Connect with us

Noticias

Magia de preparación de comidas: cómo utilicé ChatGPT para una alimentación saludable y económica

Published

on

En mi esfuerzo por convertirme en una cocinera mejor y más consistente, comencé a planificar mis comidas. Me ha interesado este proceso como una forma de ahorrar dinero y probar nuevas comidas, pero especialmente como una forma de reducir el desperdicio de alimentos junto con mi huella de carbono general (más sobre esto más adelante).

Buscar recetas y crear un plan de alimentación por mi cuenta es posible, pero lleva mucho tiempo. Entonces, como editor de CNET, me preguntaba si la inteligencia artificial, específicamente ChatGPT, podría ayudar. Si esta aplicación de IA generativa puede usarse para negociar facturas, redactar currículums e incluso ayudarlo a hablar con su médico sobre sus síntomas de salud, ¿podría ayudar también con algo tan simple como la planificación de comidas?

Esta historia es parte de CNET Cerouna serie que narra el impacto del cambio climático y explora lo que se está haciendo al respecto.

Decidí averiguarlo. Le pedí a ChatGPT que me creara un plan de alimentación saludable para siete días, con algunos parámetros. Así es como sucedió.

Leer más: Revisión de ChatGPT 4: un chatbot de IA más inteligente, pero le costará

Planificación de comidas con ChatGPT

Inmediato: “Hola, ChatGPT. ¿Puedes proporcionarme un plan de alimentación de siete días para cenas rápidas y saludables para dos personas?”

ChatGPT: “¡Por supuesto! Aquí tienes un plan de alimentación de siete días para cenas rápidas y saludables para dos personas. Cada comida está diseñada para ser sencilla y rápida de preparar”.

También pedí un plan de alimentación que evitara el pescado (preferencia personal) y que lo acompañara con una lista de compras. Aquí están las comidas que me dio:

Día 1: Pollo al limón y ajo con verduras asadas
Día 2: Salteado de ternera con brócoli y arroz
Día 3: tacos vegetarianos
Día 4: Pollo al horno con quinoa y espinacas
Día 5: Pasta primaveral
Día 6: Brochetas de pollo y verduras
Día 7: Chile de pavo fácil

También se proporcionaron los ingredientes y una breve oración con instrucciones, pero los ingredientes no ofrecían ninguna medida, aunque podía solicitar medidas específicas a la aplicación si las necesitaba. Pude estimar la cantidad de cada ingrediente que necesitaba mi pequeño hogar de dos personas. Me dirigí al supermercado con la lista proporcionada y luego preparé la primera comida esa noche.

Poniendo a prueba el plan de alimentación creado por IA

Día 1: Pollo al limón y al ajillo con verduras asadas

Ingredientes de ChatGPT: Pechugas de pollo, limón, ajo, aceite de oliva, vegetales mixtos (zanahorias, pimientos morrones, calabacines).
Instrucciones de ChatGPT: Marine las pechugas de pollo en jugo de limón, ajo picado, aceite de oliva, sal y pimienta. Ase junto con verduras mixtas a 400 °F (200 °C) durante 25 a 30 minutos.

Me complace informarles que ChatGPT cumplió su palabra y me brindó una receta extremadamente fácil para comenzar la semana. Pude preparar todo junto en el horno, luego limpiar y poner la mesa mientras se cocinaba.

Hice pequeños ajustes a esta receta, incluida la cocción de las zanahorias durante unos 10 minutos antes de agregar los demás ingredientes a la sartén, ya que sé por experiencia pasada que los calabacines y los pimientos se cocinan mucho más rápido que las zanahorias. También agregué un par de condimentos extra.

Las cenas en sartén como esta son perfectas para cenas entre semana.

Corin Cesaric/CNET

Día 2: Salteado de ternera con brócoli y arroz

ChatGPT iIngredientes: Tiras de ternera, brócoli, salsa de soja, ajo, jengibre, arroz.
ChatGPT iInstrucciones: Saltee las tiras de carne con ajo y jengibre, agregue el brócoli y cocine hasta que estén tiernas. Sirva sobre arroz al vapor.

Esta receta es la que más ajusté, pero aun así fue rápida de preparar. Sentí que faltaba algo en los ingredientes que sugirió ChatGPT, así que decidí hacer una salsa un poco más complicada. Me inspiré en esta receta, que he usado en el pasado, y terminé agregando solo dos ingredientes adicionales: maicena y azúcar moreno. Esta fue una comida perfecta y abundante entre semana.

Con algunos ajustes a la receta original de ChatGPT, este plato resultó picante y delicioso.

Corin Cesaric/CNET

Día 3: quesadillas vegetarianas

Ingredientes de ChatGPT: Tortillas, frijoles negros, maíz, pimientos morrones, aguacate, salsa, queso rallado.
Instrucciones de ChatGPT: Saltee los pimientos morrones, mezcle con los frijoles negros y el maíz. Rellena las tortillas con la mezcla de verduras, rodajas de aguacate, salsa y queso.

Aunque ChatGPT recomendó tacos vegetarianos, terminé haciendo quesadillas después de comprar accidentalmente tortillas del tamaño incorrecto, pero eran igual de sabrosas. Lo único notable de esta receta es que ChatGPT no agregó ningún condimento a la lista de ingredientes, así que me aseguré de agregar el mío.

Ya sea que prepares esta comida en forma de quesadillas o tacos, quedará deliciosa.

Corin Cesaric/CNET

Día 4: Pollo al horno con quinoa y espinacas

Ingredientes de ChatGPT: Muslos o pechugas de pollo, limón, aceite de oliva, quinua, espinacas frescas.
Instrucciones de ChatGPT: Sazone el pollo con jugo de limón, aceite de oliva, sal y pimienta. Hornee a 375 °F (190 °C) durante 25 a 30 minutos. Sirva con quinua cocida y espinacas salteadas.

Aunque esta fue probablemente la receta más sencilla de la semana, fue mi favorita. Me encantó cómo sabían las espinacas salteadas y la quinua juntas. Es una excelente receta para hacer cuando te sobran espinacas en el refrigerador que pueden estar a punto de echarse a perder, ya que incluso numerosas tazas de espinacas aún no son una gran cantidad después de saltearlas.

Si quieres darle más sabor a tu quinua, puedes cocinarla en caldo de pollo o de verduras en lugar de agua.

Corin Cesaric/CNET

Día 5: Pasta primaveral

Ingredientes de ChatGPT: Pasta (por ejemplo, penne o espagueti), tomates cherry, calabacines, pimientos morrones, aceite de oliva, queso parmesano.
Instrucciones de ChatGPT: Cocine la pasta, saltee las verduras en aceite de oliva hasta que estén tiernas. Mezcle la pasta con las verduras y el queso parmesano.

Es difícil equivocarse con la pasta, pero esta receta falló. Las instrucciones de ChatGPT decían saltear los tomates cherry, el calabacín y los pimientos morrones en aceite de oliva, luego mezclar la pasta cocida con las verduras y el queso parmesano. Aunque no figuraban condimentos, los agregué, pero aun así fue una comida mediocre.

Todavía lo comí en la cena (y en el almuerzo del día siguiente), pero si preparo esta comida en el futuro, agregaré ajo fresco, algunas variedades más de vegetales y jugo de limón para enriquecer el sabor.

Otras verduras que puedes agregar a la pasta primavera son las cebollas, los espárragos y las zanahorias.

Corin Cesaric/CNET

Día 6: Brochetas de pollo y verduras

Ingredientes de ChatGPT: Trozos de pollo, pimientos morrones, cebollas, tomates cherry, aceite de oliva, tu condimento favorito.
Instrucciones de ChatGPT: Ensarte el pollo y las verduras en las brochetas. Unte con aceite de oliva y condimentos. Ase o hornee a 400°F (200°C) durante 15 a 20 minutos.

Estos kebabs de muslo de pollo estaban deliciosos y abundantes. Algo que me gustó especialmente del plan de alimentación de ChatGPT fue que las comidas eran lo suficientemente básicas como para hacer pequeños ajustes. Por ejemplo, esta receta incluye pimientos morrones, cebollas y tomates cherry para las verduras, pero es bastante sencillo cambiar esas verduras por las que elijas.

Me salté el uso de tomates cherry, ya que la noche anterior había comido muchos en la pasta primavera,pero los champiñones serían una gran adición a esta comida.

Puedes cocinar estos kebabs en la freidora o en el horno.

Corin Cesaric/CNET

Día 7: chile de pavo

Ingredientes de ChatGPT: Pavo molido, tomates enlatados, frijoles, condimento de chile.
Instrucciones de ChatGPT: Dore el pavo molido, luego agregue los tomates, los frijoles y el condimento de chile. Cocine a fuego lento durante 20-30 minutos.

La gente ama el chile o lo odia. Estoy en la primera categoría, por lo que esta comida fue una excelente manera de terminar mi semana (¡y de darle la bienvenida al otoño!). Después de dorar el pavo molido, esta comida se cocina sola mientras se cuece a fuego lento en la estufa, por lo que es una receta especialmente buena para los días en los que no quieres pasar toda la noche en la cocina.

El chile de pavo suele ser una alternativa más saludable al chile de carne.

Corin Cesaric/CNET

Mi opinión general sobre el uso de ChatGPT para planificar comidas

Estoy seguro de que no soy el único al que no le encanta ir de compras, por lo que una de mis partes favoritas del uso de ChatGPT para un plan de alimentación fue recibir una lista de compras adjunta.

La aplicación hizo que mi viaje al mercado fuera sencillo al agrupar artículos por categoría para mayor comodidad. Con la lista copiada en la aplicación de notas de mi iPhone, entré y salí de la tienda en 30 minutos.

Si bien las comidas sencillas que me brindó ChatGPT no fueron innovadoras, aprecio que puedas continuar haciendo las preguntas de la solicitud para saber exactamente qué tipo de comidas deseas. Ya sea que desee comidas para la semana que se puedan preparar en menos de 30 minutos o que sean vegetarianas, sin gluten o incluso sin desperdicio, puede pedirle a ChatGPT que personalice un plan de alimentación para usted.

Pero lo más importante es que esta semana me di cuenta de que no tiré cualquier comida, ni siquiera una sobra. Mi prometido y yo comimos toda la comida la noche que la cocinamos o comimos las sobras para el almuerzo del día siguiente. Y eso se sintió incluso mejor que un viaje sencillo al supermercado.

Cómo la planificación de las comidas ayuda a combatir el desperdicio de alimentos

En Estados Unidos, se estima que cada año se desperdicia entre el 30% y el 40% de los alimentos. Aunque el desperdicio de alimentos ocurre en todas las etapas de la producción de alimentos, puede ocurrir (y a menudo sucede) directamente en su cocina. Esto ocurre en gran medida por comprar alimentos en exceso o no comerlos antes de que se echen a perder.

Leer más: Deje de tirar los restos de comida: 11 formas de reutilizarlos y ahorrar dinero

Este nivel de desperdicio de alimentos puede afectar negativamente al medio ambiente al obligar a aumentar la producción de alimentos, lo que aumenta su huella de carbono, que se basa en la cantidad de gases de efecto invernadero que se emiten a la atmósfera durante el proceso de producción de alimentos. Y los alimentos podridos en los vertederos en realidad liberan metano al medio ambiente, que es el segundo mayor contribuyente al calentamiento climático (directamente detrás del dióxido de carbono).

Pero hay buenas noticias: la planificación de las comidas puede ayudarle a combatir el desperdicio de alimentos. Si planifica sus comidas, es menos probable que compre demasiados ingredientes en el supermercado y también puede planificar cómo utilizará los restos de comida o ingredientes sobrantes.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Alphabet Inc. (Googl) aprovecha el crecimiento de Gemini AI y Waymo para alimentar la próxima ola de innovación

Published

on

La inteligencia artificial es la mayor oportunidad de inversión de nuestra vida. ¡El tiempo para invertir en una IA innovadora es ahora, y esta acción es un robo!

Mi selección de IA #1 entregó ganancias sólidas desde el comienzo de 2025 mientras que las existencias populares de IA como NVDA y AVGO perdieron alrededor del 25%.

Los números hablan por sí mismos: mientras los gigantes del mundo de la IA sangran, nuestra selección de IA ofrece, mostrando el poder de nuestra investigación y la inmensa oportunidad esperando ser incautada.

Los susurros se están convirtiendo en rugidos.

La inteligencia artificial ya no es ciencia ficción.

Es la revolución que remodelan todas las industrias del planeta.

Desde automóviles sin conductor hasta avances médicos, AI está en la cúspide de una explosión global, y los inversores inteligentes pueden cosechar las recompensas.

He aquí por qué este es el mejor momento para saltar en el carro de la IA:

Crecimiento exponencial en el horizonte: Olvídese del crecimiento lineal: la IA está preparada para una trayectoria de palo de hockey.

Imagine todos los sectores, desde la atención médica hasta las finanzas, infundidas con inteligencia sobrehumana.

Estamos hablando de predicción de enfermedades, marketing hiperpersonalizado y logística automatizada que agiliza todo.

Esto no es tal vez, es una inevitabilidad.

Los primeros inversores serán los posicionados para montar la ola de este tsunami tecnológico.

Oportunidad de la planta baja: ¿Recuerdas los primeros días de Internet?

Aquellos que vieron el potencial de los gigantes tecnológicos en ese entonces están sentados bastante hoy.

AI está en un punto de inflexión similar.

No estamos hablando de jugadores establecidos: estamos hablando de nuevas empresas ágiles con ideas innovadoras y el potencial de convertirse en el próximo Google o Amazon.

¡Esta es tu oportunidad de entrar antes de que los Rockets despeguen!

La interrupción es el nuevo nombre del juego: Seamos realistas, la complacencia genera estancamiento.

La IA es el último disruptor, y está sacudiendo los cimientos de las industrias tradicionales.

Las compañías que adoptan la IA prosperarán, mientras que los dinosaurios se aferran a métodos obsoletos se dejarán en el polvo.

Como inversor, desea estar del lado de los ganadores, y AI es el boleto ganador.

El grupo de talentos se desborda: Las mentes más brillantes del mundo acuden en masa a la IA.

Desde informática hasta matemáticos, la próxima generación de innovadores está vertiendo su energía en este campo.

Esta afluencia de talento garantiza una corriente constante de ideas innovadoras y avances rápidos.

Al invertir en IA, esencialmente está respaldando el futuro.

El futuro funciona con inteligencia artificial, y el tiempo de invertir es ahora.

No seas un espectador en esta revolución tecnológica.

Sumérgete en la fiebre del oro AI y observa que tu cartera se eleva junto con las mentes más brillantes de nuestra generación.

No se trata solo de ganar dinero, se trata de ser parte del futuro.

Entonces, ¡abrochate y prepárese para el viaje de su vida de inversión!

Actúe ahora y desbloquee un rendimiento potencial del 10,000%: esta acción de IA es un diamante en bruto (¡pero nuestra ayuda es clave!)

La Revolución AI está sobre nosotros, y los inversores inteligentes pueden hacer una fortuna.

Pero con tantas opciones, ¿cómo se encuentra la joya oculta: la compañía preparada para un crecimiento explosivo?

Ahí es donde entra nuestra experiencia.

Tenemos la respuesta, pero hay un giro …

Imagine una compañía de IA tan innovadora, hasta ahora antes de la curva, que incluso si el precio de sus acciones cuadruplicado hoytodavía se consideraría ridículamente barato.

Ese es el potencial que estás viendo. No se trata solo de un regreso decente, estamos hablando de un 10,000% ¡Gane durante la próxima década!

Nuestro equipo de investigación ha identificado una joya oculta: una compañía de IA con tecnología de vanguardia, potencial masivo y un precio actual de acciones que grita oportunidades.

Esta compañía cuenta con la tecnología más avanzada en el sector de la IA, colocándolos en ligas por delante de los competidores.

Es como tener un auto de carreras en una pista de go-kart.

Tienen una gran posibilidad de arrinconar los mercados enteros, convirtiéndose en el líder indiscutible en su campo.

Aquí está la trampa (es buena): Para descubrir este gigante dormido, necesitará nuestro Intel exclusivo.

¡Queremos asegurarnos de que ninguno de nuestros valiosos lectores se pierda esta innovadora oportunidad!

Es por eso que estamos reduciendo el precio de nuestro boletín de lectores premium por un enorme 70%.

Por un precio ridículamente bajo de solo $ 29.99puede desbloquear un año de investigación de inversiones en profundidad y ideas exclusivas, ¡eso es menos que una comida de un solo restaurante!

He aquí por qué este es un trato que no puede permitirse dejar pasar:

• Acceso a nuestro informe detallado sobre esta acción de IA que cambia el juego: Nuestro informe en profundidad se sumerge en la tecnología innovadora de nuestra serie de IA #1 y un potencial de crecimiento masivo.

• 11 nuevos números de nuestro boletín de lectores premium: También recibirá 11 nuevos problemas y al menos una nueva selección de acciones por mes de la cartera de nuestro boletín mensual durante los próximos 12 meses. Estas acciones son seleccionadas por nuestro Director de Investigación, Dr. Inan Dogan.

• Un próximo número gratuito de nuestro boletín trimestral de más de 70 páginas: Un valor de $ 149

• Informes de bonificación: Acceso premium a solo para miembros Entrevistas de video del administrador de fondos

• navegación sin anuncios: Disfrute de un año de investigación de inversiones sin distracción de anuncios emergentes y anuncios emergentes, lo que le permite concentrarse en descubrir la próxima gran oportunidad.

• Garantía de devolución de dinero de 30 días: Si no está absolutamente satisfecho con nuestro servicio, proporcionaremos un reembolso completo dentro de los 30 días, no se hacen preguntas.

¡El espacio es limitado! Solo 1000 puntos están disponibles para esta oferta exclusiva. No permita que esta oportunidad se escape: suscríbase a nuestro boletín de lectores premium hoy y desbloquee el potencial de una inversión que cambie la vida.

Esto es lo que debe hacer a continuación:

1. Dirígete a nuestro sitio web y suscríbete a nuestro boletín de lectores premium por solo $ 29.99.

2. Disfrute de un año de navegación sin publicidad, acceso exclusivo a nuestro informe en profundidad sobre la Revolucionaria Compañía de IA y los próximos números de nuestro boletín de lectores premium en los próximos 12 meses.

3. Siéntese, relájese y sepa que está respaldado por nuestra garantía de dinero de dinero de 30 días.

¡No te pierdas esta increíble oportunidad! ¡Suscríbase ahora y tome el control de su futuro de inversión de IA!

¡No se preocupe por las renovaciones automáticas! ¡Nuestra garantía de devolución de dinero de 30 días se aplica si se está uniendo a nosotros por primera vez o renovando su suscripción un año después!

Continue Reading

Noticias

El éxito de Deepseek muestra por qué la motivación es clave para la innovación de IA

Published

on

Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información


Enero de 2025 sacudió el paisaje de IA. El OpenAI aparentemente imparable y los poderosos gigantes tecnológicos estadounidenses se sorprendieron por lo que ciertamente podemos llamar un desvalido en el área de grandes modelos de idiomas (LLM). Deepseek, una empresa china que no está en el radar de nadie, de repente desafió a OpenAi. No es que Deepseek-R1 fuera mejor que los mejores modelos de los gigantes estadounidenses; Estaba ligeramente atrasado en términos de los puntos de referencia, pero de repente hizo que todos pensaran en la eficiencia en términos de hardware y uso de energía.

Dada la falta de disponibilidad del mejor hardware de alta gama, parece que Deepseek estaba motivado para innovar en el área de eficiencia, lo cual era una preocupación menor para los jugadores más grandes. Operai ha afirmado que tienen evidencia que sugiere que Deepseek puede haber usado su modelo para la capacitación, pero no tenemos pruebas concretas para respaldar esto. Entonces, ya sea cierto o que sea OpenAi simplemente tratar de apaciguar a sus inversores es un tema de debate. Sin embargo, Deepseek ha publicado su trabajo, y las personas han verificado que los resultados son reproducibles al menos en una escala mucho más pequeña.

Pero, ¿cómo podría Deepseek alcanzar tales ahorradores de costos, mientras que las empresas estadounidenses no podían? La respuesta corta es simple: tenían más motivación. La respuesta larga requiere un poco más de una explicación técnica.

Deepseek usó la optimización de KV-Cache

Un ahorro importante de costos para la memoria de GPU fue la optimización del caché de valor clave utilizado en cada capa de atención en un LLM.

Los LLM están formados por bloques de transformadores, cada uno de los cuales comprende una capa de atención seguida de una red regular de alimentación de vainilla. La red de feed-forward modela las relaciones arbitrarias conceptuales, pero en la práctica, es difícil para él determinar siempre los patrones en los datos. La capa de atención resuelve este problema para el modelado de idiomas.

El modelo procesa textos utilizando tokens, pero por simplicidad, nos referiremos a ellos como palabras. En un LLM, a cada palabra se le asigna un vector en una dimensión alta (por ejemplo, mil dimensiones). Conceptualmente, cada dimensión representa un concepto, como ser caliente o frío, ser verde, ser suave, ser un sustantivo. La representación vectorial de una palabra es su significado y valores según cada dimensión.

Sin embargo, nuestro lenguaje permite que otras palabras modifiquen el significado de cada palabra. Por ejemplo, una manzana tiene un significado. Pero podemos tener una manzana verde como versión modificada. Un ejemplo más extremo de modificación sería que una Apple en un contexto de iPhone difiere de una Apple en un contexto de prado. ¿Cómo dejamos que nuestro sistema modifique el significado vectorial de una palabra basado en otra palabra? Aquí es donde entra la atención.

El modelo de atención asigna otros dos vectores a cada palabra: una clave y una consulta. La consulta representa las cualidades del significado de una palabra que se puede modificar, y la clave representa el tipo de modificaciones que puede proporcionar a otras palabras. Por ejemplo, la palabra ‘verde’ puede proporcionar información sobre color y verde. Entonces, la clave de la palabra ‘verde’ tendrá un alto valor en la dimensión ‘verde’. Por otro lado, la palabra ‘manzana’ puede ser verde o no, por lo que el vector de consulta de ‘manzana’ también tendría un alto valor para la dimensión verde. Si tomamos el producto DOT de la clave de ‘verde’ con la consulta de ‘manzana’, el producto debe ser relativamente grande en comparación con el producto de la clave de ‘tabla’ y la consulta de ‘manzana’. La capa de atención luego agrega una pequeña fracción del valor de la palabra ‘verde’ al valor de la palabra ‘manzana’. De esta manera, el valor de la palabra ‘Apple’ se modifica para ser un poco más verde.

Cuando el LLM genera texto, lo hace una palabra tras otra. Cuando genera una palabra, todas las palabras generadas anteriormente se convierten en parte de su contexto. Sin embargo, las teclas y los valores de esas palabras ya están calculados. Cuando se agrega otra palabra al contexto, su valor debe actualizarse en función de su consulta y las claves y valores de todas las palabras anteriores. Es por eso que todos esos valores se almacenan en la memoria de la GPU. Este es el caché KV.

Deepseek determinó que la clave y el valor de una palabra están relacionados. Entonces, el significado de la palabra verde y su capacidad para afectar la verdura están obviamente muy estrechamente relacionados. Por lo tanto, es posible comprimir tanto como un vector único (y tal vez más pequeño) y descomprimir mientras se procesa muy fácilmente. Deepseek ha descubierto que afecta su rendimiento en los puntos de referencia, pero ahorra mucha memoria de GPU.

Deepseek aplicado moe

La naturaleza de una red neuronal es que toda la red debe ser evaluada (o calculada) para cada consulta. Sin embargo, no todo esto es un cálculo útil. El conocimiento del mundo se encuentra en los pesos o parámetros de una red. El conocimiento sobre la Torre Eiffel no se usa para responder preguntas sobre la historia de las tribus sudamericanas. Saber que una manzana es una fruta no es útil al responder preguntas sobre la teoría general de la relatividad. Sin embargo, cuando se calcula la red, todas las partes de la red se procesan independientemente. Esto incurre en grandes costos de cálculo durante la generación de texto que idealmente deberían evitarse. Aquí es donde entra la idea de la mezcla de expertos (MOE).

En un modelo MOE, la red neuronal se divide en múltiples redes más pequeñas llamadas expertos. Tenga en cuenta que el ‘experto’ en el tema no está definido explícitamente; La red lo resuelve durante el entrenamiento. Sin embargo, las redes asignan una puntuación de relevancia a cada consulta y solo activan las partes con puntajes de coincidencia más altos. Esto proporciona un gran ahorro de costos en el cálculo. Tenga en cuenta que algunas preguntas necesitan experiencia en múltiples áreas para ser respondidas correctamente, y el rendimiento de tales consultas se degradará. Sin embargo, debido a que las áreas se resuelven a partir de los datos, se minimiza el número de tales preguntas.

La importancia del aprendizaje de refuerzo

Se le enseña a un LLM a pensar a través de un modelo de cadena de pensamiento, con el modelo ajustado para imitar el pensamiento antes de entregar la respuesta. Se le pide al modelo que verbalice su pensamiento (genere el pensamiento antes de generar la respuesta). Luego se evalúa el modelo tanto en el pensamiento como en la respuesta, y se entrena con aprendizaje de refuerzo (recompensado para una coincidencia correcta y penalizado para una coincidencia incorrecta con los datos de entrenamiento).

Esto requiere datos de entrenamiento costosos con el token de pensamiento. Deepseek solo le pidió al sistema que generara los pensamientos entre las etiquetas y y que genere las respuestas entre las etiquetas y . El modelo es recompensado o penalizado puramente en función de la forma (el uso de las etiquetas) y la coincidencia de las respuestas. Esto requirió datos de capacitación mucho menos costosos. Durante la fase temprana de RL, el modelo probado generó muy poco pensamiento, lo que resultó en respuestas incorrectas. Finalmente, el modelo aprendió a generar pensamientos largos y coherentes, que es lo que Deepseek llama el momento ‘a-ha’. Después de este punto, la calidad de las respuestas mejoró bastante.

Deepseek emplea varios trucos de optimización adicionales. Sin embargo, son muy técnicos, por lo que no los profundizaré aquí.

Pensamientos finales sobre Deepseek y el mercado más grande

En cualquier investigación de tecnología, primero necesitamos ver lo que es posible antes de mejorar la eficiencia. Esta es una progresión natural. La contribución de Deepseek al paisaje LLM es fenomenal. La contribución académica no se puede ignorar, ya sea que estén o no entrenando o no la salida de OpenAI. También puede transformar la forma en que funcionan las startups. Pero no hay razón para que Operai o los otros gigantes estadounidenses se desesperen. Así es como funciona la investigación: un grupo se beneficia de la investigación de los otros grupos. Deepseek ciertamente se benefició de las investigaciones anteriores realizadas por Google, Operai y muchos otros investigadores.

Sin embargo, la idea de que Operai dominará el mundo LLM indefinidamente ahora es muy poco probable. Ninguna cantidad de cabildeo regulatorio o señalar con el dedo preservará su monopolio. La tecnología ya está en manos de muchos y fuera de la intemperie, lo que hace que su progreso sea imparable. Aunque esto puede ser un poco de dolor de cabeza para los inversores de OpenAI, en última instancia es una victoria para el resto de nosotros. Si bien el futuro pertenece a muchos, siempre estaremos agradecidos con los primeros contribuyentes como Google y OpenAI.

Debasish Ray Chawdhuri es ingeniero principal senior de Talentica Software.

Continue Reading

Noticias

Chatgpt o3 La función de ubicación de la foto es una locura buena

Published

on

Operai lanzó dos poderosos modelos de razonamiento hace unos días que hacen que Chatgpt sea aún más impresionante. Estos son O3 y O4-Mini que puedes probar de inmediato en ChatGPT. Son mucho mejores en el razonamiento que sus predecesores y pueden sobresalir en la codificación y las matemáticas si esos son sus pasatiempos.

Sin embargo, la nueva función de cambio de cabeza de ChatGPT en O3 y O4-Mini es, al menos para mí, la capacidad de la IA para interpretar los datos en las imágenes. Esencialmente, ChatGPT tiene una visión por computadora como en las películas, incluidas las capacidades de razonamiento que permiten que la IA extraiga los datos de ubicación de las fotos. Puedes preguntarle a la IA: “¿Dónde se tomó esta foto?” Y la IA hará todo lo que esté en su poder para responder.

Chatgpt O3 y O4-Mini obtendrán las cosas bien, como estás a punto de ver en mi prueba altamente científica que sigue. Es decir, harán las cosas bien incluso si trato de usar AI para engañar a Chatgpt.

Porque sí, usé GPT-4O Generation para crear una foto realista de una ubicación de esquí bien conocida en los Alpes en lugar de subir una imagen real. Luego le dije a ChatGPT que alterara esa imagen de una manera que cambiaría el horizonte.

Después de eso, comencé nuevas chats con O3 y O4-Mini, convencido de que ChatGPT reconocería la ubicación en la foto falsa que acababa de enviar. No me equivoqué; Ambos modelos me dieron el resultado que esperaba, demostrando que puede usar contenido generado por IA para engañar a la IA. Pero, sin embargo, me volaron la mente.

Recientemente le expliqué cómo los algoritmos de Apple Watch me decepcionan mientras esquiaba la semana pasada, y eso es lo que usé como inspiración en mi experimento para engañar a la IA.

Le pedí a ChatGPT que generara una foto que mostrara el conocido Matterhorn Peak en un día soleado, con esquiadores disfrutando de su tiempo. La foto tenía que tener una relación de aspecto de 16: 9 y parecerse a una foto de iPhone.

Fuente de la imagen: Chris Smith, BGR

Le dije a la IA que pusiera una góndola por si acaso, pero, como puede ver en el primer intento, que Góndola no iba a lugares. No importa; Solo necesitaba una primera imagen de la IA para poder alterarla. Ingrese la siguiente imagen:

Le indiqué a ChatGPT que eliminara la góndola y colocara un pico más pequeño de Matterhorn hacia la derecha.

Fuente de la imagen: Chris Smith, BGR

Tomé una captura de pantalla de la imagen para que no preservara ningún metadato, y luego convertí el archivo en una foto JPG:

Fuente de la imagen: Chris Smith, BGR

Luego, comencé dos chats separados, con Chatgpt O3 y Chatgpt O4-Mini, donde subí la foto falsa de Matterhorn y le pedí a la IA que me dijera dónde se tomó la foto y cómo la descubrieron.

Como era de esperar, ambos modelos de IA de razonamiento identificaron con éxito Matterhorn como la ubicación.

Chatgpt o3

Primero, tenemos O3, que me dio amplios detalles sobre cómo determinó la ubicación. La IA tiene una confianza increíblemente segura en su respuesta, diciéndome que “picos flanqueantes como el Dent Blanche y Weisshorn” son letreros.

Fuente de la imagen: Chris Smith, BGR

Tenía una sonrisa en mi rostro. Había vencido a la IA, con ai Haciéndolo reconocer la ubicación en una foto falsa. Era aún mejor que el O3 estuviera tan seguro de sí mismo después de solo 34 segundos de pensamiento.

Fuente de la imagen: Chris Smith, BGR

Pero luego pensé que empujaría las cosas más para que pudiera averiguar que la imagen era falsa. Le pedí que dibujara círculos sobre Dent Blanche y Weisshorn.

Fuente de la imagen: Chris Smith, BGR

Aquí es donde ver a O3 en acción me voló. Esta vez, la IA pasó casi seis minutos mirando la foto, tratando de identificar de manera confiable los dos picos que dijo que podía ver en la distancia.

Como verá, el Mini Matterhorn a la derecha inmediatamente arrojó la IA, pero Chatgpt no se detuvo allí. Seguía mirando la foto y buscó en la web imágenes de la región Alps donde se encuentran estos picos.

Fuente de la imagen: Chris Smith, BGR

También observó la foto para determinar la ubicación relativa de los picos adicionales en la región. “Puedo intentar superponer a los máximos locales aproximados basados ​​en el brillo, pero honestamente, creo que es más fácil usar mis ojos para esto”, pensó O3, y me sorprendió leerlo.

Fuente de la imagen: Chris Smith, BGR

La IA pasó a acercarse para ver mejor las partes de la foto de IA falsa:

Fuente de la imagen: Chris Smith, BGR

Recortó partes de la imagen tratando de descubrir detalles que esperaría estar allí en una foto real de las áreas que rodean el Matterhorn. En su cadena de pensamiento, Chatgpt dijo que no podía detectar formas de montaña que pensaba que debería estar allí.

Fuente de la imagen: Chris Smith, BGR

La IA comenzó a anotar la imagen, buscando la respuesta mientras continuaba buscando en la web más imágenes que lo ayudarían a determinar la ubicación de los dos picos que le pedí que colocara círculos rojos.

Como puede ver, el falso Mini-Matterhorn a la derecha seguía engañando a la IA.

Fuente de la imagen: Chris Smith, BGR

En última instancia, ChatGPT O3 reconoció las incertidumbres, pero aún así decidió marcar los dos picos que pedí. Ejecutó el código en el chat y me dio la siguiente imagen.

Me hubiera encantado ver Chatgpt O3 llamar a mi farol y decirme que esta foto no es real. Quizás las versiones futuras de la IA puedan hacerlo. Pero debo decir que leer esos cinco minutos de “pensamiento”, la mayoría de ellos vistos en la imagen de arriba, fue aún mejor.

Imagen de captura de pantalla Fuente: Chris Smith, BGR

Me mostró que AI está trabajando para hacer el trabajo y reforzar mi idea de que la visión por computadora de IA es increíble en estas nuevas versiones de ChatGPT.

Pero espera, se vuelve mejor.

Chatgpt o4-mini

Mi experimento no se puede hacer sin usar ChatGpt O4-Mini. Después de todo, O4-Mini es el precursor de O4, que debería ser incluso mejor que O3. O4-Mini fue mucho más rápido que O3 al darme la respuesta.

Fuente de la imagen: Chris Smith, BGR

La IA pensó durante 15 segundos, durante los cuales apareció imágenes de Internet para respaldar su opinión que la foto que había subido era una imagen real del Matterhorn.

O4-Mini también explicó cómo identificaba la ubicación, pero se sentía seguro de que era correcto al respecto. Este es el Matterhorn, dado todo lo que ha aprendido de la Web.

Fuente de la imagen: Chris Smith, BGR

A diferencia de ChatGPT O3, O4-Mini no mencionó los picos adicionales. Pero le pedí a O4-Mini que hiciera lo mismo que O3: Identifique a Dent Blanche y Weisshorn.

O4-Mini me voló con su velocidad aquí. Tomó 18 segundos darme la siguiente imagen, que tiene círculos rojos alrededor de los dos picos.

Fuente de la imagen: Chris Smith, BGR

Sí, no es un gran trabajo, y no tengo idea de por qué la IA coloca esos círculos allí porque la transcripción más limitada de la cadena de pensamiento no lo explica.

Obviamente es incorrecto, considerando que estamos trabajando con una imagen de IA falsa aquí. Y sí, O4-Mini no podía decir que la foto era falsa.

El verdadero materia

Las conclusiones son obvias, y no todas son grandes noticias.

Primero, la generación de imágenes 4O puede ser fácilmente abusada. En realidad, nunca he visto el Matterhorn en persona, y por eso le pedí a la IA que hiciera esta imagen específica. Reconocí su famosa silueta de las fotos de la vida real, pero definitivamente no estoy familiarizado con los otros picos de la región. Esto demuestra que las imágenes creadas por Chatgpt pueden engañar a las personas. También pueden engañar a otros modelos de IA.

En segundo lugar, O3 y O4-Mini son simplemente increíbles al analizar los datos en las imágenes. Por supuesto, tienen que serlo. Si 4O puede crear fotos impresionantes y realistas, es porque la IA puede interpretar los datos en las imágenes.

En tercer lugar, encontrar información de ubicación de las fotos será trivialmente fácil para modelos OpenAI como O3 y O4-Mini. Los competidores probablemente obtendrán poderes similares. Este es un problema de privacidad que tendremos que tener en cuenta en el futuro.

Cuarto, ChatGPT O3 se toma muy en serio el trabajo de razonamiento. Si pasó todo ese tiempo en una foto de IA falsa tratando de igualarlo con el mundo real, pasará un tiempo similar en otros trabajos que podría lanzarle, y usará un montón de herramientas disponibles en ChatGPT (como codificación, búsqueda web, manipulación de imágenes) para hacer el trabajo.

Estoy seguro de que si hubiera pasado más tiempo con el razonamiento de la IA sobre la imagen, finalmente llegaríamos a la conclusión de que la imagen que la IA estaba investigando era falsa.

Quinto, ChatGpt O4-Mini puede ser realmente rápido. Demasiado rápido. Es algo que quieres de Genai Chatbots, pero también algo de lo que preocuparse. O4-Mini tampoco reconoció la foto falsa, pero su enfoque era mucho más descuidado. Eso me hace pensar que debes prestar atención adicional al trabajar con la versión Mini para asegurar que la IA haga el trabajo. Pero bueno, estoy trabajando con un experimento muy limitado aquí.

Finalmente, aquí está el Matterhorn y el área circundante de un clip de YouTube que se cargó en diciembre de 2020. Digo que, porque, en la era de la IA, el video que estás a punto de ver siempre podría ser falso. El video te brinda una “vista desde arriba del Nordwand de Weisshorn mirando hacia Matterhorn (L) y Dent Blanche (R). Mt Blanc es visible en la distancia (lejos R)”. Es un ángulo diferente, pero al menos lo suficientemente bueno como para darle una idea de lo que Chatgpt O3 estaba buscando.

Continue Reading

Trending