Un estudio publicado en la revista Tecnologías de educación e información Encuentra que los estudiantes que son más conscientes tienden a usar herramientas de IA generativas como ChatGPT con menos frecuencia, y que usar tales herramientas para tareas académicas se asocia con una mayor autoeficacia, un peor rendimiento académico y mayores sentimientos de impotencia. Los hallazgos destacan la dinámica psicológica detrás de la adopción de la IA y plantean preguntas sobre cómo puede dar forma al aprendizaje y la motivación de los estudiantes.
La IA generativa se refiere a sistemas informáticos que pueden crear contenido original en respuesta a las indicaciones del usuario. Los modelos de idiomas grandes, como ChatGPT, son un ejemplo común. Estas herramientas pueden producir ensayos, resúmenes, explicaciones e incluso simular la conversación, lo que los hace atractivos para los estudiantes que buscan ayuda rápida con tareas académicas. Pero su ascenso también ha provocado un debate entre los educadores, que están preocupados por el plagio, el aprendizaje reducido y el uso ético de la IA en las aulas.
“Ser testigo de la dependencia excesiva entre algunos de mis estudiantes en herramientas generativas de IA como ChatGPT me hizo preguntarme si estas herramientas tenían implicaciones para los resultados de aprendizaje a largo plazo de los estudiantes y su capacidad cognitiva”, dijo el autor de estudio Sundas Azeem, profesor asistente de gestión y comportamiento organizacional en la Universidad Szabist.
“Era particularmente evidente que para aquellas actividades y tareas en las que los estudiantes se basaban en herramientas generativas de IA, la participación y el debate en el aula fue considerablemente menor ya que las respuestas similares de estas herramientas aumentaron el acuerdo de los estudiantes sobre los temas de discusión. Con un compromiso reducido en la clase, estas observaciones provocaron mi preocupación si realmente se cumplían objetivos de aprendizaje.
“En el momento en que comenzamos este estudio, la mayoría de los estudios sobre el uso de la IA generativo por parte de los estudiantes estaban basados en la opinión o teóricos, explorando la ética del uso generativo de la IA”, continuó Azeem. “Los estudios que exploran el rendimiento académico rara vez consideran las calificaciones académicas (CGPA) para los resultados académicos, y también ignoraron las diferencias individuales como los rasgos de personalidad.
“A pesar del uso generalizado, no todos los estudiantes se basaron en el uso generativo de la IA por igual. Los estudiantes que de otro modo eran más responsables, puntuales y participativos en la clase parecían confiar menos en las herramientas generativas de IA. Esto me llevó a investigar si hubo diferencias de personalidad en el uso de estas herramientas. Esta brecha, acoplada con inquietudes enriquecidas sobre la equidad en el grado de la justicia y la integridad académica inspirada para este estudio”.
Para explorar cómo los estudiantes realmente se involucran con la IA generativa y cómo sus rasgos de personalidad influyen en este comportamiento, los investigadores encuestaron a 326 estudiantes universitarios de tres universidades principales en Pakistán. Los estudiantes se inscribieron en programas relacionados con los negocios y abarcaron de segundo a octavo semestre. Es importante destacar que el estudio utilizó un diseño de encuesta de tres ondas y retrasado en el tiempo para recopilar datos con el tiempo y minimizar los sesgos comunes en las respuestas autoinformadas.
En el primer momento, los estudiantes informaron sus rasgos de personalidad y sus percepciones de equidad en el sistema de calificación de su universidad. Específicamente, los investigadores se centraron en tres rasgos de personalidad del modelo Big Five: conciencia, apertura a la experiencia y neuroticismo. Estos rasgos fueron seleccionados debido a su relevancia para el rendimiento académico y el uso de la tecnología. Por ejemplo, los estudiantes concienzñosos tienden a ser organizados, autodisciplinados y orientados a los logros. La apertura refleja la curiosidad intelectual y la creatividad, mientras que el neuroticismo se asocia con ansiedad e inestabilidad emocional.
En el segundo punto, los participantes informaron con qué frecuencia usaban herramientas de IA generativas, especialmente ChatGPT, para fines académicos. En la tercera y última ola, los estudiantes completaron medidas que evaluaron su autoeficacia académica (cuán capaces se sintieron de tener éxito académicamente), su experiencia de impotencia aprendida (la creencia de que los esfuerzos no conducirán al éxito) e informaron su promedio acumulativo de calificaciones.
Entre los tres rasgos de personalidad estudiados, solo la conciencia estaba significativamente vinculada al uso de la IA. Los estudiantes que obtuvieron puntajes más altos en la conciencia tenían menos probabilidades de usar IA generativa para el trabajo académico. Este hallazgo sugiere que las personas concienzudas pueden preferir confiar en sus propios esfuerzos y están menos inclinados a tomar atajos, alineándose con investigaciones previas que demuestran que este rasgo de personalidad está asociado con la honestidad académica y el aprendizaje autodirigido.
“Nuestro estudio encontró que los estudiantes que son más conscientes tienen menos probabilidades de confiar en la IA generativa para tareas académicas debido a una mayor autodisciplina y tal vez también estándares éticos más altos”, dijo Azeem a PSYPOST. “Pueden preferir explorar múltiples fuentes de información y otras actividades de aprendizaje más cognitivamente atractivas como investigaciones y discusiones”.
Contrariamente a las expectativas, la apertura a la experiencia y el neuroticismo no se relacionó significativamente con el uso de IA. Si bien investigaciones anteriores han vinculado la apertura con una mayor disposición a probar nuevas tecnologías, los investigadores sugieren que los estudiantes con alto contenido de apertura también pueden valorar la originalidad y el pensamiento independiente, lo que potencialmente reduce su dependencia del contenido generado por IA. Del mismo modo, los estudiantes con un alto nivel de neuroticismo pueden sentirse incómodos con la precisión o la ética de las herramientas de IA, lo que lleva a la ambivalencia sobre su uso.
Los investigadores también examinaron cómo las percepciones de la justicia en la clasificación podrían dar forma a estas relaciones. Pero solo una interacción, entre la apertura y la equidad de calificación, fue marginalmente significativa. Para los estudiantes con alto contenido de apertura, percibir el sistema de calificación como justo se asoció con un menor uso de IA. Los investigadores no encontraron interacciones significativas que involucraban la conciencia o neuroticismo.
“Un hallazgo sorprendente fue que la justicia en la calificación solo influyó marginalmente en el uso generativo de la IA, y solo para la apertura del rasgo de personalidad a la experiencia, mostrando que, independientemente de la justicia de calificación, la IA generativa está ganando una popularidad generalizada”, dijo Azeem. “Esto es revelador, dado que habíamos anticipado que los estudiantes confiarían más en las herramientas generativas de IA con el objetivo de obtener calificaciones más altas, cuando la calificación percibió que la calificación era injusta. Además, mientras que las personas con una apertura a la experiencia de la experiencia son generalmente adoptantes de tecnologías que nuestro estudio no informó tales hallazgos”.
En términos más generales, los investigadores encontraron que un mayor uso de la IA generativa en las tareas académicas se asoció con varios resultados negativos. Los estudiantes que se basaron más en IA informaron una mayor autoeficacia académica. En otras palabras, se sintieron menos capaces de tener éxito por su cuenta. También experimentaron mayores sentimientos de impotencia aprendida, un estado en el que las personas creen que el esfuerzo es inútil y los resultados están fuera de su control. Además, un mayor uso de IA se vinculó con un rendimiento académico ligeramente más bajo medido por GPA.
Estos patrones sugieren que, si bien la IA generativa puede ofrecer conveniencia a corto plazo, su uso excesivo podría socavar el sentido de agencia de los estudiantes y reducir su motivación para participar profundamente con sus cursos. Con el tiempo, esta confianza podría erosionar el pensamiento crítico y las habilidades de resolución de problemas que son esenciales para el éxito a largo plazo.
Un análisis posterior reveló que el uso de IA generativo también medió el vínculo entre la conciencia y los resultados académicos. Específicamente, los estudiantes que eran más conscientes tenían menos probabilidades de usar IA, y este menor uso se asoció con un mejor rendimiento académico, una mayor autoeficacia y menos impotencia.
“Una conclusión clave para los estudiantes, los maestros, así como el liderazgo académico es el impacto de la dependencia de los estudiantes en las herramientas generativas de IA en sus resultados psicológicos y de aprendizaje”, dijo Azeem a PSYPOST. “Por ejemplo, nuestros hallazgos de que el uso generativo de la IA se asocia con una autoeficacia académica reducida y una mayor impotencia aprendida lo considera, ya que los estudiantes pueden comenzar a creer que sus propios esfuerzos no importan. Esto puede llevar a una agencia reducida cuando los estudiantes pueden creer que el éxito académico depende de las herramientas externas en lugar de la competencia interna. Como el uso excesivo de la AI generativa es la autoefficacia, los estudiantes pueden creer que su capacidad completa o desafiante los problemas sin problemas de los estudiantes en lugar de la ayuda de los estudiantes. Aprendedores pasivos, dudando en intentar tareas sin apoyo.
“Cuando se sienten menos control o dudan durante mucho tiempo, puede conducir a los hábitos de aprendizaje distorsionados, ya que pueden creer que la IA generativa siempre proporcionará la respuesta. Esto también puede hacer que las tareas académicas sean aburridas en lugar de desafiar, retraso aún más la resiliencia y el crecimiento intelectual. Nuestros hallazgos implican que la IA generativa está aquí aquí, su integración responsable en la academia a través de la formación de políticas, así como los maestros y el crecimiento intelectual es clave, nuestros hallazgos son clave.
“Nuestros hallazgos no respaldaron la idea común de que las herramientas generativas de IA ayudan a funcionar mejor académicamente”, explicó Azeem. “Esto tiene sentido dados nuestros hallazgos de que el uso generativo de la IA aumenta la impotencia aprendida. El rendimiento académico (indicado por CGPA en nuestro estudio) se basa más en las habilidades cognitivas individuales y el conocimiento de la materia, que puede afectar negativamente con una reducción de la autoeficacia académica reducida en exceso”.
El estudio, como todas las investigaciones, incluye algunas limitaciones. La muestra se limitó a estudiantes de negocios de universidades paquistaníes, lo que puede limitar la generalización de los hallazgos a otras culturas o disciplinas académicas. Los investigadores se basaron en medidas autoinformadas, aunque tomaron medidas para reducir el sesgo al separar las encuestas y usar escalas establecidas.
“Los datos autoinformados pueden ser susceptibles al sesgo de deseabilidad social”, señaló Azeem. “Además, si bien nuestro estudio siguió un diseño de tiempo de tiempo que permite la separación temporal entre la recopilación de datos, las instrucciones causales entre el uso generativo de la IA y sus resultados pueden mapear mejor a través de un diseño longitudinal. Del mismo modo, para diseñar las intervenciones y planes de capacitación necesarios, puede ayudar a futuros estudios a investigar las condiciones bajo las cuales el uso generativo de la IA lidera a los medios de aprendizaje más positivos y menos negativos”.
“A largo plazo, su objetivo es realizar estudios longitudinales que investiguen el desarrollo de los estudiantes a largo plazo, como la creatividad, la autorregulación y la empleabilidad en los semestres múltiples. Esto puede ayudar a cerrar las diferencias emergentes en la literatura con respecto al positivo versus los efectos dañinos de la IA generativa para los estudiantes. También tengo la intención de explorar otros rasgos motivacionales para que la personalidad sea de la personalidad, que puede influenciar la IA Generación. y razonamiento ético para el uso efectivo de IA generativo entre los estudiantes a largo plazo ”.
Los hallazgos plantean preguntas más grandes sobre el futuro de la educación en una era de IA accesible y poderosa. Si las herramientas generativas pueden completar muchas tareas académicas con un esfuerzo mínimo, los estudiantes pueden perder los procesos de aprendizaje que generan confianza, resistencia y pensamiento crítico. Por otro lado, las herramientas de IA también podrían usarse para apoyar el aprendizaje, por ejemplo, ayudando a los estudiantes a hacer una lluvia de ideas, explorar nuevas perspectivas o refinar sus escritos.
“Si bien nuestro estudio nos alarma a los posibles efectos adversos de la IA generativa para los estudiantes, la literatura también está disponible que respalda sus resultados positivos”, dijo Azeem. “Por lo tanto, a medida que las herramientas de IA se integran cada vez más en la educación, es vital que los responsables políticos, los educadores y los desarrolladores de EDTech vayan más allá de las opiniones binarias de la IA generativa como inherentemente bueno o malo. Creo que guiar el uso responsable de la IA generativa mientras mitigan los riesgos tienen la clave del aprendizaje mejorado”.
“Para ser específicos, la capacitación de instructor para diseñar actividades de aprendizaje acuáticas de AI puede ayudar a fomentar el pensamiento crítico. Estos pueden enfatizar la reflexión de los estudiantes alentando sobre el contenido generado por IA para abordar algunas cartas del uso generativo de IA en el aula. De la misma manera, la promoción de los sistemas de clasificación justos y transparentes es probable que se convierta en un mal uso. Con el uso no regulado y no regulado entre los estudiantes generativos entre los estudiantes de AI, los que se aprenden a los estudiantes de AI, lo que puede ser acelerado, se debe convertir en aceleración. Puede afectar las capacidades que la educación está destinada a desarrollar: la independencia, el pensamiento crítico y la curiosidad.
El estudio, “La personalidad se correlaciona del uso académico de la inteligencia artificial generativa y sus resultados: ¿Importa la justicia?”, Fue escrita por Sundas Azeem y Muhammad Abbas.