Connect with us

Noticias

Google Gemini: Everything you need to know about the generative AI models

Published

on

Google’s trying to make waves with Gemini, its flagship suite of generative AI models, apps, and services. But what’s Gemini? How can you use it? And how does it stack up to other generative AI tools such as OpenAI’s ChatGPT, Meta’s Llama, and Microsoft’s Copilot?

To make it easier to keep up with the latest Gemini developments, we’ve put together this handy guide, which we’ll keep updated as new Gemini models, features, and news about Google’s plans for Gemini are released.

What is Gemini?

Gemini is Google’s long-promised, next-gen generative AI model family. Developed by Google’s AI research labs DeepMind and Google Research, it comes in four flavors:

  • Gemini Ultra, a very large model.
  • Gemini Pro, a large model – though smaller than Ultra. The latest version, Gemini 2.0 Pro Experimental, is Google’s flagship.
  • Gemini Flash, a speedier, “distilled” version of Pro. It also comes in a slightly smaller and faster version, called Gemini Flash-Lite, and a version with reasoning capabilities, called Gemini Flash Thinking Experimental.
  • Gemini Nano, two small models: Nano-1 and the slightly more capable Nano-2, which is meant to run offline

All Gemini models were trained to be natively multimodal — that is, able to work with and analyze more than just text. Google says they were pre-trained and fine-tuned on a variety of public, proprietary, and licensed audio, images, and videos; a set of codebases; and text in different languages.

This sets Gemini apart from models such as Google’s own LaMDA, which was trained exclusively on text data. LaMDA can’t understand or generate anything beyond text (e.g., essays, emails, and so on), but that isn’t necessarily the case with Gemini models.

We’ll note here that the ethics and legality of training models on public data, in some cases without the data owners’ knowledge or consent, are murky. Google has an AI indemnification policy to shield certain Google Cloud customers from lawsuits should they face them, but this policy contains carve-outs. Proceed with caution — particularly if you’re intending on using Gemini commercially.

What’s the difference between the Gemini apps and Gemini models?

Gemini is separate and distinct from the Gemini apps on the web and mobile (formerly Bard).

The Gemini apps are clients that connect to various Gemini models and layer a chatbot-like interface on top. Think of them as front ends for Google’s generative AI, analogous to ChatGPT and Anthropic’s Claude family of apps.

Image Credits:Google

Gemini on the web lives here. On Android, the Gemini app replaces the existing Google Assistant app. And on iOS, the Google and Google Search apps serve as that platform’s Gemini clients.

On Android, it also recently became possible to bring up the Gemini overlay on top of any app to ask questions about what’s on the screen (e.g., a YouTube video). Just press and hold a supported smartphone’s power button or say, “Hey Google”; you’ll see the overlay pop up.

Gemini apps can accept images as well as voice commands and text — including files like PDFs and soon videos, either uploaded or imported from Google Drive — and generate images. As you’d expect, conversations with Gemini apps on mobile carry over to Gemini on the web and vice versa if you’re signed in to the same Google Account in both places.

Gemini Advanced

The Gemini apps aren’t the only means of recruiting Gemini models’ assistance with tasks. Slowly but surely, Gemini-imbued features are making their way into staple Google apps and services like Gmail and Google Docs.

To take advantage of most of these, you’ll need the Google One AI Premium Plan. Technically a part of Google One, the AI Premium Plan costs $20 and provides access to Gemini in Google Workspace apps like Docs, Maps, Slides, Sheets, Drive, and Meet. It also enables what Google calls Gemini Advanced, which brings the company’s more sophisticated Gemini models to the Gemini apps.

Gemini Advanced users get extras here and there, too, like priority access to new features, the ability to run and edit Python code directly in Gemini, and a larger “context window.” Gemini Advanced can remember the content of — and reason across — roughly 750,000 words in a conversation (or 1,500 pages of documents). That’s compared to the 24,000 words (or 48 pages) the vanilla Gemini app can handle.

Screenshot of a Google Gemini commercial
Image Credits:Google

Gemini Advanced also gives users access to Google’s Deep Research feature, which uses “advanced reasoning” and “long context capabilities” to generate research briefs. After you prompt the chatbot, it creates a multi-step research plan, asks you to approve it, and then Gemini takes a few minutes to search the web and generate an extensive report based on your query. It’s meant to answer more complex questions such as, “Can you help me redesign my kitchen?”

Google also offers Gemini Advanced users a memory feature, that allows the chatbot to use your old conversations with Gemini as context for your current conversation. Gemini Advanced users also get increased usage for NotebookLM, the company’s product that turns PDFs into AI-generated podcasts.

Gemini Advanced users also get access to Google’s experimental version of Gemini 2.0 Pro, the company’s flagship model that’s optimized for difficult coding and math problems.

Another Gemini Advanced exclusive is trip planning in Google Search, which creates custom travel itineraries from prompts. Taking into account things like flight times (from emails in a user’s Gmail inbox), meal preferences, and information about local attractions (from Google Search and Maps data), as well as the distances between those attractions, Gemini will generate an itinerary that updates automatically to reflect any changes. 

Gemini across Google services is also available to corporate customers through two plans, Gemini Business (an add-on for Google Workspace) and Gemini Enterprise. Gemini Business costs as low as $6 per user per month, while Gemini Enterprise — which adds meeting note-taking and translated captions as well as document classification and labeling — is generally more expensive, but is priced based on a business’s needs. (Both plans require an annual commitment.)

In Gmail, Gemini lives in a side panel that can write emails and summarize message threads. You’ll find the same panel in Docs, where it helps you write and refine your content and brainstorm new ideas. Gemini in Slides generates slides and custom images. And Gemini in Google Sheets tracks and organizes data, creating tables and formulas.

Google’s AI chatbot recently came to Maps, where Gemini can summarize reviews about coffee shops or offer recommendations about how to spend a day visiting a foreign city.

Gemini’s reach extends to Drive as well, where it can summarize files and folders and give quick facts about a project. In Meet, meanwhile, Gemini translates captions into additional languages.

Gemini in Gmail
Image Credits:Google

Gemini recently came to Google’s Chrome browser in the form of an AI writing tool. You can use it to write something completely new or rewrite existing text; Google says it’ll consider the web page you’re on to make recommendations.

Elsewhere, you’ll find hints of Gemini in Google’s database products, cloud security tools, and app development platforms (including Firebase and Project IDX), as well as in apps like Google Photos (where Gemini handles natural language search queries), YouTube (where it helps brainstorm video ideas), and the NotebookLM note-taking assistant.

Code Assist (formerly Duet AI for Developers), Google’s suite of AI-powered assistance tools for code completion and generation, is offloading heavy computational lifting to Gemini. So are Google’s security products underpinned by Gemini, like Gemini in Threat Intelligence, which can analyze large portions of potentially malicious code and let users perform natural language searches for ongoing threats or indicators of compromise.

Gemini extensions and Gems

Announced at Google I/O 2024, Gemini Advanced users can create Gems, custom chatbots powered by Gemini models. Gems can be generated from natural language descriptions — for example, “You’re my running coach. Give me a daily running plan” — and shared with others or kept private.

Gems are available on desktop and mobile in 150 countries and most languages. Eventually, they’ll be able to tap an expanded set of integrations with Google services, including Google Calendar, Tasks, Keep, and YouTube Music, to complete custom tasks.

Gemini Gems
Image Credits:Google

Speaking of integrations, the Gemini apps on the web and mobile can tap into Google services via what Google calls “Gemini extensions.” Gemini today integrates with Google Drive, Gmail, and YouTube to respond to queries such as “Could you summarize my last three emails?” Later this year, Gemini will be able to take additional actions with Google Calendar, Keep, Tasks, YouTube Music and Utilities, the Android-exclusive apps that control on-device features like timers and alarms, media controls, the flashlight, volume, Wi-Fi, Bluetooth, and so on.

Gemini Live in-depth voice chats

An experience called Gemini Live allows users to have “in-depth” voice chats with Gemini. It’s available in the Gemini apps on mobile and the Pixel Buds Pro 2, where it can be accessed even when your phone’s locked.

With Gemini Live enabled, you can interrupt Gemini while the chatbot’s speaking (in one of several new voices) to ask a clarifying question, and it’ll adapt to your speech patterns in real time. At some point, Gemini is supposed to gain visual understanding, allowing it to see and respond to your surroundings, either via photos or video captured by your smartphones’ cameras.

Gemini Live
Image Credits:Google

Live is also designed to serve as a virtual coach of sorts, helping you rehearse for events, brainstorm ideas, and so on. For instance, Live can suggest which skills to highlight in an upcoming job or internship interview, and it can give public speaking advice.

You can read our review of Gemini Live here. Spoiler alert: We think the feature has a ways to go before it’s super useful — but it’s early days, admittedly.

Image generation via Imagen 3

Gemini users can generate artwork and images using Google’s built-in Imagen 3 model.

Google says that Imagen 3 can more accurately understand the text prompts that it translates into images versus its predecessor, Imagen 2, and is more “creative and detailed” in its generations. In addition, the model produces fewer artifacts and visual errors (at least according to Google), and is the best Imagen model yet for rendering text.

Google Imagen 3
A sample from Imagen 3.Image Credits:Google

Back in February 2024, Google was forced to pause Gemini’s ability to generate images of people after users complained of historical inaccuracies. But in August, the company reintroduced people generation for certain users, specifically English-language users signed up for one of Google’s paid Gemini plans (e.g., Gemini Advanced) as part of a pilot program.

Gemini for teens

In June, Google introduced a teen-focused Gemini experience, allowing students to sign up via their Google Workspace for Education school accounts.

The teen-focused Gemini has “additional policies and safeguards,” including a tailored onboarding process and an “AI literacy guide” to (as Google phrases it) “help teens use AI responsibly.” Otherwise, it’s nearly identical to the standard Gemini experience, down to the “double check” feature that looks across the web to see if Gemini’s responses are accurate.

Gemini in smart home devices

A growing number of Google-made devices tap Gemini for enhanced functionality, from the Google TV Streamer to the Pixel 9 and 9 Pro to the newest Nest Learning Thermostat.

On the Google TV Streamer, Gemini uses your preferences to curate content suggestions across your subscriptions and summarize reviews and even whole seasons of TV.

Google TV Streamer set up
Image Credits:Google

On the latest Nest thermostat (as well as Nest speakers, cameras, and smart displays), Gemini will soon bolster Google Assistant’s conversational and analytic capabilities.

Subscribers to Google’s Nest Aware plan later this year will get a preview of new Gemini-powered experiences like AI descriptions for Nest camera footage, natural language video search and recommended automations. Nest cameras will understand what’s happening in real-time video feeds (e.g., when a dog’s digging in the garden), while the companion Google Home app will surface videos and create device automations given a description (e.g., “Did the kids leave their bikes in the driveway?,” “Have my Nest thermostat turn on the heating when I get home from work every Tuesday”).

Google Gemini in smart home
Gemini will soon be able to summarize security camera footage from Nest devices.Image Credits:Google

Also later this year, Google Assistant will get a few upgrades on Nest-branded and other smart home devices to make conversations feel more natural. Improved voices are on the way, in addition to the ability to ask follow-up questions and “[more] easily go back and forth.”

What can the Gemini models do?

Because Gemini models are multimodal, they can perform a range of multimodal tasks, from transcribing speech to captioning images and videos in real time. Many of these capabilities have reached the product stage (as alluded to in the previous section), and Google is promising much more in the not-too-distant future.

Of course, it’s a bit hard to take the company at its word. Google seriously underdelivered with the original Bard launch. More recently, it ruffled feathers with a video purporting to show Gemini’s capabilities that was more or less aspirational — not live.

Also, Google offers no fix for some of the underlying problems with generative AI tech today, like its encoded biases and tendency to make things up (i.e., hallucinate). Neither do its rivals, but it’s something to keep in mind when considering using or paying for Gemini.

Assuming for the purposes of this article that Google is being truthful with its recent claims, here’s what the different tiers of Gemini can do now and what they’ll be able to do once they reach their full potential:

What you can do with Gemini Ultra

Google says that Gemini Ultra — thanks to its multimodality — can be used to help with things like physics homework, solving problems step-by-step on a worksheet, and pointing out possible mistakes in already filled-in answers.

However, we haven’t seen much of Gemini Ultra in recent months. The model does not appear in the Gemini app, and isn’t listed on Google Gemini’s API pricing page. However, that doesn’t mean Google won’t bring Gemini Ultra back to the forefront of its offerings in the future.

Ultra can also be applied to tasks such as identifying scientific papers relevant to a problem, Google says. The model can extract information from several papers, for instance, and update a chart from one by generating the formulas necessary to re-create the chart with more timely data.

Gemini Ultra technically supports image generation. But that capability hasn’t made its way into the productized version of the model yet — perhaps because the mechanism is more complex than how apps such as ChatGPT generate images. Rather than feed prompts to an image generator (like DALL-E 3, in ChatGPT’s case), Gemini outputs images “natively,” without an intermediary step.

Ultra is available as an API through Vertex AI, Google’s fully managed AI dev platform, and AI Studio, Google’s web-based tool for app and platform developers.

Gemini Pro’s capabilities

Google says that its latest Pro model, Gemini 2.0 Pro, is its best model yet for coding performance and complex prompts. It’s currently available as an experimental version, meaning it can have unexpected issues.

Gemini 2.0 Pro outperforms its predecessor, Gemini 1.5 Pro, in benchmarks measuring coding, reasoning, math, and factual accuracy. The model can take in up to 1.4 million words, two hours of video, or 22 hours of audio and can reason across or answer questions about that data (more or less).

However, Gemini 1.5 Pro still powers Google’s Deep Research feature.

Gemini 2.0 Pro works alongside a feature called code execution, released in June alongside Gemini 1.5 Pro, which aims to reduce bugs in code that the model generates by iteratively refining that code over several steps. (Code execution also supports Gemini Flash.)

Within Vertex AI, developers can customize Gemini Pro to specific contexts and use cases via a fine-tuning or “grounding” process. For example, Pro (along with other Gemini models) can be instructed to use data from third-party providers like Moody’s, Thomson Reuters, ZoomInfo and MSCI, or source information from corporate datasets or Google Search instead of its wider knowledge bank. Gemini Pro can also be connected to external, third-party APIs to perform particular actions, like automating a back-office workflow.

AI Studio offers templates for creating structured chat prompts with Pro. Developers can control the model’s creative range and provide examples to give tone and style instructions — and also tune Pro’s safety settings.

Vertex AI Agent Builder lets people build Gemini-powered “agents” within Vertex AI. For example, a company could create an agent that analyzes previous marketing campaigns to understand a brand style and then apply that knowledge to help generate new ideas consistent with the style. 

Gemini Flash is lighter but packs a punch

Google calls Gemini 2.0 Flash its AI model for the agentic era. The model can natively generate images and audio, in addition to text, and can use tools like Google Search and interact with external APIs.

The 2.0 Flash model is faster than Gemini’s previous generation of models and even outperforms some of the larger Gemini 1.5 models on benchmarks measuring coding and image analysis. You can try Gemini 2.0 Flash in the Gemini web or mobile app, and through Google’s AI developer platforms.

In December, Google released a “thinking” version of Gemini 2.0 Flash that’s capable of “reasoning,” in which the AI model takes a few seconds to work backwards through a problem before it gives an answer.

In February, Google made Gemini 2.0 Flash thinking available in the Gemini app. The same month, Google also released a smaller version called Gemini 2.0 Flash-Lite. The company says this model outperforms its Gemini 1.5 Flash model, but runs at the same price and speed.

An offshoot of Gemini Pro that’s small and efficient, built for narrow, high-frequency generative AI workloads, Flash is multimodal like Gemini Pro, meaning it can analyze audio, video, images, and text (but it can only generate text). Google says that Flash is particularly well-suited for tasks like summarization and chat apps, plus image and video captioning and data extraction from long documents and tables.

Devs using Flash and Pro can optionally leverage context caching, which lets them store large amounts of information (e.g., a knowledge base or database of research papers) in a cache that Gemini models can quickly and relatively cheaply access. Context caching is an additional fee on top of other Gemini model usage fees, however.

Gemini Nano can run on your phone

Gemini Nano is a much smaller version of the Gemini Pro and Ultra models, and it’s efficient enough to run directly on (some) devices instead of sending the task to a server somewhere. So far, Nano powers a couple of features on the Pixel 8 Pro, Pixel 8, Pixel 9 Pro, Pixel 9 and Samsung Galaxy S24, including Summarize in Recorder and Smart Reply in Gboard.

The Recorder app, which lets users push a button to record and transcribe audio, includes a Gemini-powered summary of recorded conversations, interviews, presentations, and other audio snippets. Users get summaries even if they don’t have a signal or Wi-Fi connection — and in a nod to privacy, no data leaves their phone in process.

Image Credits:Google

Nano is also in Gboard, Google’s keyboard replacement. There, it powers a feature called Smart Reply, which helps to suggest the next thing you’ll want to say when having a conversation in a messaging app such as WhatsApp.

In the Google Messages app on supported devices, Nano drives Magic Compose, which can craft messages in styles like “excited,” “formal,” and “lyrical.”

Google says that a future version of Android will tap Nano to alert users to potential scams during calls. The new weather app on Pixel phones uses Gemini Nano to generate tailored weather reports. And TalkBack, Google’s accessibility service, employs Nano to create aural descriptions of objects for low-vision and blind users.

How much do the Gemini models cost?

Gemini 1.5 Pro, 1.5 Flash, 2.0 Flash, and 2.0 Flash-Lite are available through Google’s Gemini API for building apps and services — all with free options. But the free options impose usage limits and leave out certain features, like context caching and batching.

Gemini models are otherwise pay-as-you-go. Here’s the base pricing — not including add-ons like context caching — as of September 2024:

  • Gemini 1.5 Pro: $1.25 per 1 million input tokens (for prompts up to 128K tokens) or $2.50 per 1 million input tokens (for prompts longer than 128K tokens); $5 per 1 million output tokens (for prompts up to 128K tokens) or $10 per 1 million output tokens (for prompts longer than 128K tokens)
  • Gemini 1.5 Flash: 7.5 cents per 1 million input tokens (for prompts up to 128K tokens), 15 cents per 1 million input tokens (for prompts longer than 128K tokens), 30 cents per 1 million output tokens (for prompts up to 128K tokens), 60 cents per 1 million output tokens (for prompts longer than 128K tokens)
  • Gemini 2.0 Flash: 10 cents per 1 million input tokens, 40 cents per 1 million output tokens. For audio specifically, it costs 70 center per 1 million input tokens, and also 40 centers per 1 million output tokens.
  • Gemini 2.0 Flash-Lite: 7.5 cents per 1 million input tokens, 30 cents per 1 million output tokens.

Tokens are subdivided bits of raw data, like the syllables “fan,” “tas,” and “tic” in the word “fantastic”; 1 million tokens is equivalent to about 700,000 words. Input refers to tokens fed into the model, while output refers to tokens that the model generates.

2.0 Pro pricing has yet to be announced, and Nano is still in early access.

What’s the latest on Project Astra?

Project Astra is Google DeepMind’s effort to create AI-powered apps and “agents” for real-time, multimodal understanding. In demos, Google has shown how the AI model can simultaneously process live video and audio. Google released an app version of Project Astra to a small number of trusted testers in December but has no plans for a broader release right now.

The company would like to put Project Astra in a pair of smart glasses. Google also gave a prototype of some glasses with Project Astra and augmented reality capabilities to a few trusted testers in December. However, there’s not a clear product at this time, and it’s unclear when Google would actually release something like this.

Project Astra is still just that, a project, and not a product. However, the demos of Astra reveal what Google would like its AI products to do in the future.

Is Gemini coming to the iPhone?

It might. 

Apple has said that it’s in talks to put Gemini and other third-party models to use for a number of features in its Apple Intelligence suite. Following a keynote presentation at WWDC 2024, Apple SVP Craig Federighi confirmed plans to work with models, including Gemini, but he didn’t divulge any additional details.

This post was originally published February 16, 2024, and is updated regularly.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

ChatGPT, Google Gemini y otros modelos de IA están utilizando sus datos para capacitación; aquí le mostramos cómo detenerlo

Published

on

Los modelos de IA se han convertido rápidamente en una parte diaria de la vida para muchos de nosotros. Ya sea que se trate de una consulta rápida con ChatGPT, una inmersión profunda con Gemini o una sesión de imagen con MidJourney, estas herramientas pueden ser útiles en casi todas las situaciones.

Sin embargo, a través de todas estas conversaciones, creaciones de imágenes extrañas y muescas mental, se están generando muchos datos. Esto plantea dos grandes preguntas: ¿Se utilizan todos estos datos en algún lugar y puede optar por no participar?

¿Cómo se utilizan sus datos para la capacitación?

Continue Reading

Noticias

Google Cloud Next 2025: Gemini y actualizaciones de AI de Agente, nuevas TPUS

Published

on

Pichai destacó que Géminis ahora impulsa cada uno de GoogleLos productos de medio billón de usuarios, incluidos siete con más de dos mil millones de usuarios, y se burlaron de la llegada de Gemini 2.5 Flash, un nuevo modelo de baja latencia optimizado para un razonamiento rápido y una rentabilidad.

Thomas Kurian, CEO de Google Cloudexpandido en esta visión: “Lo que alguna vez fue una posibilidad es ahora la realidad vibrante que estamos construyendo colectivamente”.

Kurian reveló que más de cuatro millones de desarrolladores ahora están construyendo con Gemini, mientras que el uso de Vertex Ai ha crecido 20 veces año tras año, impulsado por la creciente adopción de modelos como Gemini, Imagen y VEO.

Este aumento en el uso está respaldado por la vasta infraestructura de Google: 42 regiones, más de dos millones de millas de fibra submarina y terrestre, y más de 200 puntos de presencia a nivel mundial, todos accesibles para las empresas a través del nuevo servicio WAN en la nube.

En todos los modelos de IA, sistemas de agente, redes y seguridad, el mensaje de Google Cloud fue claro: esta no es solo una plataforma de IA; Es un motor de transformación de pila completa para la empresa.

Estos son todos los anuncios principales de Google Cloud Next 2025:

El CEO de Alphabet, Pichai, subió a la etapa de apertura para provocar el próximo modelo en el arsenal Ai de HyperScaler: Géminis 2.5 Flashun modelo de razonamiento de baja latencia. No se reveló un marco de tiempo de lanzamiento específico, pero el CEO dijo que representa una evolución de su popular modelo de caballo de batalla.

Google Cloud también proporcionó una actualización en VEO 2, Un modelo de generación de videos desarrollado por Google DeepMind, revelando que ahora está “listo para la producción” en la API de Géminis.

El modelo puede seguir instrucciones simples y complejas, así como simular la física del mundo real en videos de alta calidad que abarcan una amplia gama de estilos visuales.

Los primeros usuarios incluyen Wolf Games, que está utilizando VEO 2 para construir “experiencias cinematográficas” para su plataforma de juego de historia interactiva personalizada.

https://www.youtube.com/watch?v=-uqle4fmvka

Conozca el nuevo hardware de hipercomutadores: Ironwood

AI HyperComuter de Google Cloud es el caballo de batalla detrás de casi todas las cargas de trabajo de IA en su plataforma en la nube. El sistema de supercomputación integrado ahora presenta el Última iteración de su línea de hardware personalizadaUnidades de procesamiento de tensor (TPU).

Madera de hierroLa TPU de la 7ª generación ofrece 5 veces más capacidad de cómputo pico y 6x la capacidad de memoria de alto ancho de banda (HBM) en comparación con la generación previa, Trillium.

Las nuevas TPU de Ironwood vienen en dos configuraciones: 256 chips o 9,216 chips, cada una disponible como una cápsula de una sola escala, con la vaina más grande que ofrece 42.5 exafultos de cómputo.

El hardware HyperComuter está diseñado para ser 2 veces más eficiente de energía en comparación con Trillium, al tiempo que ofrece más valor por vatio.

Los desarrolladores ahora pueden acceder a Ironwood a través de la pila optimizada de Google Cloud en Pytorch y Jax.

Google Cloud vio al hiperscaler duplicar su AI agente Ofertas, presentando nuevas herramientas para permitir que las empresas construyan, implementen y escalaran sistemas de múltiples agentes.

En el corazón de las actualizaciones estaba la nueva Kit de desarrollo de agentes (ADK)-Un marco de código abierto que permite a los desarrolladores construir agentes de IA sofisticados en menos de 100 líneas de código. Ya está siendo utilizado por marcas como Renault y Revionics para automatizar los flujos de trabajo y la toma de decisiones.

Para implementar estos agentes en producción, Google introdujo Motor de agenteun tiempo de ejecución totalmente administrado en Vertex AI. Admite memoria a corto y largo plazo, herramientas de evaluación incorporadas e integración nativa con la plataforma Agentspace de Google para un intercambio interno seguro.

El segundo gran anuncio de agente fue el Protocolo de Agente2Agent (A2A) – Un estándar de interoperabilidad abierto que permite a los agentes comunicarse y colaborar en diferentes marcos como ADK, Langgraph y Crew.ai. Ya están a bordo más de 50 socios, incluidos Box, ServiceNow, Uipath y Deloitte.

Actualizaciones de redes: Cloud Wan, Reducciones de costos de servicio Gen AI

Las redes en el próximo 2025 se centraron en la escala para la IA y la mejora del rendimiento de la nube.

Un nuevo Interconexión de nube de 400 g e interconexión de nubellegando a finales de este año, promete 4X el ancho de banda para la incorporación de datos más rápidos y el entrenamiento de modelos de múltiples nubes.

Google Cloud también se introdujo Soporte para grupos de IA de hasta 30,000 GPU En una configuración sin bloqueo, ahora disponible en la vista previa, dirigida a sobrealimentar la capacitación y el rendimiento de inferencia.

Se han reducido los costos generativos de servicio de IA hasta hasta un 30%, con mejoras de rendimiento de hasta el 40%, gracias a innovaciones como GKE Inference Gateway.

Google también debutó Nube wanuna columna vertebral empresarial totalmente administrada que abre su infraestructura de red global para redes de área amplia. Diseñado para simplificar y asegurar arquitecturas WAN Enterprise, ofrece un rendimiento hasta un 40% más rápido en comparación con Internet público.

En el borde, Google anunció Programabilidad y rendimiento mejoradoscon extensiones de servicio ahora GA para equilibrio de carga en la nube. Cloud CDN Support está en camino, lo que permite a los desarrolladores personalizar el comportamiento de la aplicación en el borde utilizando estándares abiertos como WebAssembly.

https://www.youtube.com/watch?v=xzgu02ycsvc

Actualizaciones de seguridad: Google Unified Security, agentes de Géminis

La infraestructura empresarial está creciendo en complejidad, ampliando la superficie de ataque y sobrecargando a los equipos de seguridad aislados. ¿La respuesta de Google? Seguridad unificada de Google (Gus), que ahora está generalmente disponible.

Gus está diseñado para unificar la inteligencia de amenazas, las operaciones de seguridad, la seguridad en la nube y la navegación segura en una sola plataforma con IA, integrando la experiencia de la empresa. Mandante Subsidiaria para ofrecer una protección más escalable y eficiente.

La nueva solución de seguridad crea un tejido de datos de seguridad de búsqueda en toda la superficie de ataque, que ofrece visibilidad, detección y respuesta en tiempo real en redes, puntos finales, nubes y aplicaciones. Las señales de seguridad se enriquecen automáticamente con la inteligencia de amenazas de Google, y cada flujo de trabajo se simplifica con sus modelos insignia de IA Gemini.

Google también introdujo Agentes de seguridad con Géminis. Entre las nuevas herramientas de AI de agente incluyen un agente de triaje de alerta en las operaciones de seguridad de Google, que investiga automáticamente alertas, compila evidencia y realiza veredictos.

Un nuevo agente de análisis de malware en Google Amenazing Intelligence evalúa un código potencialmente malicioso, ejecuta scripts de deobfuscación y entrega veredictos con plena explicación. Ambos están previsamente en la Q2.

Asociaciones: Equipo Ups con Nvidia, Juniper, SAP y más

No sería una nube de Google a continuación sin una serie de asociaciones golpeadas o extendidas, y este año no fue diferente.

El hiperscaler amplió su asociación con Lumen Para mejorar las soluciones de nube y de red. El equipo se centrará en integrar WAN en la nube con los servicios de Lumen, proporcionar acceso directo a la fibra a las regiones de Google Cloud y ofrecer conexiones seguras y obtenidas de aire a Google Distributed Cloud.

Google Cloud también unió fuerzas con Nvidia Para llevar su familia Géminis de modelos de IA a los sistemas Blackwell del fabricante de chips. La medida ve que los modelos de Géminis están disponibles en el momento, lo que permite a los clientes bloquear la información confidencial, como los registros de pacientes, las transacciones financieras e información del gobierno clasificada.

“Al llevar nuestros modelos de Géminis en las instalaciones con el rendimiento innovador de Nvidia Blackwell y las capacidades informáticas confidenciales, estamos permitiendo a las empresas desbloquear todo el potencial de la IA agente”, dijo Sachin Gupta, vicepresidente y gerente general de infraestructura y soluciones en Google Cloud.

Sus modelos Géminis también están llegando a SAVIAEl centro de IA generativo en su plataforma de tecnología comercial. La hiperescala también agregó sus capacidades de video e inteligencia del habla para apoyar la generación (RAG) de recuperación multimodal para el aprendizaje basado en video y el descubrimiento de conocimiento en los productos SAP.

También anunciado fue una colaboración con Redes de enebro para acelerar los nuevos despliegues de campus y ramas empresariales. Los clientes podrán usar la solución WAN Cloud WAN de Google junto con Juniper Mist Wired, Wireless, NAC, Firewalls y Secure SD-WAN Solutions, lo que les permite conectar aplicaciones críticas y cargas de trabajo de IA, ya sea en Internet, en nubes o dentro de los centros de datos.

El hiperscaler se asoció con Oráculo Para presentar un programa de socios diseñado para permitir a Oracle y Google Cloud Partners ofrecer Oracle Database@Google Cloud a sus clientes.

Firma de almacenamiento de datos DataDirect Reds (DDN) también se unió a Google Cloud en su servicio de sistema de archivos paralelo de Luster Administrado, que proporciona hasta 1 TB/s de rendimiento para servicios de acceso rápido para empresas y startups que construyen AI y aplicaciones de computación de alto rendimiento (HPC).

Acentuar También amplió su asociación estratégica con Google Cloud, con la pareja comprometida a trabajar juntos para desarrollar soluciones de IA específicas de la industria.

Estas últimas asociaciones se suman a las que se escriben a principios de este año, como con Deutsche Telekom, con la pareja trabajando juntos en AI Avancement and Cloud Integration en la infraestructura de red del operador.

Google Cloud para impulsar la modernización de red de Deutsche Telekom con IA, Cloud

Google Cloud, Infovista unen fuerzas en la planificación de la red de RF

Google Cloud admite DT y Vodafone Italia con Ran-Driven AI y una revisión de datos

Continue Reading

Noticias

Operai golpea a Elon Musk con contador • El registro

Published

on

Operai ha contrarrestado al cofundador Elon Musk, acusándolo de tácticas ilegales e injustas para descarrilar sus planes de reestructuración y exigir que un juez lo responsabilice por el daño presuntamente infligido en la AI Super-Lab.

El contador considerable [PDF] y la respuesta a las afirmaciones de Musk se presentó ayer en el Tribunal Federal de California. Si bien acusa al magnate de Tesla de una amplia gama de comportamientos destinados a socavar las operaciones de OpenAI, incluido “acoso, interferencia y información errónea”, las dos reclamaciones de alivio de la Contadora se concentran en el intento de febrero de Musk para comprar el fabricante de ChatGPT por $ 97.375 mil millones. Si bien el equipo de Musk ha retratado la oferta como genuina, los abogados de OpenAi lo llaman algo completamente diferente.

En lugar de una oferta de adquisición seria, OpenAI afirma que la medida de Musk fue una “simulada” diseñada “para interferir con la reestructuración corporativa contemplada de OpenAI”. Musk ya no está involucrado en OpenAi y dirige un atuendo de inteligencia artificial rival, Xai, entre otros negocios.

“La carta no incluía evidencia de financiamiento para pagar el precio de compra de casi $ 100 mil millones”, dijo Openai en su presentación de contadores, y agregó que ninguno de los inversores enumerados en la carta de intención de Musk había hecho ninguna diligencia debida. Más tarde, un inversor admitió, según los registros de la corte, que la intención de Musk era obtener acceso a los materiales internos de Openi a través de los procedimientos legales y “detrás de la pared” en el Super Lab de respaldo de Microsoft.

“Aunque OpenAi reconoció la oferta como una finta, su mera existencia, y la tormenta de fuego de los medios que lo rodean, requirió OpenAi para gastar recursos significativos en la respuesta”, dijo el gigante de la IA.

Es ese esfuerzo, y la llamada “oferta simulada”, lo que llevó a OpenAi a acusar a Musk de prácticas comerciales injustas y fraudulentas, así como una interferencia tortuosa con prospectivo ventaja económica (es decir, cuando un tercero interrumpe un posible acuerdo en detrimento del demandante).

Operai está buscando un alivio cautelar para detener la supuesta interferencia y restitución de Musk por los recursos que, según los que afirma, respondieron a su oferta.

Le preguntamos a OpenAi qué esperaba lograr, y nos dirigió a la presentación de la corte y a sus comentarios realizados en la X de Musk, donde el negocio AI dijo que el contador estaba destinado a detener sus “tácticas de mala fe para reducir la velocidad de OpenAi y aprovechar el control de las innovaciones principales de la IA para su beneficio personal”.

[Musk] Intenté confiscar el control de OpenAi y fusionarlo con Tesla como un fin de lucro: sus propios correos electrónicos lo demuestran. Cuando no se salió con la suya, se quedó

“Elon nunca ha sido sobre la misión. Siempre ha tenido su propia agenda”, continuó Openai. “Trató de confiscar el control de OpenAi y fusionarlo con Tesla como una con fines de lucro: sus propios correos electrónicos lo demuestran. Cuando no se salió con la suya, se fue”.

La muy breve historia de una disputa multimillonaria

Para aquellos que han hecho todo lo posible para ignorar la disputa del jefe de Musk y Operai, Sam Altman, puede ser necesaria un poco de historia.

Musk fue uno de los cofundadores de OpenAi, pero se asaltó en 2018 luego de desacuerdos internos sobre el control y la dirección estratégica. Operai alega que el Oligarch SpaceX propuso fusionarse OpenAi con Tesla (que tiene objetivos autónomos impulsados ​​por IA) o buscó un control total, que el equipo de Altman rechazó, lo que llevó a su salida.

En un momento, el liderazgo de Openi temía que Musk se convertiría en un “dictador” de AGI, o poderosa inteligencia general artificial, si se le permitiera un control completo sobre el laboratorio, a juzgar por correos electrónicos surgió durante esta batalla legal.

“Usted declaró que no desea controlar el AGI final, pero durante esta negociación, nos ha demostrado que el control absoluto es extremadamente importante para usted”, escribió Musk, cofundador y mega-boffin Ilya Sutskever. “El objetivo de OpenAi es hacer el futuro el futuro y evitar una dictadura AGI”.

En marzo de 2024, Musk demandó a Openai y Altman alegando incumplimiento de contrato, prácticas comerciales injustas y fallas fiduciarias relacionadas con la estrecha asociación de OpenAI con Microsoft y el establecimiento de una subsidiaria con fines de lucro. (Openai comenzó como una organización sin fines de lucro).

Musk retiró esta demanda en junio del año pasado sin proporcionar una razón pública, pero presentó una casi idéntica un par de meses después. Afirmó el cambio de OpenAi hacia un modelo con fines de lucro contradecía su misión original de desarrollar IA en beneficio de la humanidad.

El equipo legal de Openai describió la queja de Musk como “Lurch[ing] De la teoría a la teoría, distorsione[ing] sus propias exhibiciones y comercio[ing] De principio a fin en conclusiones sin hechos y a menudo ad hominem “.

Operai niega que se esté convirtiendo en una empresa única con fines de lucro, afirmando en su contratación que su plan de reestructuración solo vería que su subsidiaria con fines de lucro se convirtió en una corporación de beneficios público. Ese movimiento es necesario, afirmado Openai, para permitir que el equipo compita mejor por el capital “al servicio de la misión de desarrollar AGI en beneficio de la humanidad”. Dicho esto, Operai continúa recaudando decenas de miles de millones de dólares en fondos, $ 40 mil millones tan recientemente como finales de marzo.

Un portavoz de Operai le dijo además El registro No tenía intención de abandonar su núcleo sin fines de lucro.

“Nuestra junta ha sido muy clara de que tenemos la intención de fortalecer la organización sin fines de lucro para que pueda cumplir su misión a largo plazo”, nos dijo Openai. “No lo estamos vendiendo, estamos duplicando su trabajo”.

Operai también nos señaló el anuncio de la semana pasada de una comisión que comprende expertos en salud, ciencia, educación y servicios públicos para guiar la evolución planificada de las ORG.

“Esperamos los aportes y los consejos de los líderes que tienen experiencia en organizaciones comunitarias sobre cómo podemos ayudarlos a lograr sus misiones”, dijo Openai en un comunicado enviado por correo electrónico.

Sin embargo, OpenAi tiene que completar su transición a una entidad con fines de lucro a fines de 2025 para asegurar que los $ 40 mil millones mencionados anteriormente en fondos dirigidos por SoftBank.

Es probable que la demanda de Musk solo desacelere, especialmente porque el juicio, según una orden previa al juicio esta semana, no se debe comenzar hasta marzo de 2026.

Ni Musk, famoso ahora, la grasa Eminence del presidente Trump, ni su equipo legal respondieron a preguntas para esta historia. ®

Continue Reading

Trending