tres instrucciones transforman el modelo de un estado de chatbot en un agente mucho más ‘ansioso’, impulsando la interacción de forma autónoma e independiente”, explica el equipo. Sus pruebas mostraron un aumento del rendimiento del 20% en las tareas de ingeniería de software con estas simples adiciones.

Maximizar el poder de los contextos largos

El último chatGPT puede manejar una impresionante ventana de contexto de 1 millón de tokens. Las capacidades son emocionantes. Según OpenAi, el rendimiento sigue siendo fuerte incluso con miles de páginas de contenido. Sin embargo, el rendimiento del contexto largo se degrada cuando se requiere un razonamiento complejo en todo el contexto.

Para obtener los mejores resultados con documentos largos, coloque sus instrucciones tanto al principio como al final del contexto proporcionado. Hasta ahora, esto ha sido más seguro de fallas en lugar de una característica requerida de su aviso.

Cuando use el nuevo modelo con un contexto extenso, sea explícito sobre si debe confiar únicamente en la información proporcionada o combinarlo con su propio conocimiento. Para respuestas estrictamente basadas en documentos, OpenAI sugiere instruir explícitamente: “Solo use los documentos en el contexto externo proporcionado para responder a la consulta del usuario”.

Implementar la solicitud de la cadena de pensamiento

Si bien GPT-4.1 no está diseñado como un modelo de razonamiento, puede solicitar que muestre su trabajo como podría los modelos más antiguos. “Pedirle al modelo que piense paso a paso (llamada ‘cadena de pensamiento’) puede ser una forma efectiva de dividir los problemas en piezas más manejables”, señala el equipo de OpenAI. Esto viene con un mayor uso de tokens pero ofrece una mejor calidad.

Una instrucción simple como “Primero, piense cuidadosamente paso a paso sobre qué información o recursos se necesitan para responder a la consulta” puede mejorar drásticamente los resultados. Esto es especialmente útil cuando se trabaja con archivos cargados o cuando CHATGPT necesita analizar múltiples fuentes de información.

Haga que el nuevo chatgpt funcione para ti

Operai ha compartido información más extensa sobre cómo aprovechar al máximo sus últimos modelos. Las técnicas representan objetivos de capacitación reales para los modelos, no solo conjeturas de la comunidad. Al implementar su orientación sobre una estructura rápida, delimitar información, creación de agentes, manejo de contexto largo y suministro de cadena de pensamiento, verá mejoras dramáticas en sus resultados.

El éxito con ChatGPT proviene de tratarlo como un compañero de pensamientono solo un generador de texto. Siga la guía directamente de la fuente para obtener mejores resultados del mismo modelo que todos los demás están utilizando.

Acceder a todos mis Las mejores indicaciones de contenido de chatgpt.

Continue Reading

Trending