Connect with us

Noticias

Operai sacude la voz de voz con nuevos modelos de discurso |

Published

on

Opadai anunció el lanzamiento de nuevos modelos Para el reconocimiento automático de voz (ASR) y el texto a la voz (TTS), marcando otra evolución en la tecnología de voz impulsada por la IA. Sus nuevos modelos prometen no solo una precisión superior, sino también a mejorar la asequibilidad, lo que los convierte en una opción atractiva para las empresas que buscan desplegar agentes de voz con AI.

Capacidades mejoradas de reconocimiento de voz

Los nuevos modelos ASR, GPT-4O-Transcribe y GPT-4O-Mini-Transcribe, representan un salto notable más allá de Whisper, el modelo de transcripción de última generación de OpenAi. Estos modelos ofrecen tasas de error de palabras mejoradas y un mejor manejo de idiomas, acentos y ruido de fondo. La introducción de la versión “mini” es particularmente notable, ya que tiene un precio competitivo para hacer que la transcripción de alta calidad sea más accesible para las empresas que requieren soluciones escalables.

Tecnología avanzada de texto a voz

Operai también ha mejorado significativamente sus capacidades TTS. Los nuevos modelos pueden generar voces altamente realistas, con entonaciones y expresividad de sonido natural. Una característica destacada es la capacidad de dar forma al tono, la emoción y la entrega de una voz utilizando indicaciones de lenguaje natural. Esto significa que las empresas pueden crear voces de IA adaptadas a escenarios específicos, ya sea un representante de servicio al cliente amigable y empático, una voz formal y autorizada para llamadas relacionadas con el cumplimiento, o un narrador dinámico para demostraciones de productos. Esta flexibilidad hace que los modelos TTS de OpenAI sean algunas de las herramientas más versátiles disponibles para construir interacciones de voz atractivas.

Arquitectura del agente de voz: dos enfoques

Otro aspecto interesante de Anuncio de Openai es su enfoque para la arquitectura de agente de voz impulsada por la IA. Actualmente, ha habido dos enfoques principales:

  • Modelo de voz a voz (S2S): Traduce directamente la entrada hablada en discurso generado con una latencia mínima
  • Enfoque encadenado: Divide el proceso en pasos discretos:
    • ASR transcribe el discurso al texto
    • Un modelo de lenguaje grande (LLM) procesa el texto para generar una respuesta
    • TTS convierte la respuesta nuevamente en discurso

Operai está distinguiendo entre estos enfoques, reconociendo que, si bien S2S ofrece una latencia más baja, proporciona menos control. El enfoque encadenado, que ahora es compatible con OpenAI, es más robusto para los casos de uso empresarial, como el servicio al cliente, donde el control, la precisión y el cumplimiento son críticos.

Implicaciones del mercado para plataformas sin código

Con este lanzamiento, Operai ahora ofrece una pila completa de modelos para apoyar el desarrollo de sofisticados agentes de voz de Genai. Esto tiene implicaciones para el mercado, particularmente para las empresas que construyen soluciones sin código para la IA de voz empresarial. Estas plataformas, que permiten a las empresas crear e implementar agentes de voz impulsados ​​por la IA sin una programación extensa, ahora tienen un nuevo conjunto de modelos de alta calidad para integrarse en sus ofertas.

Sin embargo, esto también plantea la cuestión de la diferenciación: si la mayoría de los proveedores sin código terminan utilizando los modelos de OpenAI, el principal factor competitivo cambia de la calidad de la IA subyacente a la usabilidad de la plataforma misma.

Para los proveedores de agentes de voz sin código, esto podría significar que la diferenciación debe venir en otras áreas, como la amplitud de las integraciones, la intuición del diseño y la fuerza de las características críticas como las pruebas, la evaluación y el monitoreo.

La usabilidad, el cumplimiento y el análisis robusto probablemente se convertirán en las características definitorias que distinguen las plataformas en un paisaje donde los modelos de IA fundamentales son en gran medida las mismas. Por supuesto, los modelos de audio competitivos de las compañías rivales también podrían proporcionar diferenciación si ofrecen un rendimiento significativamente mejor a un costo comparable o menor.

Estrategia empresarial de Openai

Este anuncio también señala el movimiento continuo de OpenAi hacia la infraestructura de IA empresarial. Al ofrecer modelos ASR, LLM y TTS de alta calidad, OpenAi se está posicionando como el proveedor fundamental de las interacciones de voz impulsadas por la IA. La compañía no ofrece un constructor de agentes de voz sin código, sino que proporciona los componentes del desarrollador necesarios para construir dichos sistemas.

Este enfoque es similar a cómo los LLM de OpenAI se han convertido en la columna vertebral para varias aplicaciones con IA en todas las industrias. Sugiere que OpenAI ve a la voz de voz de grado empresarial como un área creciente de demanda y quiere establecerse como el proveedor de referencia para organizaciones que buscan modelos de IA robustos para las interacciones con los clientes.

Impacto en las soluciones del centro de contacto

Para los proveedores de CCAA, los nuevos modelos Operai crean oportunidades y desafíos. Los proveedores de soluciones ahora tienen modelos de vanguardia nuevos y asequibles para proporcionar habilidades de automatización de voz mejoradas en sus productos. Sin embargo, la competencia intensificada entre los proveedores que utilizan capacidades de IA similares medias Es posible que las compañías de CCAA necesiten encontrar nuevas formas de diferenciar sus ofertas de agentes de voz. Por lo menos, el conjunto de modelos de OpenAI ejerce presión sobre los proveedores de CCAA para garantizar que ofrezcan plataformas de agentes de voz sin código al menos tan robustos y capaces como aquellas que pueden ser fácilmente creadas por programadores novatos que utilizan modelos y herramientas de desarrolladores de OpenAI.

La experiencia del cliente y los proveedores de CCAA también pueden agregar un valor estratégico mucho más allá de la conexión de modelos ASR, LLM y TTS. Por ejemplo, en campañas salientes, el éxito depende de los datos del cliente, los objetivos comerciales y el cumplimiento. Las plataformas CX pueden ofrecer herramientas para el diseño de la campaña, la ejecución y el análisis.

Para el apoyo, incluso los grandes agentes virtuales necesitan un conocimiento fresco y preciso. Los proveedores pueden ayudar a administrar y actualizar bases de conocimiento para garantizar respuestas confiables alineadas en políticas.

El monitoreo del rendimiento también es vital. Análisis en tiempo real, seguimiento de sentimientos y herramientas de retroalimentación ayudan a ajustar las conversaciones. Las ideas de ROI también son esenciales: los líderes quieren rastrear los ahorros, los impulso de CSAT y el rendimiento en los equipos.

El futuro de la adopción de la voz de la voz de la empresa

En última instancia, el anuncio de OpenAI representa un cambio en cómo las empresas construirán e implementarán agentes de voz impulsados ​​por la IA. Con mejores modelos, menores costos y más flexibilidad, es probable que veamos una aceleración en la adopción de agentes de voz de IA en el servicio al cliente y más allá. Las compañías que tienen éxito en este nuevo panorama probablemente serán las que van más allá de los modelos de IA y se centrarán en ofrecer soluciones perfectas, escalables y diferenciadas a los clientes empresariales.

‹Cognigy muestra la innovación y el valor de AI en Nexus 2025 Summit

Categorías: artículos

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Los dos abiertos – el Atlántico

Published

on

Realmente hay dos abiertos. Uno es el creador de máquinas que doblan el mundo, la nueva empresa que desató el chatgpt y, a su vez, el auge generativo-AI, surgiendo hacia un futuro irreconocible con el resto de la industria tecnológica a cuestas. Este es el OpenAI que promete eventualmente provocar programas “superintelligentes” que excedan las capacidades de la humanidad.

El otro Openai es simplemente un negocio. Esta es la compañía que, según los informes, está trabajando en una red social y considerando una expansión en el hardware; Es la compañía la que ofrece actualizaciones de experiencia de usuario a CHATGPT, como una función de “biblioteca de imágenes” anunciada la semana pasada y la nueva capacidad de “referencia” a los chats anteriores para proporcionar respuestas personalizadas. Se podría pensar en esta OpenAI como otra compañía de tecnología que sigue los pasos de Meta, Apple y Google, no solo para inspirar a los usuarios con nuevos descubrimientos, sino de mantenerlos bloqueados en una línea de productos infinitamente iteradores.

Las compañías tecnológicas más poderosas tienen éxito no simplemente por las virtudes de su software y dispositivos individuales, sino mediante la creación de ecosistemas de servicios conectados. Tener un iPhone y un MacBook hace que sea muy conveniente usar el almacenamiento de iCloud e iMessage y Apple Pay, y muy molesto si un miembro de la familia tiene un teléfono inteligente Samsung o si alguna vez decide cambiar a una PC con Windows. Google Search, Drive, Chrome y Android Devices forman un jardín amurallado similar, tanto que los abogados federales han pedido a un tribunal que obligue a la compañía a vender Chrome como remedio a una violación antimonopolio. Pero en comparación con las computadoras o incluso los navegadores web, los chatbots son muy fáciles de cambiar, solo abre una nueva pestaña y escriba una URL diferente. Eso hace que el desafío sea algo mayor para las nuevas empresas de IA. Google y Apple ya tienen ecosistemas de productos para deslizar la IA; Operai no lo hace.

El CEO de Openai, Sam Altman, afirmó recientemente que los productos de su compañía tienen unos 800 millones de usuarios semanales, aproximadamente una décima parte de la población mundial. Pero incluso si OpenAi solo tuviera la mitad de ese número de usuarios, sería muchas personas que se arriesgarían a perder ante Anthrope, Google y el torrente interminable de las nuevas empresas de IA. Como han demostrado otras compañías tecnológicas, la recopilación de datos de los usuarios (imágenes, conversaciones, compras, amistades) y construir productos en torno a esa información es una buena manera de mantenerlos bloqueados. Incluso si un chatbot competidor es “más inteligente”, la capacidad de aprovechar las conversaciones anteriores podría hacer que la separación sea mucho más difícil. Esto también ayuda a explicar por qué Operai está dando a los estudiantes universitarios dos meses de acceso gratuito a un nivel premium de ChatGPT, sembrando el terreno para la lealtad a largo plazo. (Esto sigue un patrón familiar para las empresas tecnológicas: Hulu solía ser gratuito, Gmail solía aumentar regularmente su almacenamiento gratuito, y hace Eons, YouTube no tenía anuncios). En particular, OpenAi recientemente ha contratado ejecutivos de Meta, Twitter, Uber y Nextdoor para avanzar en sus operaciones comerciales.

Las dos identidades de Openai, el laboratorio de IA de ruptura del suelo y la empresa tecnológica arquetípica, no necesariamente conflictos. La compañía ha dicho que la comercialización beneficia al desarrollo de IA, y que ofrecer modelos de IA como productos de consumo es una forma importante de acostumbrar a las personas a la tecnología, probar sus limitaciones en el mundo real y fomentar la deliberación sobre cómo debería y no debe usarse. Presentar IA en una forma intuitiva y conversacional, en lugar de promover un salto importante en la “inteligencia” o capacidades de un algoritmo, es precisamente lo que hizo que Chatgpt fuera un éxito. Si la idea es hacer una IA que “beneficie a toda la humanidad”, como Operai profesa en su carta, entonces compartir estos supuestos beneficios ahora tiene sentido y crea un incentivo económico para capacitar a modelos de IA mejores y más confiables. El aumento de los ingresos, a su vez, puede sostener el desarrollo de esos modelos futuros y mejorados.

Por otra parte, Operai ha pasado gradualmente de una organización sin fines de lucro a una estructura corporativa más y más orientada a las ganancias: usar la tecnología Generation-AI para descubrir mágicamente nuevos medicamentos es una buena idea, pero eventualmente la compañía necesitará comenzar a ganar dinero con los usuarios cotidianos para mantener las luces encendidas. (Openai perdió más de $ 1 mil millones el año pasado). Un portavoz de OpenAi, que tiene una asociación corporativa con El atlánticoescribió por correo electrónico que “la competencia es buena para los usuarios y la innovación de los Estados Unidos. Cualquiera puede usar ChatGPT de cualquier navegador” y que “los desarrolladores siguen siendo libres de cambiar a modelos competidores cuando lo deseen”.

Anthrope y Meta han adoptado enfoques alternativos para llevar sus modelos a los usuarios de Internet. El primero ofreció recientemente la capacidad de integrar su chatbot Claude en Gmail, Google Docs y Google Calendar, dando un punto de apoyo en un ecosistema tecnológico existente en lugar de construir de nuevo. (Operai parecía estar probando esta estrategia el año pasado al asociarse con Apple para incorporar ChatGPT directamente a la inteligencia de Apple, pero esto requiere un poco de configuración en la parte del usuario, y los esfuerzos de IA de Apple han sido percibidos ampliamente como decepcionantes. Altman ha dicho que Operai publicará un modelo igualmente abierto a finales de este año; Aparentemente, la puesta en marcha quiere pared de su jardín y hacer de sus modelos de IA la base para todos los demás también.

A partir de esta ventaja, la IA generativa parece menos revolucionaria y más como todos los sitios web anteriores, plataformas y dispositivos que luchan para llamar su atención y nunca dejarla ir. Las montañas de datos recopiladas a través de las interacciones de chatbot pueden alimentar servicios y anuncios más personalizados y dirigidos con precisión. La dependencia de los teléfonos inteligentes y los relojes inteligentes podría generar dependencia de la IA y viceversa. Y hay otro ADN compartido. Las plataformas de redes sociales se basaron en trabajos de modificación de contenido mal compensado para detectar publicaciones dañinas y abusivas, exponiendo a los trabajadores a medios horribles para que los productos sean sabrosos para la audiencia más amplia posible. Operai y otras compañías de IA se han basado en el mismo tipo de trabajo para desarrollar sus conjuntos de datos de capacitación. Debería OpenAI realmente lanzar un sitio web de redes sociales o un dispositivo de hardware, este linaje se volverá explícito. Que hay dos abiertos ahora está claro. Pero sigue siendo incierto cuál es el alter ego.

Continue Reading

Noticias

Exclusivo: AI Bests Virus Experts, Raising Biohazard Fears

Published

on

A Un nuevo estudio afirma que modelos de IA como ChatGPT y Claude ahora superan a los virólogos a nivel de doctorado en la resolución de problemas en laboratorios húmedos, donde los científicos analizan productos químicos y material biológico. Este descubrimiento es una espada de doble filo, dicen los expertos. Los modelos de IA ultra inteligentes podrían ayudar a los investigadores a prevenir la propagación de enfermedades infecciosas. Pero los no expertos también podrían armarse los modelos para crear biowapons mortales.

El estudio, compartido exclusivamente con el tiempo, fue realizado por investigadores del Centro para la Seguridad de AI, el Laboratorio de Medios del MIT, la Universidad Brasileña UFABC y la Pandemic Prevention sin fines de lucro SecureBio. Los autores consultaron a los virólogos para crear una prueba práctica extremadamente difícil que midiera la capacidad de solucionar problemas y protocolos de laboratorio complejos. Mientras que los virólogos a nivel de doctorado obtuvieron un promedio de 22.1% en sus áreas declaradas de especialización, el O3 de OpenAI alcanzó la precisión del 43.8%. Gemini 2.5 Pro de Google obtuvo un puntaje 37.6%.

Seth Donoughe, científica investigadora de SecureBio y coautora del documento, dice que los resultados lo ponen un “poco nervioso”, porque por primera vez en la historia, prácticamente cualquier persona tiene acceso a un experto en virología de IA sin juicio que podría guiarlos a través de procesos de laboratorio complejos para crear biológicas.

“A lo largo de la historia, hay un buen número de casos en los que alguien intentó hacer una biela, y una de las principales razones por las que no tuvieron éxito es porque no tuvieron acceso al nivel correcto de especialización”, dice. “Por lo tanto, parece que vale la pena ser cauteloso acerca de cómo se distribuyen estas capacidades”.

Hace meses, los autores del documento enviaron los resultados a los principales laboratorios de IA. En respuesta, Xai publicó un marco de gestión de riesgos prometiendo su intención de implementar salvaguardas de virología para futuras versiones de su modelo de AI Grok. Operai le dijo a Time que “desplegó nuevas mitigaciones a nivel de sistema para riesgos biológicos” para sus nuevos modelos publicados la semana pasada. Anthrope incluyó resultados de rendimiento del modelo en el documento en las tarjetas del sistema recientes, pero no proponió medidas de mitigación específicas. Géminis de Google declinó hacer comentarios.

Ai en biomedicina

La virología y la biomedicina han estado a la vanguardia de las motivaciones de los líderes de IA para construir modelos de IA siempre potentes. “A medida que avanza esta tecnología, veremos que las enfermedades se curan a un ritmo sin precedentes”, dijo el CEO de OpenAI, Sam Altman, en la Casa Blanca en enero mientras anunciaba el proyecto Stargate. Ha habido algunas señales de aliento en esta área. A principios de este año, los investigadores del Instituto de Patógenos Emergentes de la Universidad de Florida publicaron un algoritmo capaz de predecir qué variante de coronavirus podría extender lo más rápido.

Pero hasta este punto, no había habido un estudio importante dedicado a analizar la capacidad de los modelos de IA para realizar un trabajo de laboratorio de virología. “Hemos sabido desde hace algún tiempo que los AIS son bastante fuertes para proporcionar información de estilo académico”, dice Donoughe. “No ha estado claro si los modelos también pueden ofrecer asistencia práctica detallada. Esto incluye interpretar imágenes, información que podría no ser escrita en ningún documento académico o material que se transfiera socialmente de colegas más experimentados”.

Entonces, Donoughe y sus colegas crearon una prueba específicamente para estas preguntas difíciles y no capaces de Google. “Las preguntas toman la forma:” He estado cultivando este virus en particular en este tipo de célula, en estas condiciones específicas, durante este tiempo. Tengo esta cantidad de información sobre lo que ha salido mal. ¿Puede decirme cuál es el problema más probable? “, Dice Donoughe.

Y prácticamente todos los modelos de IA superaron a los virólogos a nivel de doctorado en la prueba, incluso dentro de sus propias áreas de especialización. Los investigadores también encontraron que los modelos mostraron una mejora significativa con el tiempo. El soneto Claude 3.5 de Anthrope, por ejemplo, aumentó de 26.9% a 33.6% de precisión de su modelo de junio de 2024 a su modelo de octubre de 2024. Y una vista previa del GPT 4.5 de OpenAI en febrero superó a GPT-4O por casi 10 puntos porcentuales.

“Anteriormente, encontramos que los modelos tenían mucho conocimiento teórico, pero no de conocimiento práctico”, dice Dan Hendrycks, director del Centro de Seguridad de AI, a Time. “Pero ahora, están obteniendo una cantidad preocupante de conocimiento práctico”.

Riesgos y recompensas

Si los modelos de IA son tan capaces en los entornos de laboratorio húmedo como lo encuentra el estudio, entonces las implicaciones son masivas. En términos de beneficios, AIS podría ayudar a los virólogos experimentados en su trabajo crítico que lucha contra los virus. Tom Inglesby, director del Centro Johns Hopkins para la Seguridad de la Salud, dice que la IA podría ayudar a acelerar los plazos de la medicina y el desarrollo de la vacuna y mejorar los ensayos clínicos y la detección de enfermedades. “Estos modelos podrían ayudar a los científicos en diferentes partes del mundo, que aún no tienen ese tipo de habilidad o capacidad, a hacer un valioso trabajo diario sobre enfermedades que están ocurriendo en sus países”, dice. Por ejemplo, un grupo de investigadores descubrió que la IA los ayudó a comprender mejor los virus de la fiebre hemorrágica en el África subsahariana.

Pero los actores de mala fe ahora pueden usar modelos de IA para guiarlos a través de cómo crear virus, y podrán hacerlo sin ninguna de las capacitación típicas requeridas para acceder a un laboratorio de nivel 4 (BSL-4) de bioseguridad, que se ocupa de los agentes infecciosos más peligrosos y exóticos. “Significará que muchas más personas en el mundo con mucha menos capacitación podrán manejar y manipular virus”, dice Inglesby.

Hendrycks insta a las compañías de IA a colocar las barandillas para evitar este tipo de uso. “Si las empresas no tienen buenas salvaguardas durante seis meses, eso, en mi opinión, sería imprudente”, dice.

Hendrycks dice que una solución no es cerrar estos modelos o ralentizar su progreso, sino hacerlos cerrados, de modo que solo confiaban en que terceros tengan acceso a sus versiones sin filtrar. “Queremos dar a las personas que tienen un uso legítimo para preguntar cómo manipular virus mortales, como un investigador en el departamento de biología del MIT, la capacidad de hacerlo”, dice. “Pero las personas aleatorias que hicieron una cuenta hace un segundo no obtienen esas capacidades”.

Y AI Labs debería poder implementar este tipo de salvaguardas con relativa facilidad, dice Hendrycks. “Ciertamente es tecnológicamente factible para la autorregulación de la industria”, dice. “Hay una cuestión de si algunos arrastrarán sus pies o simplemente no lo harán”.

Xai, el laboratorio de IA de ELON MUSK, publicó un memorando de marco de gestión de riesgos en febrero, que reconoció el documento y señaló que la compañía “potencialmente utilizaría” ciertas salvaguardas en torno a las preguntas de virología, incluida la capacitación de Grok para rechazar solicitudes nocivas y aplicar filtros de entrada y salida.

Openai, en un correo electrónico a Time el lunes, escribió que sus modelos más nuevos, el O3 y el O4-Mini, se desplegaron con una variedad de salvaguardas relacionadas con el riesgo biológico, incluido el bloqueo de resultados dañinos. La compañía escribió que realizó una campaña de equipo rojo de mil horas en la que el 98.7% de las conversaciones biológicas inseguras fueron marcadas y bloqueadas con éxito. “Valoramos la colaboración de la industria en el avance de salvaguardas para modelos fronterizos, incluso en dominios sensibles como Virology”, escribió un portavoz. “Continuamos invirtiendo en estas salvaguardas a medida que crecen las capacidades”.

Inglesby argumenta que la autorregulación de la industria no es suficiente, y pide a los legisladores y a los líderes políticos a estrategia un enfoque político para regular los riesgos biológicos de la IA. “La situación actual es que las empresas que son más virtuosas están tomando tiempo y dinero para hacer este trabajo, lo cual es bueno para todos nosotros, pero otras compañías no tienen que hacerlo”, dice. “Eso no tiene sentido. No es bueno para el público no tener información sobre lo que está sucediendo”.

“Cuando una nueva versión de un LLM está a punto de ser lanzada”, agrega Inglesby, “debe haber un requisito para que ese modelo sea evaluado para asegurarse de que no produzca resultados de nivel pandémico”.

Continue Reading

Noticias

Cómo indicar el nuevo chatgpt, según OpenAi

Published

on

La última versión de ChatGPT es significativamente más poderosa, pero requiere nuevas técnicas de indicación. El modelo ahora sigue las instrucciones más literalmente y hace menos suposiciones sobre lo que está pidiendo. Esto es importante para los empresarios que usan la herramienta.

No seas consejos anticuados. No indique usando palabras deficientes. Eres mejor que eso.

Las indicaciones mal construidas desperdician su tiempo y dinero. Hazlo bien y desbloqueas una IA significativamente más capaz. Los miembros del equipo de Operai, Noah MacCallum y Julian Lee, han publicado una amplia documentación sobre cómo provocar sus nuevos modelos.

Aquí hay un resumen de su orientación, para que pueda aprovechar al máximo la herramienta.

Las reglas de indicación han cambiado

La provisión de técnicas que funcionaron para modelos anteriores en realidad podrían obstaculizar sus resultados con las últimas versiones. ChatGPT-4.1 sigue las instrucciones más literalmente que sus predecesores, que solían inferir la intención liberalmente. Esto es bueno y malo. La buena noticia es que ChatGPT ahora es altamente orientable y responde a las indicaciones bien especificadas. La mala noticia es que sus viejas indicaciones necesitan una revisión.

La mayoría de las personas todavía usan indicaciones básicas que apenas rascan la superficie de lo que es posible. Escriben preguntas o solicitudes simples, luego se preguntan por qué sus resultados se sienten genéricos. Operai ahora ha revelado cómo entrenaron el modelo para responder, ayudándole a obtener exactamente lo que desea de sus modelos más avanzados.

Optimice sus indicaciones con la guía de información privilegiada de Openai

Estructura tus indicaciones estratégicamente

Comience organizando sus indicaciones con secciones claras. OpenAI recomienda una estructura básica con componentes específicos:

• Rol y objetivo: dígale a ChatGPT a quién debe actuar y qué está tratando de lograr

• Instrucciones: proporcionar pautas específicas para la tarea

• Pasos de razonamiento: indique cómo desea que aborde el problema

• Formato de salida: especifique exactamente cómo desea la respuesta estructurada

• Ejemplos: Muestre muestras de lo que espera

• Contexto: proporcionar información de fondo necesaria

• Instrucciones finales: incluya los últimos recordatorios o criterios

No necesita todas estas secciones para cada aviso, pero un enfoque estructurado ofrece mejores resultados que una pared de texto.

Para tareas más complejas, la documentación de OpenAI sugiere usar reducción para separar sus secciones. También aconsejan el uso de caracteres de formato especial alrededor del código (como Backticks, que se ven así: `) para ayudar a ChatGPT a distinguir el código del texto regular y el uso de listas numeradas o balas estándar para organizar información.

Dominar el arte de delimitar información

La separación de la información afecta adecuadamente sus resultados significativamente. Las pruebas de Openai encontraron que Etiquetas XML Realice excepcionalmente bien con los nuevos modelos. Le permiten envolver las secciones con precisión con etiquetas de inicio y extremo, agregar metadatos a las etiquetas y habilitar la anidación.

El formato JSON funciona mal con contextos largos (que proporcionan los nuevos modelos), particularmente al proporcionar múltiples documentos. En su lugar, intente formatos como ID: 1 | Título: El zorro | Contenido: El Fox Brown rápido salta sobre el perro perezoso que Openai encontró que funcionó bien en las pruebas.

Construir agentes de IA autónomos

Chatgpt ahora puede funcionar como un “agente” Eso funciona de manera más independiente en su nombre, abordando tareas complejas con una supervisión mínima. Lleve sus indicaciones al siguiente nivel construyendo estos agentes.

Un agente de IA está esencialmente ChatGPT configurado para trabajar a través de problemas de forma autónoma en lugar de solo responder a sus preguntas. Puede recordar el contexto en una conversación, usar herramientas como navegación web o ejecución de código, y resolver problemas de varios pasos.

OpenAI recomienda incluir tres recordatorios clave en todas las indicaciones del agente: persistencia (continuar hasta la resolución), callarse de herramientas (usando herramientas disponibles en lugar de adivinar) y planificar (pensar antes de actuar).

“Estas tres instrucciones transforman el modelo de un estado de chatbot en un agente mucho más ‘ansioso’, impulsando la interacción de forma autónoma e independiente”, explica el equipo. Sus pruebas mostraron un aumento del rendimiento del 20% en las tareas de ingeniería de software con estas simples adiciones.

Maximizar el poder de los contextos largos

El último chatGPT puede manejar una impresionante ventana de contexto de 1 millón de tokens. Las capacidades son emocionantes. Según OpenAi, el rendimiento sigue siendo fuerte incluso con miles de páginas de contenido. Sin embargo, el rendimiento del contexto largo se degrada cuando se requiere un razonamiento complejo en todo el contexto.

Para obtener los mejores resultados con documentos largos, coloque sus instrucciones tanto al principio como al final del contexto proporcionado. Hasta ahora, esto ha sido más seguro de fallas en lugar de una característica requerida de su aviso.

Cuando use el nuevo modelo con un contexto extenso, sea explícito sobre si debe confiar únicamente en la información proporcionada o combinarlo con su propio conocimiento. Para respuestas estrictamente basadas en documentos, OpenAI sugiere instruir explícitamente: “Solo use los documentos en el contexto externo proporcionado para responder a la consulta del usuario”.

Implementar la solicitud de la cadena de pensamiento

Si bien GPT-4.1 no está diseñado como un modelo de razonamiento, puede solicitar que muestre su trabajo como podría los modelos más antiguos. “Pedirle al modelo que piense paso a paso (llamada ‘cadena de pensamiento’) puede ser una forma efectiva de dividir los problemas en piezas más manejables”, señala el equipo de OpenAI. Esto viene con un mayor uso de tokens pero ofrece una mejor calidad.

Una instrucción simple como “Primero, piense cuidadosamente paso a paso sobre qué información o recursos se necesitan para responder a la consulta” puede mejorar drásticamente los resultados. Esto es especialmente útil cuando se trabaja con archivos cargados o cuando CHATGPT necesita analizar múltiples fuentes de información.

Haga que el nuevo chatgpt funcione para ti

Operai ha compartido información más extensa sobre cómo aprovechar al máximo sus últimos modelos. Las técnicas representan objetivos de capacitación reales para los modelos, no solo conjeturas de la comunidad. Al implementar su orientación sobre una estructura rápida, delimitar información, creación de agentes, manejo de contexto largo y suministro de cadena de pensamiento, verá mejoras dramáticas en sus resultados.

El éxito con ChatGPT proviene de tratarlo como un compañero de pensamientono solo un generador de texto. Siga la guía directamente de la fuente para obtener mejores resultados del mismo modelo que todos los demás están utilizando.

Acceder a todos mis Las mejores indicaciones de contenido de chatgpt.

Continue Reading

Trending