Noticias
The Future Of Text-To-Video Based Generative AI Magically Appears Via Newly Released OpenAI Sora Turbo
In today’s column, I explain the hullabaloo over the advent of text-to-video (T2V) in generative AI apps and large language models (LLM). The upshot is this. There is little doubt that text-to-video is still in its infancy at this time, but, by gosh, keep your eye on the ball because T2V is going to gain significant advances that will ultimately knock the socks off the world. As Dr. Seuss might declare, oh, the things that you can do (hang in there, I’ll cover the possibilities momentarily).
As tangible evidence of what text-to-video can do right now, I’ll include in this discussion an assessment of the newly released OpenAI product Sora Turbo, a cousin of the wildly and widely popular ChatGPT. If you are tempted to try out Sora Turbo, it is initially only being made available to ChatGPT Plus and ChatGPT Pro users, meaning that you must pay-to-play. Sad face.
A notable consideration to keep in mind is that ChatGPT currently garners a reported 300 million weekly active users, and though not all of them are going to have ready access to Sora Turbo, an impressive many millions will. Competing products are likely to find that Sora Turbo becomes the 600-pound gorilla and the elephant in the room. By and large, a massive number of users and a massive amount of media attention is going to shift overnight toward Sora Turbo.
Let’s talk about it.
This analysis of an innovative AI advancement is part of my ongoing Forbes column coverage on the latest in AI including identifying and explaining various impactful AI complexities (see the link here). For my coverage of the top-of-the-line ChatGPT o1 model and its advanced functionality, see the link here and the link here.
Getting Up-To-Speed On AI Modes
I’d like to lay out some foundational aspects so that we can then dive deeply into the text-to-video realm.
Generative AI and LLMs generally began by providing text-to-text (T2T) capabilities. You type in text as a prompt, and the AI responds with text such as an essay, poem, narrative, etc. That’s cool. Another exciting feature consists of text-to-image, whereby you enter a prompt, and the AI generates an image such as a photo-realistic picture, a digital painting, a still cartoon, or other kinds of static imagery. Those two modes of usage are nearly old hat now.
The dream for AI researchers is to allow a person to enter a prompt and then have the AI generate a video. A stripped-down way to do this is to focus solely on the visual video and not include any audio. Gradually, we will see the production of visual video elements that are hand-in-hand accompanied by AI-generated matching audio (some LLMs do this but in quite a limited fashion).
A bonus on top of doing text-to-video is the possibility of taking an image as input and turning that into a video. The image might be by itself as the source content, or the AI might accept both a prompt as text and an accompanying image. Finally, the topmost aim is to allow the use of a separate video as the input source, possibly accompanied by text and images, all of which the generative AI utilizes to produce a suitable video. I refer to that as the all-encompassing full-meal deal.
The Holy Grail Is Suitability Of The Generated T2V
Notice that I just mentioned that the quest or hope is that the generative AI will produce a suitable video. My emphasis on that point is the nature of suitability.
Suitability is the trickiest part of this grand scheme. Allow me to explain. If someone enters a prompt that tells AI to produce a video about a cat wearing a hat that is sitting in a box and riding on a moving train, I’d like you to take a moment and imagine what that video looks like.
Go ahead, envision away, I’ll wait.
I dare say that if you told someone what the video would precisely look like, their conception of the video is going to be quite adrift from what you had in mind. Sure, you would both undoubtedly include a cat of some kind, a hat of some kind on the head of the cat, a box of some kind with the cat inside, and a moving train of some kind. But all of those might vary dramatically from the other person’s conception. Yours could be photo-realistic while the other person imagined animation. The colors would differ, the sizes and shapes would differ, and the action of the cat and the moving train would differ.
I’m sure you get the picture (aha, a pun).
Suitability or the act of meeting the request posed by the human user is a tough nut to crack. Your first impulse might be that if a person writes a lengthy prompt, that would seemingly narrow things down. It might do so to some extent. On the other hand, the odds are still notably high that there would still be marked differences.
Sora Turbo Enters Into The Scene
Earlier this year, OpenAI made available on a limited basis their new product Sora. Sora is a generative AI app that does text-to-video. Though it is referred to as text-to-video, it also does allow for the input of images and the input of video.
As an aside, the ultimate aim of AI makers across the board is to have what is known as X-to-X modes for generative AI, meaning that X can be text, images, audio, video, and anything else we come up with. The angle is that the end game consists of taking any type of medium as input and having the AI produce any desired type of medium as the output.
Boom, drop the mic.
No worries, we’ll get there (or, maybe we should be worried, as I’ll bring up toward the end here).
After Sora had its limited availability tryouts, OpenAI made some important changes and has now released the modified and more advanced version, known as Sora Turbo. Clever naming. You might want to go online and watch some posted videos showcasing the use of Sora Turbo. I say that because it is difficult in a written form such as this discussion to convey the look and feel of the prompts and controls you can use, and likewise allow you to see the generated videos. The official Sora portion of the OpenAI website shows some handy examples, plus there are already tons of user-made videos available on social media.
Components Of High-End Text-To-Video AI Apps
The next aspects that I will cover are the types of features and functionality that we nowadays expect a high-end text-to-video AI app to possess. I bring this up to acquaint you with the ins and outs of AI-based text-to-video capabilities.
In a sense, this is almost as though you are interested in possibly using or buying a car, but you aren’t familiar with the features and functions of automobiles. It can be tough to shop for a car if you are in the dark about what counts.
I will briefly identify some of the keystone elements of text-to-video. In addition, I’ll provide an assigned letter grade for what I perceive of the just-released Sora Turbo capabilities. I want to clarify that my letter grading is based on a first glance. My to-do list consists of spending some dedicated time with Sora Turbo and subsequently doing an in-depth review.
Be on the lookout for that posting.
T2V Suitability Or Faithfulness
I already brought up the fact that suitability is the Holy Grail of text-to-video.
Somehow, once the AI parses the input prompt, a video is to be generated that matches what the user has inside their mind. Whoa, we aren’t yet at mind-reading by AI (well, there are efforts underway to create brain-machine interfaces or BMI, see my discussion at the link here).
The AI industry tends to refer to this suitability factor as faithfulness or honesty. The AI is supposed to do a bang-up job and reach a faithful or honest rendering in video format of what the user wants.
I am going to say that all the readily available T2V is still at a grade level of C, including Sora Turbo. Inch by inch, clever techniques are being devised to hone in on what a user wants. This is mainly being done in AI research labs and we will gradually see those capabilities come into the public sphere.
T2V Visual Vividness, Quality, And Resolution
The video that was generated in the early days of text-to-video was very rudimentary. They were mainly low-resolution. The graphics were jerky while in motion. I’m not knocking on those heroic initial efforts. We ought to appreciate the pioneering work else we wouldn’t be where we are today.
Tip of the hat.
My point is that thankfully, we’ve come a long way, baby. If you get a chance to see the Sora Turbo AI-generated videos, the vividness, quality, and resolution are pretty much state-of-the-art for T2V. I’ll give this an A-/B+.
Yes, I am a tough-as-nails grader.
T2V Temporal Consistency Across Frames
I’m sure that you know that movies consist of individual frames that flow past our eyes so fast that we perceive that there is fluid motion afoot in what we are watching. The conventional text-to-video generation adheres to that same practice. A series of one after one-after-another frames are generated, and when they flow along, you perceive motion.
The rub is this. Suppose that in one frame a cat wearing a hat is at the left side of the view. The next frame is supposed to show the cat moving toward the right side, having moved just a nudge to the right. And so on this goes.
If the AI doesn’t figure out things properly, the next frame might show the cat suddenly at the far right of the view. Oops, you are going to be jostled that the cat somehow miraculously got from the left to the right. It won’t look smooth.
This is generally known as temporal consistency. The AI is to render the contents of the frames so that from one frame to the next, which is based on time as each frame goes past our eyes, there should be appropriate consistency. It is a hard problem, just to let you know. I’ll give Sora Turbo a B and anticipate this will be getting stronger as they continue their advancements.
T2V Object Permanence
You are watching an AI-generated video, and it shows a cat wearing a hat. The cat moves toward the right side of the scene. Suddenly, the hat disappears. It vanished. What the heck? This wasn’t part of the text prompt in the sense that the user didn’t say anything about making the hat vanish.
The AI did this.
Parlance for this is that we expect the AI to abide by object permanence and not mess around with things. An object that is shown in one frame should customarily be shown in the next frame, perhaps moved around or partially behind another object, but it ought to normally still be there somewhere. I’ll score Sora Turbo as a B-/C+.
Again, this is a hard problem and is being avidly pursued by everyone in this realm.
T2V Scene Physics
This next topic consists of something known as scene physics for text-to-video. It is one of the most beguiling of all capabilities and keeps AI researchers and AI developers up at night. They probably have nightmares, vivid ones.
It goes like this. You are watching an AI-generated video, and a character drops a brittle mug. Here on planet Earth, the mug is supposed to obey the laws of gravity. Down it falls. Kablam, the mug hits the floor in the scene and shatters into a zillion pieces.
That is the essence of scene physics. The kinds of intense calculations needed to figure out which way objects should natively go based on ordinary laws of nature is a big hurdle. In addition, the user might have stated that physics is altered, maybe telling the AI to pretend that the action is occurring on the Moon or Mars. I’ll score Sora Turbo as a B-/C+.
T2V Grab-Bag Of Features And Functions
I don’t have the space here to go into the myriad of text-to-video features and functions in modern-day T2V.
To give you a taste of things, here’s a list of many equally important capabilities in T2V products:
- Stylistic options
- Remixing re-rendering
- Video output timing length
- Time to render
- Sequencing storyboarding
- Source choices
- AI maker preset usage limitations
- Watermarking of generated video
- Intellectual Property restrictions
- Prompt library
- Prompt storage functionality
- Video storage functionality
- Prompt sharing and control
- Etc.
One thing you ought to especially be aware of is that T2V right now is usually only generating video that consists of a relatively short length of time. When T2V first came around, the videos were a second or two in length. They were nearly a blink of an eye.
Nowadays, many of the mainstay players can do somewhere around 10 to 20 seconds of video. That’s probably just enough to provide a brief scene, but it certainly doesn’t equate to a full-length movie. You can usually use a sequencing or storyboarding function that allows you to place one generated scene after another. That’s good. The downside currently is that the scenes aren’t likely to line up in a suitable alignment. Scene-to-scene continuity is typically weak and telling.
Overall, across the extensive list above, I’ll say that Sora Turbo is somewhere on an A-/B+ and you’ll find plenty of useful controls and functions to keep you busy and entertained.
The Emerging Traumas Of Readily Usable AI Text-To-Video
Shifting gears, I said at the opening of this discussion that text-to-video is quite a big deal. Let’s do a sobering unpacking of that thought.
Envision that with the use of prompts, just about anyone will eventually be able to produce top-quality videos that match Hollywood movies. This sends shivers down the spine of the entertainment industry. AI is coming at all those movie stars, filmmakers, support crews, and the like. Some in the biz insist that AI will never be able to replicate what human filmmakers can achieve.
Well, it’s debatable.
Furthermore, if you construe that the writer of the prompt is a said-to-be “filmmaker” you could argue that the human still is in the loop. One twist is that there are already efforts toward having generative AI come up with prompts that feed into AI-based text-to-video. Blasphemous.
There is something else of more immediate concern since the likelihood of T2V creating full-length top-notch movies is still a bit further on the horizon. The immediate qualm is that people are going to be able to make deepfakes of an incredibly convincing nature. See my coverage of deepfake-making via the AI tools to date, at the link here and the link here, and what’s likely going to happen with the next wave of AI advances.
Utterly convincing deepfakes will be made upon millions and billions of them. At low or nearly zero cost. They are easily distributed digitally across networks, at a low or negligible cost. They will be extremely hard to differentiate from real-life real-world videos.
At an enormous scale.
Disconcertingly, they will look like they are real-life videos. Consider the ramifications. A person is wanted for a heinous crime and a nationwide hunt is underway. The public is asked to submit videos from ring cams, their smartphones, and anything they have that might help in spotting the individual.
It would be very easy to create a video that seemed to show the person walking down the street in a given city, completely fabricated by using AI-based text-to-video. The video is believed. This might cause people in that area to become panicked. Law enforcement resources might be pulled from other locales to concentrate on where the suspect was last presumably seen.
You get the idea.
It Takes A Village To Decide Societal Norms For T2V
In my grab-bag list above of T2V features, I noted that watermarking is a feature that AI makers are including in the generated video, allowing for the potential detection and tracking of deepfakes. It is a cat-and-mouse game where evildoers find ways to defeat the watermarks. Another item listed was the AI maker placing restrictions on what can be included in a generated video, such as not allowing the faces and figures of politicians, celebrities, and so on. Again, there are sneaky ways to try and overcome those restrictions.
If you weren’t thinking about AI ethics and AI laws before now, it is time to put on some serious thinking caps.
To what degree should AI makers have discretion in the controls and limits? Should new AI-related laws be enacted? Will such laws potentially hamper AI advancement and place our country at a disadvantage over others (see my analysis of AI advances as a form of exerting national political power on the world stage, at the link here).
OpenAI acknowledges the disconcerting dilemma and noted this as a significant point in their official webpage about Sora Turbo entitled “Sora Is Here” (posted December 9, 2024): “We’re introducing our video generation technology now to give society time to explore its possibilities and co-develop norms and safeguards that ensure it’s used responsibly as the field advances.”
Yes, we all have a stake in this. Go ahead and get up-to-speed on the latest in text-to-video, and while you are at it, join in spirited and crucial discussions about where this is heading and what we can or ought to do to guide humankind in a suitable direction.
There it is again, the importance of suitability.
Noticias
Implementación y evaluación de un modelo de enseñanza de pasantía quirúrgica optimizado utilizando ChatGPT | Educación Médica BMC
Los avances tecnológicos están haciendo avanzar significativamente la educación médica. Actualmente, el desarrollo del plan de estudios médico enfatiza la mejora de los métodos de enseñanza a través de la simulación médica, la discusión de la literatura y la investigación. Existe una creciente defensa de la integración de la inteligencia artificial y las pautas clínicas en la enseñanza para cultivar mejor el razonamiento clínico y las habilidades de pensamiento lógico de los estudiantes.
Múltiples estudios han demostrado los beneficios potenciales de ChatGPT en la educación médica. Los chatbots como ChatGPT pueden ser una herramienta poderosa para mejorar la alfabetización sanitaria, especialmente entre estudiantes y jóvenes estudiantes. [6]. En primer lugar, ChatGPT ofrece acceso rápido e inmediato a amplia información médica, lo que ayuda a los estudiantes de medicina novatos a analizar datos médicos complejos. [7]. En segundo lugar, al crear escenarios y estudios de casos, ChatGPT ayuda a los estudiantes a perfeccionar y mejorar sus habilidades de planificación de diagnóstico y tratamiento, mejorando así sus capacidades de razonamiento clínico y su preparación para situaciones clínicas del mundo real. [8]. En tercer lugar, ChatGPT puede respaldar las tareas académicas respondiendo preguntas y redactando resúmenes. Su capacidad para crear esquemas y revisiones de la literatura puede agilizar la investigación médica. Además, también facilita el resumen de publicaciones relevantes y destaca hallazgos importantes, lo que ayuda a los investigadores médicos a navegar por la gran cantidad de material disponible en línea. [9]. Finalmente, ChatGPT permite el aprendizaje personalizado para los estudiantes al actuar como tutor o asistente virtual, ayudándolos con las tareas y fomentando experiencias de aprendizaje interactivas. [10].
En este estudio, ChatGPT se utilizó en cuatro funciones clave en las fases de educación médica previa, en clase y posterior a la clase. Durante la fase de preparación previa a la clase, los estudiantes pudieron consultar ChatGPT sobre cualquier problema que encontraron, lo que facilitó una comprensión inicial de conceptos, terminología y casos médicos fundamentales. En un estudio, se pudo generar una serie de imágenes a partir de texto descriptivo utilizando un modelo de aprendizaje profundo basado en redes generativas adversarias. La herramienta se utiliza en el proceso narrativo visual para facilitar el aprendizaje mejorado por la tecnología y mejorar las habilidades de razonamiento lógico. [11]. Los modelos de aprendizaje profundo basados en redes generativas adversarias desempeñan un papel clave en la simulación de varios tipos de entornos de aprendizaje y ayudan a desarrollar habilidades prácticas en modelos de asistentes de enseñanza virtuales. Los resultados experimentales muestran que este modelo mejora el efecto de aprendizaje de los estudiantes y mejora su motivación y capacidad de aprendizaje. [12]. En el aula, se empleó ChatGPT para simular las interacciones con los pacientes, proporcionando una plataforma para que los estudiantes practiquen habilidades de diagnóstico y comunicación en un entorno seguro y controlado. En sus interacciones con ChatGPT, los estudiantes son libres de practicar habilidades de diagnóstico y comunicación sin los riesgos que podría representar un paciente real. Un diagnóstico falso o una falta de comunicación no tiene un impacto real en el paciente, lo que permite a los estudiantes aprender mediante prueba y error. ChatGPT está disponible y los estudiantes pueden practicar a su propio ritmo y necesidades de aprendizaje, sin depender de un tiempo y lugar específicos. Esta flexibilidad hace que el aprendizaje sea más eficiente y conveniente. ChatGPT puede simular una variedad de escenarios clínicos y características del paciente para brindar una experiencia interactiva diversa. Los estudiantes están expuestos a diferentes condiciones y antecedentes de pacientes, mejorando así su capacidad para afrontar situaciones complejas. Después de clase, los estudiantes pueden interactuar con ChatGPT individualmente o en grupos de estudio, discutiendo preguntas de práctica proporcionadas por la herramienta, abordando preguntas difíciles o desafiantes y explorando el material desde varias perspectivas. A lo largo del proceso interactivo, los estudiantes evaluaron continuamente su comprensión del material, identificaron sus debilidades y ajustaron sus estrategias de aprendizaje y áreas de enfoque de manera oportuna para enfocarse en áreas específicas para revisión y refuerzo, asegurando que se mantuvieran en el camino correcto. [13]. De manera similar, los instructores podrían utilizar ChatGPT para recopilar recursos didácticos y estudios de casos relevantes durante la fase de preparación de la lección. Al aprovechar ChatGPT, podrían mejorar la participación de los estudiantes en el aula y utilizar la herramienta después de clase para recopilar y analizar los comentarios de los estudiantes sobre el proceso de enseñanza. Además, los estudiantes podrían utilizar ChatGPT para resolver rápidamente cualquier confusión relacionada con el conocimiento profesional. Con la capacitación del modelo ChatGPT, los estudiantes de medicina y los médicos pueden mejorar su razonamiento clínico y sus habilidades de toma de decisiones, mejorando así el desempeño del análisis y diagnóstico de casos. Además, ChatGPT proporciona a los estudiantes de medicina una experiencia de aprendizaje personalizada y eficiente a través de conversaciones simuladas, tutorías inteligentes y preguntas y respuestas automatizadas, profundizando así la comprensión de los conocimientos médicos de los estudiantes. [14].
Los resultados de este estudio indican que las puntuaciones teóricas de los grupos de estudio fueron significativamente más altas que las de los grupos de control, lo que refleja mejores resultados de aprendizaje. No se observaron diferencias significativas en las puntuaciones entre los dos grupos de estudio ni entre los dos grupos de control. Esto sugiere que la aplicación de ChatGPT en los grupos de estudio resultó en una comprensión y dominio superiores del conocimiento teórico en comparación con los métodos de enseñanza tradicionales utilizados en los grupos de control.
Los resultados de satisfacción docente de este estudio indican que los estudiantes de los grupos de estudio que utilizaron ChatGPT informaron puntuaciones de satisfacción total significativamente más altas, así como mejores calificaciones en la organización del curso y los métodos de enseñanza, en comparación con los grupos de control. Las diferencias en la satisfacción con el contenido del curso y los instructores fueron relativamente menores, lo que sugiere que el uso de ChatGPT como ayuda didáctica, a través de su novedoso y atractivo formato interactivo de preguntas y respuestas, su fuerte interactividad y su enfoque estructurado, parece mejorar la participación de los estudiantes. y participación en el aprendizaje. Esto indica que ChatGPT puede fomentar eficazmente un mayor interés y promover resultados educativos. La diferencia más notable entre los métodos de enseñanza radica en la ejecución en el aula; La capacidad de ChatGPT para simular varios escenarios y realizar análisis de casos, combinada con el acceso a recursos didácticos adicionales, mejora significativamente las habilidades de aplicación clínica de los estudiantes de medicina.
La evaluación del estudio sobre el cumplimiento del aprendizaje abarcó cuatro aspectos. Los hallazgos indican que no hubo diferencias significativas entre los grupos en cuanto al establecimiento de planes de aprendizaje. Sin embargo, para los otros tres aspectos (preparación autónoma previa a la clase y revisión posterior a la clase, participación en la enseñanza en el aula y búsqueda de retroalimentación y asistencia), los grupos de estudio exhibieron calificaciones significativamente más altas en comparación con los grupos de control. En muchos estudios y análisis estadísticos, una “puntuación más alta” suele considerarse un resultado positivo, lo que significa que el grupo de estudio obtuvo mejores resultados en algo. Los indicadores de evaluación de este estudio son todos positivos y se puede considerar que una “puntuación más alta” indica un mejor desempeño del grupo de investigación, lo que es un resultado positivo. Esto sugiere que la incorporación de ChatGPT como ayuda didáctica mejora el cumplimiento del aprendizaje de los estudiantes al promover el aprendizaje activo, fomentar el aprendizaje basado en la investigación y mejorar su interés y capacidad para el aprendizaje autónomo.
Si bien las mejoras en el cumplimiento son evidentes, la profundización continua de la comprensión antes, durante y después de la clase también contribuye a mejorar el pensamiento lógico y las habilidades analíticas. En particular, el estudio encontró una tasa relativamente baja de preguntas y solicitudes de ayuda de los estudiantes, durante y después de clase. Las diferencias observadas entre los grupos de estudio y control pueden atribuirse a la capacidad de ChatGPT para ayudar a los estudiantes a superar la timidez y no juzgar los errores. La herramienta de inteligencia artificial ayuda a los estudiantes a superar las dudas, permitiéndoles hacer preguntas de forma libre y repetida sin temor a ser juzgados o interacciones negativas. Al generar materiales de aprendizaje basados en el estado de aprendizaje y las necesidades de cada estudiante, ChatGPT les permite adoptar un enfoque más autónomo del aprendizaje y tener una experiencia educativa adaptada a sus preferencias. Estas interacciones facilitan la aclaración oportuna, una comprensión más profunda y el dominio del material.
ChatGPT también puede adaptar planes y materiales de aprendizaje individualizados para cada estudiante para adaptarse a los diferentes estilos y habilidades de aprendizaje dentro del aula. Este enfoque personalizado fomenta un circuito de retroalimentación positiva, mejorando las capacidades de aprendizaje de los estudiantes.
La aplicación de ChatGPT en la educación médica sigue siendo un tema de considerable debate. Si bien ChatGPT ofrece funcionalidades innovadoras y ventajas potenciales, también plantea varias preocupaciones éticas y prácticas, el potencial de uso indebido, particularmente en los ámbitos de la educación y el mundo académico. [15]. Como chatbot, ChatGPT carece de la capacidad de pensar críticamente como un ser humano, lo que limita su capacidad para interpretar y analizar información médica más allá de sus algoritmos programados. No posee el juicio ni el discernimiento necesarios para los aspectos éticos o legales de la práctica médica y puede plantear riesgos relacionados con violaciones de datos y privacidad. [16, 17].
El auge de herramientas de inteligencia artificial como ChatGPT ha llevado a la deshonestidad académica, con informes de estudiantes que utilizan la tecnología para hacer trampa en sus trabajos de ensayo. [18]. Algunas investigaciones sugieren que ChatGPT puede no ser un recurso confiable para problemas complejos que requieren habilidades y conocimientos avanzados. [19]. Además, los académicos han estado preocupados por la confiabilidad de ChatGPT como fuente creíble de información. [20]. Según muchos educadores, ChatGPT puede ser utilizado fácilmente para hacer trampa por parte de estudiantes que toman cursos de comunicación y filosofía, pero es fácil de identificar. Una preocupación creciente es que los estudiantes eventualmente perderán la capacidad de generar ideas originales y no podrán presentar argumentos adecuados para demostrar un punto. [21]. La accesibilidad tecnológica es un desafío. El uso eficaz de ChatGPT depende de la conectividad de la red y la disponibilidad del dispositivo, lo que puede resultar problemático en diferentes regiones y entre poblaciones estudiantiles específicas. Se deben desarrollar políticas para utilizar ChatGPT en diferentes entornos técnicos. [22]. Una preocupación es la posible devaluación del aprendizaje cooperativo en la educación médica, particularmente en enfoques tradicionales como ABP, CBL y TBL. La colaboración y el trabajo en equipo son cruciales en estos enfoques, y ChatGPT puede reducir involuntariamente la importancia de las interacciones entre humanos. Mantener un equilibrio entre la tecnología y las relaciones es esencial para un aprendizaje eficaz. Si bien ChatGPT mejora el ABP mediante instrucción personalizada, los educadores deben enfatizar la importancia duradera del aprendizaje basado en el paciente y el trabajo en equipo. A pesar de las capacidades de simulación y los conocimientos teóricos de ChatGPT, no puede reemplazar la experiencia práctica obtenida a través de interacciones en el mundo real, especialmente en la educación médica. Reconocer las limitaciones de los modelos es esencial para evitar una dependencia excesiva del aprendizaje por simulación. Integrar perfectamente ChatGPT en los planes de estudio existentes es un desafío que requiere que los educadores inviertan tiempo en diseñar e integrar componentes impulsados por IA que se alineen con los objetivos generales de aprendizaje. [23]. Dadas estas consideraciones, es esencial utilizar ChatGPT con prudencia como herramienta auxiliar de aprendizaje, complementando en lugar de reemplazar los métodos educativos y las técnicas de investigación tradicionales, y siendo consciente de las limitaciones de ChatGPT.
Noticias
OpenAI de Musk y Warren chocan para dirigir el futuro de la gobernanza de la IA
Un doble enfrentamiento (Elon Musk versus OpenAI y Musk versus la senadora Elizabeth Warren (demócrata por Massachusetts)) pone de relieve cuestiones cruciales sobre la combinación de propósitos organizacionales y el equilibrio del poder público y privado.
Musk está demandando a OpenAI, que él cofundó, alegando que su reorganización de una entidad sin fines de lucro a una con fines de lucro traiciona su misión original de garantizar que la IA beneficie a la humanidad.
Mientras tanto, Warren ha expresado su preocupación por la posible superposición de roles de Musk como empresario tecnológico (que resulta ser propietario de la mayoría de X.AI Corp., un competidor de OpenAI) y futuro funcionario gubernamental. Warren instó al presidente electo Donald Trump en una carta del 16 de diciembre a aplicar estrictamente un escrutinio de conflictos de intereses a Musk.
La forma en que se desarrollen estas dos confrontaciones dará forma a nuestro futuro tecnológico.
‘Franken-Gorgon’ de OpenAI
La demanda de Musk apunta a la matriz sin fines de lucro, OpenAI Inc., y esencialmente a todos los demás involucrados en la creación de una subsidiaria con ganancias limitadas, OpenAI LP. El llamado modelo híbrido permitió a los inversores de la filial obtener un retorno de la inversión de hasta 100 veces. Cualquier beneficio restante fluyó hacia la matriz. Musk sostiene que este cambio prioriza las ganancias sobre el bien público, convirtiendo a OpenAI en lo que él llama un Frankenstein.
Musk modificó su denuncia en noviembre para incluir acusaciones de que OpenAI Inc. se estaba reorganizando para convertirse en una corporación con fines de lucro en toda regla. En palabras de Musk (o de sus abogados), OpenAI pasó “de una organización benéfica exenta de impuestos a una gorgona con fines de lucro y que paraliza el mercado por valor de 157 mil millones de dólares, y en sólo ocho años”.
Dado que no existe una ley anti-Franken-Gorgon, las afirmaciones de Musk son una mezcla de supuestas violaciones de la ley antimonopolio, la ley de fideicomisos caritativos, la ley de agencia, fraude e incluso extorsión. Aunque Musk cita las promesas que le hizo Altman, no plantea un reclamo por incumplimiento de contrato.
OpenAI respondió el 13 de diciembre que el modelo de beneficio limitado es una solución innovadora que le permite competir con otras empresas de tecnología sin dejar de ser fiel a su misión. También argumentó que Musk carece de legitimación activa para demandar.
El modelo OpenAI plantea dudas sobre la transparencia y la gobernanza. ¿Puede servir a dos amos (su misión y sus inversores) sin comprometer a uno por el otro? Nadie ha descubierto cómo hacer que este tipo de teoría de las partes interesadas funcione en la práctica. Un objetivo a menudo es consumido por el otro, razón por la cual no existe una forma legal convencional de estructurar una llamada entidad híbrida.
Confusión del modelo híbrido
El modelo híbrido de OpenAI se hace eco de la reciente aparición de corporaciones de beneficio público, que están diseñadas para perseguir tanto ganancias como fines públicos. A diferencia de las corporaciones tradicionales, las PBC están obligadas por ley a considerar el impacto de sus decisiones en la sociedad y el medio ambiente, no sólo en los accionistas.
Esta estructura proporciona un modelo potencial para que organizaciones como OpenAI alineen la innovación con la responsabilidad. “Potencial” es la palabra clave aquí, porque la ley del PBC no contempla rendimientos máximos sobre la inversión.
Si bien el modelo de beneficio limitado es innovador, subraya la necesidad de marcos legales más claros para regir las entidades híbridas. Los formuladores de políticas deberían explorar la posibilidad de adaptar los principios del PBC para abordar los desafíos únicos que plantean la IA y otras industrias de alto riesgo. Quizás algún día los modelos de beneficio limitado puedan convertirse en una forma estándar.
Dilema de doble rol
Warren ha cuestionado públicamente si el doble papel de Musk como empresario privado de IA y copresidente del propuesto Departamento de Eficiencia Gubernamental crearía conflictos de intereses. Ha pedido estándares éticos más estrictos, particularmente dada la influencia de Musk sobre las políticas que afectan directamente sus empresas. Básicamente, ella respondió a su queja de que OpenAI no es ético devolviéndole la acusación.
Pero que los multimillonarios asesoren o participen en el gobierno no es un fenómeno nuevo. Desde la defensa de políticas impulsadas por la filantropía de Andrew Carnegie en el siglo XIX hasta el papel de Warren Buffett en el asesoramiento de políticas financieras durante la crisis económica de 2008, los líderes empresariales ricos a menudo han dado forma a las políticas públicas. La participación de Musk es parte de una larga tradición de aprovechar la experiencia del sector privado para la gobernanza pública.
Dicho esto, hay mucho en juego en la era de la IA. Como asesor gubernamental y empresario con intereses creados en el desarrollo de la IA, Musk debe afrontar este doble papel con cuidado. La transparencia y la rendición de cuentas son esenciales para mantener la confianza pública, especialmente cuando los límites entre la influencia privada y la responsabilidad pública se vuelven borrosos.
Debido a que Musk se está moviendo hacia lo que equivale a una casa de cristal de la atención de los medios, parece advertir Warren, tal vez no debería tirar piedras.
El futuro de la gobernanza de la IA
La disputa entre Musk y OpenAI es más que una batalla legal: es un caso de prueba de cómo gobernamos las organizaciones impulsadas por una misión en la era de la IA.
Los modelos híbridos, como la estructura Franken-Gorgon de OpenAI, desafían las leyes corporativas y sin fines de lucro existentes, lo que refuerza la necesidad de juntas directivas fuertes e independientes, actualizaciones regulatorias y una conducta ética superior a la junta. Las entidades híbridas necesitan tales juntas para garantizar que la misión siga siendo la prioridad.
La matriz sin fines de lucro de OpenAI ha enfrentado críticas por no brindar una supervisión suficiente de su subsidiaria con fines de lucro, lo que destaca la necesidad de estructuras de gobernanza más claras. En la medida en que los miembros de la junta directiva de la empresa sean beneficiarios financieros de los esfuerzos con fines de lucro, se encuentran en una posición sesgada al tomar decisiones sobre la misión sin fines de lucro.
Los formuladores de políticas deben reconocer que las leyes actuales no fueron diseñadas para híbridos. Adaptar los principios del PBC o crear marcos específicos para modelos híbridos podría proporcionar la claridad y la responsabilidad necesarias en la industria de la IA.
La confianza es clave. La transparencia es fundamental. Organizaciones como OpenAI deben comunicar claramente sus objetivos y estructuras para mantener la confianza con los donantes, los inversores y el público. Sin transparencia, los híbridos corren el riesgo de erosionar la confianza de la que dependen para operar con eficacia.
A medida que evoluciona el panorama de la IA, las decisiones que tomemos ahora guiarán no solo el futuro de la tecnología sino también los valores que sustentan su desarrollo. La historia de OpenAI es un microcosmos de estos desafíos: un recordatorio de que equilibrar las ganancias y el propósito tiene que ver tanto con la gobernanza como con la visión.
El caso es Musk v. Altman, ND Cal., No. 4:24-cv-04722, respuesta a la moción de orden judicial preliminar de los demandantes 13/12/24.
Este artículo no refleja necesariamente la opinión de Bloomberg Industry Group, Inc., el editor de Bloomberg Law y Bloomberg Tax, ni de sus propietarios.
Información del autor
Anat Alon-Beck es profesora asociada de derecho en la Facultad de Derecho de la Universidad Case Western Reserve.
Seth Oranburg es profesor de la Facultad de Derecho de la Universidad de New Hampshire y director del Programa de Organizaciones, Negocios y Mercados del Instituto Liberal Clásico de la Universidad de Nueva York.
Escríbanos: Pautas para el autor
Noticias
Los padres de Suchir Balaji quieren saber qué pasó tras el aparente suicidio
SAN FRANCISCO – Los padres de un ex investigador de OpenAI conocido por recientemente denunciar las prácticas comerciales de la compañía están cuestionando las circunstancias de la muerte de su hijo el mes pasado.
En una entrevista esta semana, la madre y el padre de Suchir Balaji expresaron confusión y conmoción por su repentino fallecimiento, expresando dudas de que su hijo pudiera haberse suicidado, según lo determinado por el médico forense del condado.
La familia contrató a un experto para realizar una autopsia independiente, pero aún no ha publicado los hallazgos del informe.
“Exigimos una investigación exhaustiva; ese es nuestro llamado”, dijo la madre de Balaji, Poornima Ramarao.
La policía de San Francisco encontró a Balaji muerto en su apartamento de Lower Haight el 26 de noviembre, menos de una semana después de cumplir 26 años.
La Oficina del Médico Forense de San Francisco dijo más tarde a esta agencia de noticias que su muerte fue considerada un suicidio, aunque aún no se ha publicado el informe final de la autopsia mientras la oficina completa las pruebas toxicológicas. A principios de este mes, funcionarios de la policía de San Francisco dijeron que “actualmente no hay evidencia de juego sucio”.
La muerte de Balaji conmocionó a todo Silicon Valley y a la industria de la inteligencia artificial.
Obtuvo atención nacional a finales de octubre cuando acusó a su antiguo empleador, OpenAI, de violar la ley federal de derechos de autor al desviar datos de Internet para entrenar su exitoso chatbot, ChatGPT.
Sus preocupaciones respaldaron las acusaciones difundidas en los últimos años por autores, guionistas y programadores informáticos que dicen que OpenAI robó su contenido sin permiso, en violación de las leyes de “uso justo” de Estados Unidos que rigen cómo las personas pueden utilizar el trabajo publicado anteriormente.
Las empresas de medios han estado entre las que demandaron a la empresa, incluido The Mercury News y siete de sus periódicos afiliados y, por separado, The New York Times.
En una entrevista con The New York Times publicada en octubre de 2024, Balaji describió su decisión de dejar la empresa de inteligencia artificial generativa en agosto y sugirió que sus prácticas de recopilación de datos “no son un modelo sostenible para el ecosistema de Internet en su conjunto”.
“Si crees en lo que yo creo, simplemente tienes que dejar la empresa”, dijo al periódico.
El 18 de noviembre, Balaji había sido nombrado en documentos judiciales como alguien que tenía “documentos únicos y relevantes” que respaldarían el caso contra OpenAI. Él estuvo entre al menos 12 personas, muchas de ellas ex empleados o empleados actuales de OpenAI, que fueron mencionadas por el periódico en documentos judiciales por tener material útil para su caso.
Su muerte, una semana después, dejó a los padres de Balaji atónitos.
En una entrevista en su casa del condado de Alameda esta semana, su madre dijo que su único hijo “fue un ser humano increíble, desde la infancia”.
“Nadie cree que él pueda hacer eso”, dijo Ramarao sobre su suicidio.
OpenAI no respondió de inmediato a una solicitud de comentarios, pero en un comunicado a Business Insider dijo que estaba “devastado” al enterarse de la muerte de Balaji y dijo que habían estado en contacto con sus padres “para ofrecerles todo nuestro apoyo durante este momento difícil”.
“Nuestra prioridad es seguir haciendo todo lo posible para ayudarles”, decía el comunicado de la empresa. “Nos dimos cuenta de sus preocupaciones por primera vez cuando The New York Times publicó sus comentarios y no tenemos constancia de ninguna interacción posterior con él.
“Respetamos su derecho y el de otros a compartir opiniones libremente”, añade el comunicado. “Nuestros corazones están con los seres queridos de Suchir y extendemos nuestro más sentido pésame a todos los que lamentan su pérdida”.
Nacido en Florida y criado en el Área de la Bahía, Balaji fue un prodigio desde temprana edad, dijo su madre a esta agencia de noticias. Pronunció su nombre a los 3 meses; a los 18 meses me pedía “que encendiera una lámpara para animarme” y podía reconocer palabras a los 20 meses, dijo.
Balaji parecía tener una habilidad especial para la tecnología, las matemáticas y la informática, llevándose a casa trofeos y ganando renombre, incluso en la Olimpiada de Computación de los Estados Unidos de América de 2016.
En 2020, comenzó a trabajar para OpenAI y consideró admirable el entonces compromiso de la compañía de operar como una organización sin fines de lucro, dijo su madre. Su opinión sobre la empresa se agrió en 2022 mientras le asignaban la tarea de recopilar datos de Internet para el programa GPT-4 de la empresa, informó el New York Times. El programa analizó texto de casi todo Internet para entrenar su programa de inteligencia artificial, informó el medio.
Ramarao dijo que no estaba al tanto de la decisión de su hijo de hacer públicas sus preocupaciones sobre OpenAI hasta que el periódico publicó su entrevista. Si bien ella inmediatamente sintió ansiedad por su decisión, llegando incluso a implorarle que hablara con un abogado de derechos de autor, Ramarao también expresó orgullo por la valentía de su hijo.
“No dejaba de asegurarme: ‘Mamá, no estoy haciendo nada malo, ve a ver el artículo’. Sólo digo que, en mi opinión, no hay nada malo en ello”, dijo Ramarao, una ex empleada de Microsoft que trabajó en su programa de computación en la nube Azure. “Lo apoyé. No lo critiqué. Le dije: ‘Estoy orgulloso de ti, porque tienes tus propias opiniones y sabes lo que está bien y lo que está mal’. Era muy ético”.
Después de dejar la empresa, Balaji decidió crear una organización sin fines de lucro, centrada en los campos del aprendizaje automático y las neurociencias, dijo Ramarao. Ya había hablado con al menos un capitalista de riesgo para obtener financiación inicial, dijo.
“Les pregunto: ‘¿Cómo vas a manejar tu vida?’ “Dijo Ramarao. Recordó cómo su hijo intentó repetidamente disipar cualquier preocupación sobre sus finanzas, sugiriendo que “el dinero no es importante para mí; quiero ofrecer un servicio a la humanidad”.
Balaji también parecía tener una agenda ocupada. Cumplió 26 años durante un viaje de mochilero a las Islas Catalina con varios amigos de la escuela secundaria. Este tipo de viajes eran para él algo habitual: en abril viajó con varios amigos a la Patagonia y América del Sur.
Balaji habló por última vez con sus padres el 22 de noviembre, una llamada telefónica de 10 minutos que se centró en su reciente viaje y que terminó hablando de cenar.
“Estaba muy feliz”, dijo Ramarao. “Se lo pasó genial. Pasó uno de los mejores momentos de su vida”.
Ramarao recuerda haber llamado a su hijo poco después del mediodía del 23 de noviembre, pero dijo que sonó una vez y saltó el correo de voz. Pensando que él estaba ocupado con amigos, no intentó visitar su departamento hasta el 25 de noviembre, cuando llamó pero no obtuvo respuesta. Dijo que llamó a las autoridades esa noche, pero supuestamente un centro de despacho de la policía le dijo que poco se podía hacer ese día. Ella hizo un seguimiento el 26 de noviembre y la policía de San Francisco encontró más tarde el cuerpo de Balaji dentro de su apartamento.
Ramarao dijo que no le informaron de la muerte de su hijo hasta que apareció una camilla frente al apartamento de Balaji. No se le permitió entrar hasta el día siguiente.
“Nunca podré olvidar esa tragedia”, dijo Ramarao. “Se me rompió el corazón”.
Ramarao cuestionó la investigación de las autoridades sobre la muerte de su hijo, afirmando que la policía de San Francisco cerró su caso y lo entregó a la oficina del médico forense del condado una hora después de descubrir el cuerpo de Balaji.
Ramarao dijo que desde entonces ella y su marido encargaron una segunda autopsia del cuerpo de Balaji. Ella se negó a revelar cualquier documento de ese examen. Su abogado, Phil Kearney, se negó a comentar sobre los resultados de la autopsia independiente de la familia.
La semana pasada, el portavoz de la policía de San Francisco, Evan Sernoffsky, remitió las preguntas sobre el caso a la oficina del médico forense. David Serrano Sewell, director ejecutivo de la Oficina del Médico Forense Jefe, declinó hacer comentarios.
Sentada en el sofá de su sala, Ramarao sacudió la cabeza y expresó su frustración por los esfuerzos de investigación de las autoridades hasta el momento.
“Como padres afligidos, tenemos derecho a saber qué le pasó a nuestro hijo”, dijo Ramarao. “Estaba tan feliz. Fue muy valiente”.
Si usted o alguien que conoce está luchando contra sentimientos de depresión o pensamientos suicidas, 988 Suicide & Crisis Lifeline ofrece apoyo, información y recursos de ayuda gratuitos las 24 horas. Llame o envíe un mensaje de texto a Lifeline al 988, o visite el sitio web 988lifeline.org, donde está disponible el chat.
Publicado originalmente:
-
Startups7 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos8 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos8 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Recursos7 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Estudiar IA7 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Tutoriales8 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Eventos8 meses ago
La nueva era de la inteligencia artificial por el Washington Post – Mayo 2024
-
Noticias6 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo