Noticias
OpenAI está usando su tecnología para matar

A principios de este mes, la empresa que nos ofrece ChatGPT anunció su asociación con la empresa de armas con sede en California, Anduril, para producir armas de inteligencia artificial. El sistema OpenAI-Anduril, que se probó en California a finales de noviembre, permite compartir datos entre partes externas para la toma de decisiones en el campo de batalla. Esto encaja perfectamente con los planes del ejército estadounidense y de OpenAI para normalizar el uso de la IA en el campo de batalla.
Por Nuvpreet Kalra y Tim Biondo
Anduril, con sede en Costa Mesa, fabrica drones, misiles y sistemas de radar impulsados por inteligencia artificial, incluidas torres de vigilancia y sistemas Sentry, que actualmente se utilizan en bases militares estadounidenses en todo el mundo, así como en la frontera entre Estados Unidos y México y en la costa británica para detectar migrantes en barcos. El 3 de diciembre, recibieron un contrato de tres años con el Pentágono para un sistema que brinda a los soldados soluciones de inteligencia artificial durante los ataques.
En enero, OpenAI eliminó una prohibición directa en su política de uso sobre “actividades que tienen un alto riesgo de daño físico”, que incluía específicamente “militares y guerras” y “desarrollo de armas”. Menos de una semana después de hacerlo, la compañía anunció una asociación con el Pentágono en ciberseguridad.
Si bien podrían haber eliminado la prohibición de fabricar armas, la incursión de OpenAI en la industria bélica está en total antítesis de sus propios estatutos. Su propia proclamación para construir “AGI segura y beneficiosa [Artificial Generative Intelligence]” que no “daña a la humanidad” es ridículo cuando están usando tecnología para matar. ChatGPT podría, y probablemente pronto lo hará, escribir código para un arma automática, analizar información para bombardeos o ayudar en invasiones y ocupaciones.
Todos deberíamos estar asustados por este uso de la IA para la muerte y la destrucción. Pero esto no es nuevo. Israel y Estados Unidos llevan años probando y utilizando la IA en Palestina. De hecho, Hebrón ha sido apodada una “ciudad inteligente” a medida que la ocupación impone su tiranía mediante la perforación de sensores de movimiento y calor, tecnologías de reconocimiento facial y vigilancia por CCTV. En el centro de esta vigilancia opresiva está el Sistema Lobo Azul, una herramienta de inteligencia artificial que escanea los rostros de los palestinos cuando son fotografiados por soldados de ocupación israelíes y remite a una base de datos biométrica en la que se almacena información sobre ellos. Al ingresar la foto en el sistema, cada persona es clasificada mediante una clasificación codificada por colores según su “nivel de amenaza” percibido para dictar si el soldado debe permitirle pasar o arrestarlo. Los soldados de las FOI son recompensados con premios por tomar la mayor cantidad de fotografías, lo que han denominado “Facebook para los palestinos”, según revelaciones del Washington Post en 2021.
La tecnología de guerra de OpenAI surge cuando la administración Biden está presionando para que Estados Unidos utilice la tecnología para “cumplir objetivos de seguridad nacional”. De hecho, esto era parte del título de un memorando de la Casa Blanca publicado en octubre de este año en el que se pedía un rápido desarrollo de la inteligencia artificial “especialmente en el contexto de los sistemas de seguridad nacional”. Si bien no se nombra explícitamente a China, está claro que la percepción de una “carrera armamentista de IA” con China también es una motivación central de la administración Biden para tal llamado. No se trata únicamente de armas para la guerra, sino también de carreras por el desarrollo de tecnología en general. A principios de este mes, Estados Unidos prohibió la exportación de chips HBM a China, un componente crítico de la inteligencia artificial y las unidades de procesamiento de gráficos (GPU) de alto nivel. El ex director ejecutivo de Google, Eric Schmidt, advirtió que China está dos o tres años por delante de Estados Unidos en lo que respecta a la IA, un cambio importante con respecto a sus declaraciones de principios de este año, cuando comentó que Estados Unidos está por delante de China. Cuando dice que hay una “matriz de escalada de amenazas” cuando hay avances en la IA, revela que Estados Unidos ve la tecnología sólo como una herramienta de guerra y una forma de afirmar la hegemonía. La IA es lo último en la implacable – y peligrosa – provocación y alarmismo de Estados Unidos con China, a quien no pueden soportar que avancen.
En respuesta al memorando de la Casa Blanca, OpenAI emitió una declaración propia en la que reafirmó muchas de las líneas de la Casa Blanca sobre los “valores democráticos” y la “seguridad nacional”. Pero ¿qué tiene de democrático una empresa que desarrolla tecnología para atacar y bombardear mejor a las personas? ¿A quién protege la recopilación de información para determinar mejor la tecnología bélica? Esto seguramente revela la alineación de la empresa con la retórica anti-China y las justificaciones imperialistas de la administración Biden. Como empresa que seguramente ha impulsado los sistemas AGI dentro de la sociedad en general, es profundamente alarmante que hayan abandonado todos los códigos y se hayan lanzado directamente al Pentágono. Si bien no es sorprendente que empresas como Palantir o incluso la propia Anduril estén utilizando la IA para la guerra, de empresas como OpenAI (una organización sin fines de lucro supuestamente impulsada por una misión) deberíamos esperar algo mejor.
La IA se está utilizando para agilizar los asesinatos. En la frontera entre Estados Unidos y México, en Palestina y en los puestos imperiales estadounidenses en todo el mundo. Si bien los sistemas de inteligencia artificial parecen inocentemente integrados en nuestra vida diaria, desde los motores de búsqueda hasta los sitios de transmisión de música, debemos olvidar que estas mismas empresas están utilizando la misma tecnología de manera letal. Si bien ChatGPT puede brindarle diez formas de protestar, es probable que esté entrenado para matar, mejor y más rápido.
Desde la máquina de guerra hasta nuestro planeta, la IA en manos de los imperialistas estadounidenses sólo significa más ganancias para ellos y más devastación y destrucción para todos nosotros.
Nuvpreet Kalra es el productor de contenido digital de CODEPINK. Nuvpreet obtuvo una Licenciatura en Política y Sociología en la Universidad de Cambridge y una Maestría en Igualdad en Internet en la Universidad de las Artes de Londres. Como estudiante formó parte de movimientos de desinversión y descolonización, así como de grupos antirracistas y antiimperialistas. Nuvpreet se unió a CODEPINK como pasante en 2023 y ahora produce contenido digital y para redes sociales. En Inglaterra, se organiza con grupos por la liberación, la abolición y el antiimperialismo de Palestina.
Tim Biondo es el director de comunicaciones digitales de CODEPINK. Tienen una licenciatura en Estudios de la Paz de la Universidad George Washington.
Noticias
Cómo los modelos O3 y O4-Mini de OpenAI están revolucionando el análisis visual y la codificación

En abril de 2025, Openai presentó sus modelos más avanzados hasta la fecha, O3 y O4-Mini. Estos modelos representan un gran paso adelante en el campo de la inteligencia artificial (IA), ofreciendo nuevas capacidades en análisis visual y soporte de codificación. Con sus fuertes habilidades de razonamiento y su capacidad para trabajar con texto y imágenes, O3 y O4-Mini pueden manejar una variedad de tareas de manera más eficiente.
El lanzamiento de estos modelos también destaca su impresionante rendimiento. Por ejemplo, O3 y O4-Mini lograron una notable precisión del 92.7% en la resolución de problemas matemáticos en el punto de referencia de AIME, superando el rendimiento de sus predecesores. Este nivel de precisión, combinado con su capacidad para procesar diversos tipos de datos, como código, imágenes, diagramas y más, abre nuevas posibilidades para desarrolladores, científicos de datos y diseñadores de UX.
Al automatizar tareas que tradicionalmente requieren un esfuerzo manual, como la depuración, la generación de documentación e interpretación de datos visuales, estos modelos están transformando la forma en que se construyen aplicaciones impulsadas por la IA. Ya sea en desarrollo, ciencia de datos u otros sectores, O3 y O4-Mini son herramientas poderosas que respaldan la creación de sistemas más inteligentes y soluciones más efectivas, lo que permite a las industrias abordar los desafíos complejos con mayor facilidad.
Avances técnicos clave en modelos O3 y O4-Mini
Los modelos O3 y O4-Mini de OpenAI traen mejoras importantes en la IA que ayudan a los desarrolladores a trabajar de manera más eficiente. Estos modelos combinan una mejor comprensión del contexto con la capacidad de manejar el texto y las imágenes juntos, haciendo que el desarrollo sea más rápido y preciso.
Manejo de contexto avanzado e integración multimodal
Una de las características distintivas de los modelos O3 y O4-Mini es su capacidad para manejar hasta 200,000 tokens en un solo contexto. Esta mejora permite a los desarrolladores ingresar archivos de código fuente completos o grandes bases de código, lo que hace que el proceso sea más rápido y eficiente. Anteriormente, los desarrolladores tenían que dividir grandes proyectos en partes más pequeñas para el análisis, lo que podría conducir a ideas o errores perdidos.
Con la nueva ventana de contexto, los modelos pueden analizar el alcance completo del código a la vez, proporcionando sugerencias, correcciones de error y optimizaciones más precisas y confiables. Esto es particularmente beneficioso para los proyectos a gran escala, donde comprender todo el contexto es importante para garantizar una funcionalidad fluida y evitar errores costosos.
Además, los modelos O3 y O4-Mini aportan el poder de las capacidades multimodales nativas. Ahora pueden procesar las entradas de texto y visuales, eliminando la necesidad de sistemas separados para la interpretación de imágenes. Esta integración permite nuevas posibilidades, como la depuración en tiempo real a través de capturas de pantalla o escaneos de interfaz de usuario, generación de documentación automática que incluye elementos visuales y una comprensión directa de los diagramas de diseño. Al combinar texto y imágenes en un flujo de trabajo, los desarrolladores pueden moverse de manera más eficiente a través de tareas con menos distracciones y retrasos.
Precisión, seguridad y eficiencia a escala
La seguridad y la precisión son fundamentales para el diseño de O3 y O4-Mini. El marco de alineación deliberativa de OpenAI asegura que los modelos actúen en línea con las intenciones del usuario. Antes de ejecutar cualquier tarea, el sistema verifica si la acción se alinea con los objetivos del usuario. Esto es especialmente importante en entornos de alto riesgo como la atención médica o las finanzas, donde incluso pequeños errores pueden tener consecuencias significativas. Al agregar esta capa de seguridad, Operai asegura que la IA funcione con precisión y reduce los riesgos de resultados no deseados.
Para mejorar aún más la eficiencia, estos modelos admiten el encadenamiento de herramientas y las llamadas API paralelas. Esto significa que la IA puede ejecutar múltiples tareas al mismo tiempo, como generar código, ejecutar pruebas y analizar datos visuales, sin tener que esperar a que una tarea finalice antes de comenzar otra. Los desarrolladores pueden ingresar una maqueta de diseño, recibir comentarios inmediatos sobre el código correspondiente y ejecutar pruebas automatizadas mientras la IA procesa el diseño visual y genera documentación. Este procesamiento paralelo acelera los flujos de trabajo, lo que hace que el proceso de desarrollo sea más suave y productivo.
Transformación de flujos de trabajo de codificación con características con IA
Los modelos O3 y O4-Mini introducen varias características que mejoran significativamente la eficiencia del desarrollo. Una característica clave es el análisis de código en tiempo real, donde los modelos pueden analizar instantáneamente capturas de pantalla o escaneos de interfaz de usuario para detectar errores, problemas de rendimiento y vulnerabilidades de seguridad. Esto permite a los desarrolladores identificar y resolver problemas rápidamente.
Además, los modelos ofrecen depuración automatizada. Cuando los desarrolladores encuentran errores, pueden cargar una captura de pantalla del problema, y los modelos identificarán la causa y sugerirán soluciones. Esto reduce el tiempo dedicado a la resolución de problemas y permite a los desarrolladores avanzar con su trabajo de manera más eficiente.
Otra característica importante es la generación de documentación con el contexto. O3 y O4-Mini pueden generar automáticamente documentación detallada que permanece actualizada con los últimos cambios en el código. Esto elimina la necesidad de que los desarrolladores actualicen manualmente la documentación, asegurando que permanezca preciso y actualizado.
Un ejemplo práctico de las capacidades de los modelos está en la integración de API. O3 y O4-Mini pueden analizar las colecciones Postman a través de capturas de pantalla y generar automáticamente asignaciones de punto final API. Esto reduce significativamente el tiempo de integración en comparación con los modelos más antiguos, acelerando el proceso de vinculación de servicios.
Avances en el análisis visual
Los modelos O3 y O4-Mini de OpenAI traen avances significativos en el procesamiento de datos visuales, ofreciendo capacidades mejoradas para analizar imágenes. Una de las características clave es su OCR avanzado (reconocimiento de caracteres ópticos), que permite que los modelos extraen e interpreten el texto de las imágenes. Esto es especialmente útil en áreas como ingeniería de software, arquitectura y diseño, donde los diagramas técnicos, los diagramas de flujo y los planes arquitectónicos son parte integral de la comunicación y la toma de decisiones.
Además de la extracción de texto, O3 y O4-Mini pueden mejorar automáticamente la calidad de las imágenes borrosas o de baja resolución. Utilizando algoritmos avanzados, estos modelos mejoran la claridad de la imagen, asegurando una interpretación más precisa del contenido visual, incluso cuando la calidad de imagen original es subóptima.
Otra característica poderosa es su capacidad para realizar un razonamiento espacial 3D de los planos 2D. Esto permite a los modelos analizar diseños 2D e inferir relaciones 3D, lo que los hace muy valiosos para industrias como la construcción y la fabricación, donde es esencial visualizar espacios físicos y objetos de planes 2D.
Análisis de costo-beneficio: cuándo elegir qué modelo
Al elegir entre los modelos O3 y O4-Mini de OpenAI, la decisión depende principalmente del equilibrio entre el costo y el nivel de rendimiento requerido para la tarea en cuestión.
El modelo O3 es el más adecuado para tareas que exigen alta precisión y precisión. Se destaca en campos como la investigación y el desarrollo complejos (I + D) o aplicaciones científicas, donde son necesarias capacidades de razonamiento avanzado y una ventana de contexto más amplia. La gran ventana de contexto y las poderosas habilidades de razonamiento de O3 son especialmente beneficiosas para tareas como el entrenamiento del modelo de IA, el análisis de datos científicos y las aplicaciones de alto riesgo donde incluso pequeños errores pueden tener consecuencias significativas. Si bien tiene un costo más alto, su precisión mejorada justifica la inversión para las tareas que exigen este nivel de detalle y profundidad.
En contraste, el modelo O4-Mini proporciona una solución más rentable y sigue ofreciendo un rendimiento fuerte. Ofrece velocidades de procesamiento adecuadas para tareas de desarrollo de software a mayor escala, automatización e integraciones de API donde la eficiencia y la velocidad son más críticas que la precisión extrema. El modelo O4-Mini es significativamente más rentable que el O3, que ofrece una opción más asequible para los desarrolladores que trabajan en proyectos cotidianos que no requieren las capacidades avanzadas y la precisión del O3. Esto hace que el O4-Mini sea ideal para aplicaciones que priorizan la velocidad y la rentabilidad sin necesidad de la gama completa de características proporcionadas por el O3.
Para los equipos o proyectos centrados en el análisis visual, la codificación y la automatización, O4-Mini proporciona una alternativa más asequible sin comprometer el rendimiento. Sin embargo, para proyectos que requieren análisis en profundidad o donde la precisión es crítica, el modelo O3 es la mejor opción. Ambos modelos tienen sus fortalezas, y la decisión depende de las demandas específicas del proyecto, asegurando el equilibrio adecuado de costo, velocidad y rendimiento.
El resultado final
En conclusión, los modelos O3 y O4-Mini de OpenAI representan un cambio transformador en la IA, particularmente en la forma en que los desarrolladores abordan la codificación y el análisis visual. Al ofrecer un manejo de contexto mejorado, capacidades multimodales y un razonamiento potente, estos modelos permiten a los desarrolladores a optimizar los flujos de trabajo y mejorar la productividad.
Ya sea para una investigación impulsada por la precisión o tareas rentables de alta velocidad, estos modelos proporcionan soluciones adaptables para satisfacer diversas necesidades. Son herramientas esenciales para impulsar la innovación y resolver desafíos complejos en todas las industrias.
Noticias
5 gemas simples de Géminis que solía permanecer en la tarea

Hay algo poderoso en tener la persona adecuada a la que recurrir en el momento adecuado. Es por eso que uso Gemini Gems cuando quiero ser productivo en mi teléfono, tableta o Chromebook. Piense en ellos como compañeros de trabajo digital, cada uno excelente en algo único. Confío en ellos durante los maratones de codificación nocturnos, los períodos de examen y la preparación de la entrevista de último minuto. En este artículo, discuto las gemas que uso regularmente, para qué están diseñados y cómo uso la inteligencia artificial para seguir siendo productivo.
Relacionado
10 maneras en que uso IA para simplificar mi vida diaria
Aprenda nuevas formas de hacer trabajo, estudios y pasatiempos
5
Encontrar nuevas ideas con lluvia de ideas
Esta gema saca ideas creativas de la nada
No puedo contar la frecuencia con la que me siento frente a una página en blanco, tratando de escribir algo que valga la pena, o se me ocurra una idea medio decente, solo para sentirme completamente atascado. Ahí es cuando recurro a la gema de Brainstormer. Te ayuda a superar el bloqueo del escritor, pensar fuera de la caja y mantener tu impulso.
Omita el pensamiento excesivo, navegue por sugerencias, elija y refine lo que funciona, y avanza. El mismo impulso creativo también resulta útil fuera del mundo digital. La compra de regalos me estresa, especialmente cuando no tengo idea de qué conseguir a alguien que lo tenga todo. Brainstormer me ayuda a encontrar ideas de regalos originales basadas en los intereses de mis amigos, los pasatiempos y nuestros chistes internos.
4
Permanecer en el flujo de codificación con la depuración asistida
Esta joya me salva del desplazamiento interminable a través de la documentación
Coding Partner Gem es un asistente de programación que lo ayuda a escribir código, solucionar errores y comprender conceptos de codificación desconocidos sin interrumpir su flujo. Viene a mi rescate cuando estoy en una sesión de codificación y algo se rompe, o cuando quiero verificar la sintaxis de algo en Python.
Puedo preguntar cualquier cosa, por ejemplo, “¿Por qué se muestra este error y cómo puedo solucionarlo?” o “¿Puedes guiarme a través de cómo funciona este fragmento de código?” Y me muestra cómo. Puede usar su compañero de codificación en cualquier nivel de habilidad, independientemente de su nivel de habilidad. No tendrá que cavar a través de los foros o la documentación de Stack Overflow cuando tenga un problema.
3
Estudiar Smarter con el entrenador de aprendizaje a mi lado
Esta gema desglosa temas en trozos fáciles de aprender
Learning Coach Gem es un tutor que divide información compleja en segmentos digeribles para ayudarlo a aprender nuevos temas. El entrenador de aprendizaje también puede construir un plan de estudio personalizado basado en sus objetivos, lo cuestiona sobre lo que aprendió y lo guiará a través de temas paso a paso. Un camino claro y respuestas inmediatas reducen la procrastinación y evitan la deriva del sujeto. No más cavar a través de información dispersa cuando su tiempo de estudio es estructurado y eficiente.
Con cuestionarios rápidos y preguntas de seguimiento, el aprendizaje se vuelve activo, no pasivo. El entrenador de aprendizaje Gema se convierte en mi amigo de estudio cuando se prepara para los exámenes. Alimento el esquema de contenido desde mis diapositivas de conferencias y le pido que explique las partes donde me perdí la clase. A veces voy un paso más allá y lo doy más del examen, luego le pido a Gemini que genere preguntas similares basadas en el material que estoy estudiando.

Relacionado
5 razones por las cuales Google dominará la carrera armamentista de IA con soluciones como Gemini y Notebooklm
Google está bien posicionado para ganar con su IA
2
El editor de escritura arregla mi escritura sin romper el flujo
Escribo mejor, más rápido y con menos dudas.
Escribir es una cosa, editar es otra. Es fácil quedarse atascado relevando el mismo párrafo, adivinar las opciones de sus palabras o buscar reglas de gramática en Google. Ahí es donde ayuda la gema del editor de escritura. Esta joya verifica su gramática, ortografía y puntuación mientras ofrece comentarios útiles sobre el estilo, el tono y la estructura. Marca las oraciones de ejecución, sugiere una mejor frase y recomienda elecciones de palabras más fuertes, haciendo que su mensaje sea limpio y seguro.
No más de ida y vuelta sobre encontrar algo que suene bien. En lugar de romper su flujo de escritura para arreglar una oración, continúa y el editor de escritura se encarga de los detalles. Entre esto y Grammarly, tengo una red de seguridad de edición sólida para mis tareas de ensayo.
1
Uso de la guía de carrera para prepararse para los movimientos de carrera
Esta joya es mi opción para la redacción y entrevistas de reanudación.
Descubrir su próximo movimiento de carrera puede ser estresante. La gema de la guía profesional lo ayuda a mapear sus objetivos y mejorar sus habilidades. Lo uso para actualizar mi currículum, prepararme para entrevistas y explorar nuevas direcciones basadas en mis intereses y fortalezas. Una de las cosas más útiles ha sido practicar preguntas comunes de la entrevista y ensayar mis respuestas. También lo uso para generar currículums personalizados de acuerdo con descripciones de trabajo específicas, lo que ayuda a que mis aplicaciones se destaquen.
Ese enfoque me dio una pasantía. Pregunte a la guía profesional un plan claro y paso a paso. Puede ayudarlo a priorizar las tareas, como repasar una habilidad, actualizar su perfil de LinkedIn o aplicar roles que coincidan con sus objetivos. No se detiene en la búsqueda de empleo. También le ayuda a desarrollar un impulso a largo plazo con redes prácticas, estrategias de crecimiento y desarrollo de habilidades.

Relacionado
7 formas de usar Gemini como asistente de búsqueda de empleo
Hacer la búsqueda de empleo más fácil con Géminis
Resolver problemas de nicho construyendo su propia gema
En lugar de tratar de hacer todo de forma independiente (y potencialmente atascado o distraído), puede confiar en estos ayudantes de IA. No tiene que conformarse si tiene un problema o flujo de trabajo único. Cree una gema personalizada que se adapte a su nicho.
Noticias
¿Qué modelo de chatgpt es el mejor? Una guía sobre qué modelo usar y cuándo.
Chatgpt no es un monolito.
Desde que Operai lanzó por primera vez el Buzzy Chatbot en 2022, ha implementado lo que parece un nuevo modelo cada pocos meses, utilizando una panoplia confusa de nombres.
Varios competidores de Operai tienen populares Alternativas de chatgptcomo Claude, Géminis y perplejidad. Pero los modelos de Openai se encuentran entre los más reconocibles de la industria. Algunos son buenos para tareas cuantitativas, como la codificación. Otros son mejores para hacer una lluvia de ideas sobre nuevas ideas.
Si está buscando una guía sobre qué modelo usar y cuándo, está en el lugar correcto.
GPT-4 y GPT-4O
Openai lanzó por primera vez GPT-4 en 2023 como su modelo de lenguaje grande. El CEO Sam Altman dijo en un podcast de abril que la modelo tomó “cientos de personas, casi todo el esfuerzo de Openi” para construir.
Desde entonces, ha actualizado su modelo insignia a GPT-4O, que lanzó por primera vez el año pasado. Es tan inteligente como GPT-4, que es capaz de acumular el SAT, el GRE y pasar la barra, pero es significativamente más rápido y mejora sus “capacidades entre el texto, la voz y la visión”, dice Openii. El “O” significa Omni.
4O puede traducir rápidamente el habla y ayudar con el álgebra lineal básica, y tiene las capacidades visuales más avanzadas.
Sus imágenes de estilo Studio Ghibli tocaron la emoción en línea. Sin embargo, también planteó preguntas de derechos de autor cuando los críticos argumentaron que Operai se está beneficiando injustamente del contenido de los artistas.
Operai dice que 4O “se destaca en las tareas cotidianas”, como hacer una lluvia de ideas, resumir, escribir correos electrónicos y revisar informes.
GPT-4.5
Altman describió a GPT-4.5 en una publicación sobre X como “el primer modelo que se siente como hablar con una persona reflexiva”.
Es el último avance en el paradigma de “aprendizaje sin supervisión” de OpenAI, que se centra en ampliar los modelos en el “conocimiento de las palabras, la intuición y la reducción de las alucinaciones”, dijo la miembro del personal técnico de Operai, Amelia Glaese, durante su presentación en febrero.
Entonces, si está teniendo una conversación difícil con un colega, GPT-4.5 podría ayudarlo a replantear esas conversaciones en un tono más profesional y tacto.
Operai dice que GPT-4.5 es “ideal para tareas creativas”, como proyectos de colaboración y lluvia de ideas.
O1 y O1-Mini
Openai lanzó una mini versión de O1, su modelo de razonamiento, en septiembre del año pasado y la versión completa en diciembre.
Los investigadores de la compañía dijeron que es el primer modelo capacitado para “pensar” antes de que responda y se adapte bien a las tareas cuantitativas, de ahí el “modelo de razonamiento” del apodo. Esa es una función de su técnica de entrenamiento, conocida como cadena de pensamiento, que alienta a los modelos a razonar a través de problemas descomponiéndolos paso a paso.
En un artículo publicado en la capacitación de seguridad del modelo, la compañía dijo que “los modelos de capacitación para incorporar una cadena de pensamiento antes de responder tienen el potencial de desbloquear beneficios sustanciales, al tiempo que aumentan los riesgos potenciales que provienen de una inteligencia aumentada”.
En un video de una presentación interna de Operai en los mejores casos de uso para O1, Joe Casson, un ingeniero de soluciones en OpenAI, demostró cómo O1-Mini podría resultar útil para analizar el máximo beneficio en una llamada cubierta, una estrategia de negociación financiera. Casson también mostró cómo la versión de vista previa de O1 podría ayudar a alguien razonar a través de cómo crear un plan de expansión de la oficina.
Operai dice que el modo Pro de O1, una “versión de O1 que utiliza más cómputo para pensar más y proporcionar respuestas aún mejores a los problemas más difíciles”, es mejor para un razonamiento complejo, como crear un algoritmo para el pronóstico financiero utilizando modelos teóricos o generar un resumen de investigación de varias páginas en tecnologías emergentes.
O3 y O3-Mini
Los modelos pequeños han estado ganando tracción en la industria durante un tiempo como una alternativa más rápida y rentable a los modelos de base más grandes. Operai lanzó su primer modelo pequeño, O3 Mini, en enero, solo semanas después de que la startup de la startup china Butterfly Effect debutó el R1 de Deepseek, que conmocionó a Silicon Valley, y los mercados, con sus precios asequibles.
Openai dijo que 03 Mini es el “modelo más rentable” en su serie de razonamiento. Está destinado a manejar preguntas complejas, y Openai dijo que es particularmente fuerte en ciencias, matemáticas y codificación.
Julian Goldie, un influencer de las redes sociales que se centra en la estrategia de SEO, dijo en una publicación sobre el medio que O3 “brilla en tareas de desarrollo rápido” y es ideal para tareas de programación básicas en HTML y CSS, funciones simples de JavaScript y la construcción de prototipos rápidos. También hay una versión “mini alta” del modelo que, según él, es mejor para la “codificación y lógica compleja”, aunque tenía algunos problemas de control.
En abril, Openai lanzó una versión completa de O3, que llama “nuestro modelo de razonamiento más poderoso que empuja la frontera a través de la codificación, matemáticas, ciencias, percepción visual y más”.
Operai dice que el O3 se usa mejor para “tareas complejas o de múltiples pasos”, como la planificación estratégica, la codificación extensa y las matemáticas avanzadas.
O4 mini
Operai lanzó otro modelo más pequeño, el O4 Mini, en abril. Dijo que está “optimizado para un razonamiento rápido y rentable”.
La compañía dijo que logra un rendimiento notable para el costo, especialmente en “Matemáticas, codificación y tareas visuales”. Fue el modelo de referencia con mejor rendimiento en el examen de matemáticas de invitación estadounidense en 2024 y 2025.
O4 Mini, y su mini versión, son excelentes para un razonamiento rápido y más sencillo. Son buenos para acelerar cualquier tarea de razonamiento cuantitativo que encuentre durante su día. Si está buscando un trabajo más profundo, opte por O3.
Scott Swingle, alumbre de DeepMind y fundador de la compañía de herramientas de desarrolladores con IA Abante AI, probó O4 con un problema de Euler, una serie de problemas computacionales desafiantes lanzados cada semana más o menos. Dijo en una publicación sobre X que O4 resolvió el problema en 2 minutos y 55 segundos, “Mucho más rápido que cualquier solucionador humano. Solo 15 personas pudieron resolverlo en menos de 30 minutos”.
Operai dice que el O4 Mini se usa mejor para “tareas técnicas rápidas”, como consultas rápidas relacionadas con STEM. Dice que también es ideal para el razonamiento visual, como extraer puntos de datos clave de un archivo CSV o proporcionar un resumen rápido de un artículo científico.