Noticias
Israel is building a ChatGPT-like tool weaponizing surveillance of Palestinians
Published
2 meses agoon

In partnership with
The Israeli army is developing a new, ChatGPT-like artificial intelligence tool and training it on millions of Arabic conversations obtained through the surveillance of Palestinians in the occupied territories, an investigation by +972 Magazine, Local Call, and the Guardian can reveal.
The AI tool — which is being built under the auspices of Unit 8200, an elite cyber warfare squad within Israel’s Military Intelligence Directorate — is what’s known as a Large Language Model (LLM): a machine-learning program capable of analyzing information and generating, translating, predicting, and summarizing text. Whereas LLMs available to the public, like the engine behind ChatGPT, are trained on information scraped from the internet, the new model under development by the Israeli army is being fed vast amounts of intelligence collected on the everyday lives of Palestinians living under occupation.
The existence of Unit 8200’s LLM was confirmed to +972, Local Call, and the Guardian by three Israeli security sources with knowledge of its development. The model was still being trained in the second half of last year, and it is unclear whether it has been deployed yet or how exactly the army will use it. However, sources explained that a key benefit for the army will be the tool’s ability to rapidly process large quantities of surveillance material in order to “answer questions” about specific individuals. Judging by how the army already uses smaller language models, it seems likely that the LLM could further expand Israel’s incrimination and arrest of Palestinians.
“AI amplifies power,” an intelligence source who has closely followed the Israeli army’s development of language models in recent years explained. “It allows operations [utilizing] the data of far more people, enabling population control. This is not just about preventing shooting attacks. I can track human rights activists. I can monitor Palestinian construction in Area C [of the West Bank]. I have more tools to know what every person in the West Bank is doing. When you hold so much data, you can direct it toward any purpose you choose.”
While the tool’s development predates the current war, our investigation reveals that, after October 7, Unit 8200 sought the assistance of Israeli citizens with expertise in the development of language models who were working at tech giants like Google, Meta, and Microsoft. With the mass mobilization of reservists at the start of Israel’s onslaught on Gaza, industry experts from the private sector began enlisting in the unit — bringing knowledge that was previously “accessible only to a very exclusive group of companies worldwide,” as one security source stated. (In response to our inquiries, Google stated that it has “employees who do reserve duty in various countries” and emphasized that the work they do in that context “is not connected to Google.” Meta and Microsoft declined to comment.)

A security camera seen overlooking the West Bank city of Hebron, January 15, 2013. (Nati Shohat/Flash90)
According to one source, Unit 8200’s chatbot has been trained on 100 billion words of Arabic obtained in part through Israel’s large-scale surveillance of Palestinians under the rule of its military — which experts warn constitutes a severe violation of Palestinian rights. “We are talking about highly personal information, taken from people who are not suspected of any crime, to train a tool that could later help establish suspicion,” Zach Campbell, a senior technology researcher at Human Rights Watch, told +972, Local Call, and the Guardian.
Nadim Nashif, director and founder of the Palestinian digital rights and advocacy group 7amleh, echoed these concerns. “Palestinians have become subjects in Israel’s laboratory to develop these techniques and weaponize AI, all for the purpose of maintaining [an] apartheid and occupation regime where these technologies are being used to dominate a people, to control their lives. This is a grave and continuous violation of Palestinian digital rights, which are human rights.”
‘We’ll replace all intelligence officers with AI agents’
The Israeli army’s efforts to develop its own LLM were first acknowledged publicly by Chaked Roger Joseph Sayedoff, an intelligence officer who presented himself as the project’s lead, in a little-noticed lecture last year. “We sought to create the largest dataset possible, collecting all the data the State of Israel has ever had in Arabic,” he explained during his presentation at the DefenseML conference in Tel Aviv. He added that the program is being trained on “psychotic amounts” of intelligence information.
According to Sayedoff, when ChatGPT’s LLM was first made available to the public in November 2022, the Israeli army set up a dedicated intelligence team to explore how generative AI could be adapted for military purposes. “We said, ‘Wow, now we’ll replace all intelligence officers with [AI] agents. Every five minutes, they’ll read all Israeli intelligence and predict who the next terrorist will be,’” Sayedoff said.
But the team was initially unable to make much progress. OpenAI, the company behind ChatGPT, rejected Unit 8200’s request for direct access to its LLM and refused to allow its integration into the unit’s internal, offline system. (The Israeli army has since made use of OpenAI’s language model, purchased via Microsoft Azure, as +972 and Local Call revealed in another recent investigation. OpenAI declined to comment for this story.)
And there was another problem, Sayedoff explained: existing language models could only process standard Arabic — used in formal communications, literature, and the media — not spoken dialects. Unit 8200 realized it would need to develop its own program, based, as Sayedoff said in his lecture, “on the dialects that hate us.”

Shadows of police CCTV cameras seen near Jaffa Gate in Jerusalem’s Old City, January 30, 2017. (Sebi Berens/Flash90)
The turning point came with the onset of the Gaza war in October 2023, when Unit 8200 began recruiting experts in language models from private tech companies as reservists. Ori Goshen, co-CEO and co-founder of the Israeli company AI21 Labs which specializes in language models, confirmed that employees of his participated in the project during their reserve duty. “A security agency cannot work with a service like ChatGPT, so it needs to figure out how to run AI within an [internal] system that is not connected to other networks,” he explained.
According to Goshen, the benefits LLMs provide to intelligence agencies could include the ability to rapidly process information and generate lists of “suspects” for arrest. But for him, the key is their ability to retrieve data scattered across multiple sources. Rather than using “primitive search tools,” officers could simply “ask questions and get answers” from a chatbot — which, for instance, would be able to tell you whether two people had ever met, or instantly determine whether a person had ever committed a particular act.
Goshen conceded, however, that blind reliance on these tools could lead to mistakes. “These are probabilistic models — you give them a prompt or a question, and they generate something that looks like magic,” he explained. “But often, the answer makes no sense. We call this ‘hallucination.’”
Campbell, of Human Rights Watch, raised a similar concern. LLMs, he said, function like “guessing machines,” and their errors are inherent to the system. Moreover, the people using these tools are often not the ones who developed them, and research shows they tend to trust them more. “Ultimately, these guesses could be used to incriminate people,” he said.
Previous investigations by +972 and Local Call into the Israeli army’s use of AI-based targeting systems to facilitate its bombing of Gaza have highlighted the operational flaws inherent to such tools. For example, the army has used a program known as Lavender to generate a “kill list” of tens of thousands of Palestinians, whom the AI incriminated because they displayed characteristics that it had been taught to associate with membership of a militant group.
The army then bombed many of these individuals — usually while at home with their families — even though the program was known to have an error rate of 10 percent. According to sources, human oversight of the assassination process served merely as a “rubber stamp,” and soldiers treated Lavender’s outputs “as if it were a human decision.”

Palestinians cross Qalandiya checkpoint on their way from the West Bank to the fourth Friday prayer of Ramadan in Jerusalem’s Al-Aqsa Mosque, April 29, 2022. (Oren Ziv)
‘Sometimes it’s just a division commander who wants 100 arrests per month’
The development of a ChatGPT-style tool trained on spoken Arabic represents a further expansion of Israel’s surveillance apparatus in the occupied territories, which has long been highly intrusive. More than a decade ago, soldiers who served in Unit 8200 testified that they had monitored civilians with no connection to militant groups in order to obtain information that could be used to blackmail them — for example, regarding financial hardship, their sexual orientation, or a serious illness affecting them or a family member. The former soldiers also admitted to tracking political activists.
Alongside developing its own LLM, Unit 8200 already utilizes smaller language models that allow for the classification of information, transcription and translation of conversations from spoken Arabic to Hebrew, and efficient keyword searches. These tools make intelligence material more immediately accessible, particularly to the army’s Judea and Samaria (West Bank) Division. According to two sources, the smaller models enable the army to sift through surveillance material and identify Palestinians expressing anger at the occupation or a desire to attack Israeli soldiers or settlers.
One source described a language model currently in use that scans data and identifies Palestinians using words that indicate “troublemaking.” The source added that the army has used language models to predict who might throw stones at soldiers during operations to “demonstrate presence” — when soldiers raid a town or village in the West Bank and go door to door, storming into every house on a particular street to conduct arrests and intimidate residents.
Intelligence sources stated that the use of these language models alongside large-scale surveillance in the occupied territories has deepened Israel’s control over the Palestinian population and significantly increased the frequency of arrests. Commanders can access raw intelligence translated into Hebrew — without needing to rely on Unit 8200’s language centers to provide the material, or knowing Arabic themselves — and select “suspects” for arrest from an ever-growing list in every Palestinian locality. “Sometimes it’s just a division commander who wants 100 arrests per month in his area,” one source said.
Unlike the smaller models already in use, however, the large model currently in development is being trained with Unit 8200’s dataset of millions of conversations between Palestinians. “Spoken Arabic is data that is [hardly] available on the internet,” the source explained. “There are no transcripts of conversations or WhatsApp chats online. It doesn’t exist in the quantity needed to train such a model.”
For training the LLM, everyday conversations between Palestinians that have no immediate intelligence value still serve an essential purpose. “If someone calls another person [on the phone] and tells them to come outside because they’re waiting for them outside the school — that’s just a casual conversation, it’s not interesting,” a security source explained. “But for a model like this, it’s gold, because it provides more and more data to train on.”

An Israeli military watchtower and cameras over Road 60, occupied West Bank, Jan. 30, 2006. (Activestills)
Unit 8200 is not the only national intelligence agency attempting to develop generative AI tools; the CIA has developed a tool similar to ChatGPT to analyze open-source information, and intelligence agencies in the UK are also developing their own LLMs. However, former British and American security officials told +972, Local Call, and the Guardian that Israel’s intelligence community is taking greater risks than its American or British counterparts when it comes to integrating AI systems into intelligence analysis.
Brianna Rosen, a former White House security official and current researcher in military and security studies at the University of Oxford, explained that an intelligence analyst using a tool like ChatGPT would potentially be able to “detect threats humans might miss, even before they arise.” However, it also “risks drawing false connections and faulty conclusions. Mistakes are going to be made, and some of those mistakes may have very serious consequences.”
Israeli intelligence sources emphasized that in the West Bank, the most pressing issue is not necessarily the accuracy of these models, but rather the vast scope of arrests they enable. The lists of “suspects” are constantly growing, as massive amounts of information are continuously collected and rapidly processed using AI.
Several sources stated that a vague or general “suspicion” is often enough to justify placing Palestinians in administrative detention — an extendable prison sentence of six months without charge or trial, on the basis of undisclosed “evidence.” In an environment where surveillance of Palestinians is so extensive and the threshold for arrest is so low, they said, the addition of new AI-based tools will enhance Israel’s ability to find incriminating information on many more people.
The IDF Spokesperson did not address specific questions posed by +972, Local Call, and the Guardian “due to the sensitive nature of the information,” asserting only that “any use of technological tools is done through a rigorous process led by professionals, in order to ensure maximum accuracy of the intelligence information.”
Harry Davies of the Guardian and Sebastian Ben Daniel (John Brown) contributed to this investigation.
You may like
Noticias
El Proyecto Stargate de Openai tiene como objetivo construir infraestructura de IA en países asociados de todo el mundo
Published
3 horas agoon
19 mayo, 2025
Operai ha anunciado una nueva iniciativa llamada “OpenAi para países” como parte de su proyecto Stargate, con el objetivo de ayudar a las naciones a desarrollar infraestructura de IA basada en principios democráticos. Esta expansión sigue al plan de inversión inicial de $ 500 millones de la compañía para la infraestructura de IA en los Estados Unidos.
“Introducción a OpenAi para países, una nueva iniciativa para apoyar a países de todo el mundo que desean construir sobre los rieles demócratas de IA”, declaró Openai en su anuncio. La compañía informa que su proyecto Stargate, reveló por primera vez en enero con el presidente Trump y los socios Oracle y Softbank, ha comenzado la construcción de su primer campus de supercomputación en Abilene, Texas.
Según OpenAI, la iniciativa responde al interés internacional en un desarrollo similar de infraestructura. “Hemos escuchado de muchos países pidiendo ayuda para construir una infraestructura de IA similar: que quieren sus propios Stargates y proyectos similares”, explicó la compañía, señalando que dicha infraestructura será “la columna vertebral del futuro crecimiento económico y el desarrollo nacional”.
La compañía enfatizó su visión de la IA democrática como tecnología que incorpora principios que protegen las libertades individuales y evitan la concentración de control del gobierno. Operai cree que este enfoque “contribuye a una amplia distribución de los beneficios de la IA, desalienta la concentración de poder y ayuda a avanzar en nuestra misión”.
El proyecto Stargate opera a través de un consorcio de principales compañías de tecnología que se desempeñan como inversores y socios técnicos. SoftBank, Openai, Oracle y MGX proporcionan la financiación inicial de capital, con las responsabilidades financieras de manejo de SoftBank, mientras que OpenAI administra las operaciones.
En el lado técnico, cinco compañías tecnológicas importantes forman la base de la implementación del proyecto. “Arm, Microsoft, Nvidia, Oracle y OpenAI son los socios de tecnología iniciales clave”, según OpenAI. El desarrollo de infraestructura aprovecha las relaciones establecidas entre estas compañías, particularmente basándose en la colaboración de larga data de OpenAI con Nvidia que se remonta a 2016 y su asociación más reciente con Oracle.
La compañía describe un marco integral de asociación para colaborar con naciones extranjeras.
“Openai está ofreciendo un nuevo tipo de asociación para la era de la inteligencia. A través de colaboraciones de infraestructura formal y en coordinación con el gobierno de los Estados Unidos”, explica el anuncio, destacando la alineación de la compañía con los intereses de política exterior estadounidense en el desarrollo tecnológico.
El modelo de asociación incluye múltiples componentes que abordan la infraestructura, el acceso y el desarrollo económico. Operai planea “asociarse con países para ayudar a construir capacidad de centro de datos en el país” para respaldar la soberanía de los datos al tiempo que permite la personalización de la IA para las necesidades locales.
Los ciudadanos de los países participantes recibirían servicios de “CHATGPT personalizados” adaptados a idiomas y culturas locales, destinados a mejorar la prestación de atención médica, educación y servicios públicos. Operai describe esto como “ai de, por y para las necesidades de cada país en particular”.
La compañía también enfatiza las inversiones de seguridad y el desarrollo económico a través de un enfoque de financiación de inicio donde “los países asociados también invertirían en la expansión del proyecto global de Stargate, y por lo tanto en el liderazgo continuo de IA liderado por Estados Unidos”, reforzando la conexión de la iniciativa con el liderazgo tecnológico estadounidense.
Las asociaciones internacionales de OpenAI incorporan amplios protocolos de seguridad diseñados para proteger los modelos de IA y la propiedad intelectual. La compañía ha desarrollado un enfoque de seguridad para abordar las posibles vulnerabilidades.
“Salvaguardar nuestros modelos es un compromiso continuo y un pilar central de nuestra postura de seguridad”, Estados Openai, que describe su marco de seguridad como “riguroso” y “evolucionando continuamente”. Este marco abarca la seguridad de la información, la gobernanza y la protección de la infraestructura física.
La arquitectura de seguridad se adapta a las capacidades del modelo de coincidencia, con OpenAi señalando que “nuestras medidas de seguridad no son estáticas; escaman con las capacidades de nuestros modelos e incorporan protecciones de vanguardia”. Estas protecciones incluyen seguridad respaldada por hardware, arquitectura de mudanza cero y salvaguardas criptográficas.
El acceso al personal representa otra dimensión de seguridad crítica. “Operai mantendrá una supervisión explícita y continua sobre todo el personal con acceso a nuestros sistemas de información, propiedad intelectual y modelos”, enfatiza la compañía, y agrega que “ninguna persona o entidad obtendrá dicho acceso sin nuestra aprobación directa”.
Antes de implementar modelos internacionalmente, OpenAI realiza evaluaciones de riesgos a través de su marco de preparación. “Cada implementación de nuevos modelos se someterá a una evaluación de riesgos antes de la implementación”, reconociendo que algunos modelos avanzados pueden presentar riesgos incompatibles con ciertos entornos.
El CEO de Operai, Sam Altman, expresó entusiasmo por el progreso en el sitio de Texas, tuiteando:
Genial ver el progreso en el primer Stargate en Abilene con nuestros socios en Oracle Today. Será la instalación de entrenamiento de IA más grande del mundo. La escala, la velocidad y la habilidad de las personas que construyen esto es increíble.
Sin embargo, el desarrollo masivo de infraestructura ha planteado preocupaciones ambientales. Greg Osuri, fundador de Akash Network, cuestionó el enfoque de sostenibilidad del proyecto:
Este centro de datos está generando 360 MW quemando gas natural, causando una fuerte contaminación y emitiendo hasta 1 millón de toneladas métricas de carbono cada año. Entiendo que las opciones son limitadas, pero me gustaría comprender sus planes futuros para cambiar a fuentes más limpias o sostenibles.
Zach DeWitt, socio de Wing VC, comentó las implicaciones más amplias de este movimiento:
Operai parece estar construyendo y vendiendo productos en cada capa de la pila de IA: chips, centros de datos, API y la capa de aplicación. No está claro qué capa (s) se comercializarán y no se comercializarán y OpenAi está cubriendo sus apuestas de arriba a abajo por la pila de IA. Muy inteligente.
La compañía ha especificado limitaciones geográficas para su estrategia de expansión internacional, manteniendo restricciones sobre las cuales las naciones pueden acceder a su tecnología a través de su documentación de “países y territorios respaldados”.
Noticias
¿Qué es Codex, el último agente de codificación de IA de OpenAI capaz de multitarea? | Noticias tecnológicas
Published
8 horas agoon
18 mayo, 2025
Operai el viernes 16 de mayo, introdujo una nueva herramienta de IA llamada Codex que está diseñada para manejar múltiples tareas relacionadas con la ingeniería de software al mismo tiempo, desde la generación del código para nuevas funciones hasta responder preguntas sobre la base de código de un usuario, solucionar errores y sugerir solicitudes de revisión del código
La herramienta de codificación basada en la nube y el agente de IA ejecuta estas tareas en su propio entorno de Sandbox en la nube que se ha precargado con el repositorio de código de un usuario.
Codex ha sido publicado bajo Vista previa de investigación. Sin embargo, todos los usuarios de ChatGPT Pro, Enterprise y Team tienen acceso a la herramienta de codificación AI. “Los usuarios tendrán acceso generoso sin costo adicional durante las próximas semanas para que pueda explorar qué puede hacer Codex, después de lo cual lanzaremos el acceso limitado a la tarifa y las opciones de precios flexibles que le permiten comprar un uso adicional a pedido”, dijo Openii en una publicación de blog.
La historia continúa debajo de este anuncio
Los clientes de ChatGPT Plus y EDU recibirán acceso en una fecha posterior, agregó la inicio de IA respaldada por Microsoft.
Hoy estamos presentando Codex.
Es un agente de ingeniería de software que se ejecuta en la nube y hace tareas por usted, como escribir una nueva característica de arreglar un error.
Puede ejecutar muchas tareas en paralelo.
– Sam Altman (@sama) 16 de mayo de 2025
https://platform.twitter.com/widgets.js
La última oferta de Openai llega en un momento en que AI está listo para interrumpir el sector de ingeniería de software, lo que aumenta los temores generalizados del desplazamiento laboral. La CEO de Microsoft, Satya Nadella, dijo recientemente que el 30 por ciento del código de la compañía ahora está generado por IA. Unas semanas más tarde, el gigante de la tecnología anunció que está despidiendo a los 6,000 empleados o al 3 por ciento de su fuerza laboral, y los programadores se han impactado más.
“Todavía sigue siendo esencial que los usuarios revisen y validen manualmente todo el código generado por el agente antes de la integración y la ejecución”, señaló Openai en su publicación de blog de anuncios de Codex.
¿Qué es Codex?
Con Codex, los desarrolladores pueden delegar tareas de programación simples a un agente de IA. Tiene su propia interfaz única a la que se puede acceder desde la barra lateral en la aplicación Web CHATGPT.
La historia continúa debajo de este anuncio
Codex funciona con Codex-1, un modelo AI que es una variación del modelo de razonamiento O3 de OpenAI. Excepto que Codex-1 se ha entrenado específicamente en una amplia gama de tareas de codificación del mundo real para analizar y generar código “que refleja estrechamente el estilo humano y las preferencias de relaciones públicas, se adhiere precisamente a las instrucciones”.
https://www.youtube.com/watch?v=hhhdpnbfh6nu
Sus resultados se han ajustado más bien utilizando el aprendizaje de refuerzo para que Codex-1 pueda “ejecutar las pruebas hasta que reciba un resultado de aprobación”. En términos de rendimiento y precisión, OpenAi dijo que Codex-1 le fue mejor que su modelo O3 AI cuando se evaluó en su punto de referencia SWE interno, así como en el La versión de la empresa validada (Bench SWE verificado).
¿Cómo funciona Codex?
Codex puede leer y editar archivos, así como ejecutar comandos, incluidos arneses de prueba, revestimientos y comprobantes de tipo. Por lo general, lleva entre un minuto a 30 minutos completar una tarea dependiendo del nivel de dificultad, según OpenAI.
El agente de codificación de IA realiza cada tarea en un entorno aislado distinto y aislado que se precarga con la base de código del usuario que sirve como contexto. “Al igual que los desarrolladores humanos, los agentes de Codex funcionan mejor cuando se les proporciona entornos de desarrollo configurados, configuraciones de pruebas confiables y documentación clara”, dijo Openii.
La historia continúa debajo de este anuncio
Los usuarios pueden hacer que el Codex funcione de manera más efectiva para ellos al incluir archivos de agentes.md colocados dentro de su repositorio. “Estos son archivos de texto, similares a ReadMe.md, donde puede informar a Codex cómo navegar por su base de código, que comandan ejecutarse para las pruebas y la mejor manera de cumplir con las prácticas estándar de su proyecto”, dijo Openii.
Otra característica única de Codex es que Muestra su pensamiento y trabajo con cada paso a medida que completa la (s) tarea (s). En el pasado, varios desarrolladores han señalado que los agentes de codificación de IA producen scripts de codificación que no siguen los estándares y son difíciles de depurar.
“Codex proporciona evidencia verificable de sus acciones a través de citas de registros de terminales y salidas de prueba, lo que le permite rastrear cada paso tomado durante la finalización de la tarea”, dijo Openii.
Una vez que Codex completa una tarea, comete sus cambios en su entorno. Sin embargo, los usuarios también pueden revisar los resultados, solicitar más revisiones, abrir una solicitud de extracción de GitHub o realizar directamente cambios en el entorno de desarrollo local.
La historia continúa debajo de este anuncio
¿Cómo usar Codex? ¿Cuáles son sus casos de uso?
Para que Codex comience a generar código, los usuarios deben ingresar un mensaje y hacer clic en ‘Código’. Si desean que los agentes de codificación de IA respondan preguntas o proporcionen sugerencias, entonces los usuarios deben seleccionar la opción ‘Preguntar’ antes de enviar el mensaje.
Cuando OpenAI abrió el acceso temprano a Codex para socios externos, utilizaron la herramienta AI Coding Agent para acelerar el desarrollo de características, los problemas de depuración, escribir y ejecutar pruebas, y refactorizar grandes bases de código. Otro probador temprano utilizó códigos para acelerar las tareas pequeñas pero repetitivas, como mejorar la cobertura de la prueba y la reparación de fallas de integración “.
También se puede utilizar para escribir herramientas de depuración y ayudar a los desarrolladores a comprender partes desconocidas de la base de código al aparecer en el contexto relevante y los cambios pasados.
Los desarrolladores de OpenAI también están utilizando Codex internamente para refactorizar, renombrar y escribir pruebas, así como andamios nuevas características, componentes de cableado, corrección de errores y documentación de redacción.
La historia continúa debajo de este anuncio
“Según los aprendizajes de los primeros evaluadores, recomendamos asignar tareas bien escoltas a múltiples agentes simultáneamente, y experimentar con diferentes tipos de tareas y indicaciones para explorar las capacidades del modelo de manera efectiva”, dijo la compañía.
¿Cuál es la diferencia entre Codex y Codex CLI?
En abril de este año, Openai lanzó otra herramienta de agente de codificación de IA llamada Codex CLI. Se dice que es una herramienta de línea de comandos de código abierto capaz de leer, modificar y ejecutar código localmente en el terminal de un usuario.
El agente de codificación integra los modelos de OpenAI con la interfaz de línea de comandos (CLI) del cliente utilizada para ejecutar programas, administrar archivos y más.
Codex CLI funciona con el último modelo O4-Mini de OpenAI de forma predeterminada. Sin embargo, los usuarios pueden elegir su modelo OperaI preferido a través de la opción API de respuestas. Codex CLI solo puede ejecutarse en sistemas MacOS y Linux por ahora, con soporte para Windows todavía en la etapa experimental.
La historia continúa debajo de este anuncio
https://www.youtube.com/watch?v=o-zfxbfamku
En la publicación del blog del viernes, OpenAI también anunció actualizaciones a Codex CLI. Una versión más pequeña de Codex-1 está llegando a Codex CLI. “Está disponible ahora como el modelo predeterminado en Codex CLI y en la API como Codex-Mini-Latest”, dijo Openii.
La compañía también ha simplificado el proceso de inicio de sesión de desarrolladores para Codex CLI. En lugar de tener que generar y configurar manualmente un token API, los desarrolladores ahora pueden usar su cuenta ChatGPT para iniciar sesión en Codex CLI y seleccionar la organización API que desean usar. “Los usuarios de Plus y Pro que inician sesión en Codex CLI con CHATGPT también pueden comenzar a canjear $ 5 y $ 50 en créditos API gratuitos, respectivamente, más tarde hoy durante los próximos 30 días”, dijo Openii.
Noticias
Cómo los modelos O3 y O4-Mini de OpenAI están revolucionando el análisis visual y la codificación
Published
13 horas agoon
18 mayo, 2025
En abril de 2025, Openai presentó sus modelos más avanzados hasta la fecha, O3 y O4-Mini. Estos modelos representan un gran paso adelante en el campo de la inteligencia artificial (IA), ofreciendo nuevas capacidades en análisis visual y soporte de codificación. Con sus fuertes habilidades de razonamiento y su capacidad para trabajar con texto y imágenes, O3 y O4-Mini pueden manejar una variedad de tareas de manera más eficiente.
El lanzamiento de estos modelos también destaca su impresionante rendimiento. Por ejemplo, O3 y O4-Mini lograron una notable precisión del 92.7% en la resolución de problemas matemáticos en el punto de referencia de AIME, superando el rendimiento de sus predecesores. Este nivel de precisión, combinado con su capacidad para procesar diversos tipos de datos, como código, imágenes, diagramas y más, abre nuevas posibilidades para desarrolladores, científicos de datos y diseñadores de UX.
Al automatizar tareas que tradicionalmente requieren un esfuerzo manual, como la depuración, la generación de documentación e interpretación de datos visuales, estos modelos están transformando la forma en que se construyen aplicaciones impulsadas por la IA. Ya sea en desarrollo, ciencia de datos u otros sectores, O3 y O4-Mini son herramientas poderosas que respaldan la creación de sistemas más inteligentes y soluciones más efectivas, lo que permite a las industrias abordar los desafíos complejos con mayor facilidad.
Avances técnicos clave en modelos O3 y O4-Mini
Los modelos O3 y O4-Mini de OpenAI traen mejoras importantes en la IA que ayudan a los desarrolladores a trabajar de manera más eficiente. Estos modelos combinan una mejor comprensión del contexto con la capacidad de manejar el texto y las imágenes juntos, haciendo que el desarrollo sea más rápido y preciso.
Manejo de contexto avanzado e integración multimodal
Una de las características distintivas de los modelos O3 y O4-Mini es su capacidad para manejar hasta 200,000 tokens en un solo contexto. Esta mejora permite a los desarrolladores ingresar archivos de código fuente completos o grandes bases de código, lo que hace que el proceso sea más rápido y eficiente. Anteriormente, los desarrolladores tenían que dividir grandes proyectos en partes más pequeñas para el análisis, lo que podría conducir a ideas o errores perdidos.
Con la nueva ventana de contexto, los modelos pueden analizar el alcance completo del código a la vez, proporcionando sugerencias, correcciones de error y optimizaciones más precisas y confiables. Esto es particularmente beneficioso para los proyectos a gran escala, donde comprender todo el contexto es importante para garantizar una funcionalidad fluida y evitar errores costosos.
Además, los modelos O3 y O4-Mini aportan el poder de las capacidades multimodales nativas. Ahora pueden procesar las entradas de texto y visuales, eliminando la necesidad de sistemas separados para la interpretación de imágenes. Esta integración permite nuevas posibilidades, como la depuración en tiempo real a través de capturas de pantalla o escaneos de interfaz de usuario, generación de documentación automática que incluye elementos visuales y una comprensión directa de los diagramas de diseño. Al combinar texto y imágenes en un flujo de trabajo, los desarrolladores pueden moverse de manera más eficiente a través de tareas con menos distracciones y retrasos.
Precisión, seguridad y eficiencia a escala
La seguridad y la precisión son fundamentales para el diseño de O3 y O4-Mini. El marco de alineación deliberativa de OpenAI asegura que los modelos actúen en línea con las intenciones del usuario. Antes de ejecutar cualquier tarea, el sistema verifica si la acción se alinea con los objetivos del usuario. Esto es especialmente importante en entornos de alto riesgo como la atención médica o las finanzas, donde incluso pequeños errores pueden tener consecuencias significativas. Al agregar esta capa de seguridad, Operai asegura que la IA funcione con precisión y reduce los riesgos de resultados no deseados.
Para mejorar aún más la eficiencia, estos modelos admiten el encadenamiento de herramientas y las llamadas API paralelas. Esto significa que la IA puede ejecutar múltiples tareas al mismo tiempo, como generar código, ejecutar pruebas y analizar datos visuales, sin tener que esperar a que una tarea finalice antes de comenzar otra. Los desarrolladores pueden ingresar una maqueta de diseño, recibir comentarios inmediatos sobre el código correspondiente y ejecutar pruebas automatizadas mientras la IA procesa el diseño visual y genera documentación. Este procesamiento paralelo acelera los flujos de trabajo, lo que hace que el proceso de desarrollo sea más suave y productivo.
Transformación de flujos de trabajo de codificación con características con IA
Los modelos O3 y O4-Mini introducen varias características que mejoran significativamente la eficiencia del desarrollo. Una característica clave es el análisis de código en tiempo real, donde los modelos pueden analizar instantáneamente capturas de pantalla o escaneos de interfaz de usuario para detectar errores, problemas de rendimiento y vulnerabilidades de seguridad. Esto permite a los desarrolladores identificar y resolver problemas rápidamente.
Además, los modelos ofrecen depuración automatizada. Cuando los desarrolladores encuentran errores, pueden cargar una captura de pantalla del problema, y los modelos identificarán la causa y sugerirán soluciones. Esto reduce el tiempo dedicado a la resolución de problemas y permite a los desarrolladores avanzar con su trabajo de manera más eficiente.
Otra característica importante es la generación de documentación con el contexto. O3 y O4-Mini pueden generar automáticamente documentación detallada que permanece actualizada con los últimos cambios en el código. Esto elimina la necesidad de que los desarrolladores actualicen manualmente la documentación, asegurando que permanezca preciso y actualizado.
Un ejemplo práctico de las capacidades de los modelos está en la integración de API. O3 y O4-Mini pueden analizar las colecciones Postman a través de capturas de pantalla y generar automáticamente asignaciones de punto final API. Esto reduce significativamente el tiempo de integración en comparación con los modelos más antiguos, acelerando el proceso de vinculación de servicios.
Avances en el análisis visual
Los modelos O3 y O4-Mini de OpenAI traen avances significativos en el procesamiento de datos visuales, ofreciendo capacidades mejoradas para analizar imágenes. Una de las características clave es su OCR avanzado (reconocimiento de caracteres ópticos), que permite que los modelos extraen e interpreten el texto de las imágenes. Esto es especialmente útil en áreas como ingeniería de software, arquitectura y diseño, donde los diagramas técnicos, los diagramas de flujo y los planes arquitectónicos son parte integral de la comunicación y la toma de decisiones.
Además de la extracción de texto, O3 y O4-Mini pueden mejorar automáticamente la calidad de las imágenes borrosas o de baja resolución. Utilizando algoritmos avanzados, estos modelos mejoran la claridad de la imagen, asegurando una interpretación más precisa del contenido visual, incluso cuando la calidad de imagen original es subóptima.
Otra característica poderosa es su capacidad para realizar un razonamiento espacial 3D de los planos 2D. Esto permite a los modelos analizar diseños 2D e inferir relaciones 3D, lo que los hace muy valiosos para industrias como la construcción y la fabricación, donde es esencial visualizar espacios físicos y objetos de planes 2D.
Análisis de costo-beneficio: cuándo elegir qué modelo
Al elegir entre los modelos O3 y O4-Mini de OpenAI, la decisión depende principalmente del equilibrio entre el costo y el nivel de rendimiento requerido para la tarea en cuestión.
El modelo O3 es el más adecuado para tareas que exigen alta precisión y precisión. Se destaca en campos como la investigación y el desarrollo complejos (I + D) o aplicaciones científicas, donde son necesarias capacidades de razonamiento avanzado y una ventana de contexto más amplia. La gran ventana de contexto y las poderosas habilidades de razonamiento de O3 son especialmente beneficiosas para tareas como el entrenamiento del modelo de IA, el análisis de datos científicos y las aplicaciones de alto riesgo donde incluso pequeños errores pueden tener consecuencias significativas. Si bien tiene un costo más alto, su precisión mejorada justifica la inversión para las tareas que exigen este nivel de detalle y profundidad.
En contraste, el modelo O4-Mini proporciona una solución más rentable y sigue ofreciendo un rendimiento fuerte. Ofrece velocidades de procesamiento adecuadas para tareas de desarrollo de software a mayor escala, automatización e integraciones de API donde la eficiencia y la velocidad son más críticas que la precisión extrema. El modelo O4-Mini es significativamente más rentable que el O3, que ofrece una opción más asequible para los desarrolladores que trabajan en proyectos cotidianos que no requieren las capacidades avanzadas y la precisión del O3. Esto hace que el O4-Mini sea ideal para aplicaciones que priorizan la velocidad y la rentabilidad sin necesidad de la gama completa de características proporcionadas por el O3.
Para los equipos o proyectos centrados en el análisis visual, la codificación y la automatización, O4-Mini proporciona una alternativa más asequible sin comprometer el rendimiento. Sin embargo, para proyectos que requieren análisis en profundidad o donde la precisión es crítica, el modelo O3 es la mejor opción. Ambos modelos tienen sus fortalezas, y la decisión depende de las demandas específicas del proyecto, asegurando el equilibrio adecuado de costo, velocidad y rendimiento.
El resultado final
En conclusión, los modelos O3 y O4-Mini de OpenAI representan un cambio transformador en la IA, particularmente en la forma en que los desarrolladores abordan la codificación y el análisis visual. Al ofrecer un manejo de contexto mejorado, capacidades multimodales y un razonamiento potente, estos modelos permiten a los desarrolladores a optimizar los flujos de trabajo y mejorar la productividad.
Ya sea para una investigación impulsada por la precisión o tareas rentables de alta velocidad, estos modelos proporcionan soluciones adaptables para satisfacer diversas necesidades. Son herramientas esenciales para impulsar la innovación y resolver desafíos complejos en todas las industrias.
Related posts
























































































































































































































































































































Trending
-
Startups12 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Tutoriales1 año ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Startups10 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Recursos1 año ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Startups1 año ago
Deepgram: Revolucionando el Reconocimiento de Voz con IA
-
Recursos12 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Recursos1 año ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Noticias10 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo