Connect with us

Noticias

Un marco de descubrimiento de arquitectura neuronal de parámetros múltiples automatizados utilizando chatgpt en el backend

Published

on

  • Chua, M. et al. Abordar la incertidumbre de predicción en el aprendizaje automático para la atención médica. Nat. Biomed. Ing. 7711–718 (2023).

    Artículo PubMed Google Scholar

  • Bhardwaj, R. y Tripathi, I. Un algoritmo de ocultación de datos reversibles mejorados que utiliza una red neuronal profunda para E-Healthcare. J. Amb. Intell. Humaniz. Computación. 1410567–10585 (2023).

    Artículo Google Scholar

  • Nandy, S. et al. Un sistema inteligente de predicción de enfermedades cardíacas basado en la red neuronal artificial enjambre. Computación neuronal. Aplicación 3514723–14737 (2023).

    Artículo Google Scholar

  • Jaafar, N. y Lachiri, Z. Métodos de fusión multimodal con redes neuronales profundas y metainformación para la detección de agresión en vigilancia. Sistema de expertos. Aplicación 211118523 (2023).

    Artículo Google Scholar

  • Mahum, R. et al. Un marco robusto para generar resúmenes de video de vigilancia utilizando la combinación de momentos de Zernike y una transformación R y una red neuronal profunda. Multimed. Herramientas apl. 8213811–13835 (2023).

    Artículo Google Scholar

  • Jan, Z. et al. Inteligencia artificial para la industria 4.0: Revisión sistemática de aplicaciones, desafíos y oportunidades. Sistema de expertos. Aplicación 216119456 (2023).

    Artículo Google Scholar

  • Raja Santhi, A. y Muthuswamy, P. Industry 5.0 o Industry 4.0 s? Introducción a la industria 4.0 y un vistazo a las posibles tecnologías de la industria 5.0. Int. J. Interact. Des. Manuf. (Ijidem) 17947–979 (2023).

    Artículo Google Scholar

  • Shafiq, M. et al. Evaluación continua de control de calidad durante la fabricación utilizando algoritmo de aprendizaje supervisado para la industria 4.0. Int. J. Adv. Manuf. Technol. (2023).

  • Rajput, DS, Meena, G., Acharya, M. y Mohbey, KK Predicción de fallas utilizando red neuronal de convolución difusa en entorno IoT con fusión de datos de detección heterogénea. Medición Sensación 26100701 (2023).

    Artículo Google Scholar

  • Liyakat, KK S. Enfoque de aprendizaje automático utilizando redes neuronales artificiales para detectar nodos maliciosos en redes IoT. En Conferencia internacional sobre aprendizaje automático, IoT y Big Data 123–134 (Springer, 2023).

  • Thakkar, A. y Lohiya, R. Clasificación de ataque de datos de intrusión desequilibrados para la red IoT utilizando una red neuronal profunda basada en el aprendizaje. IEEE Internet Things J. 1011888–11895 (2023).

    Artículo Google Scholar

  • Openai, R. GPT-4 Informe técnico. Preprint en ARXIV: 2303.08774. Ver en el artículo213 (2023).

  • Wang, J. et al. EL-NAS: Eficiente búsqueda de arquitectura de dominio de atención cruzada para la clasificación de imágenes hiperespectrales. Sensación remota. 154688 (2023).

    Anuncios de artículos Google Scholar

  • Yang, T., He, Q. y Huang, L. OM-NAS: Clasificación de imagen de lesión de piel pigmentada basada en una búsqueda de arquitectura neural. Biomed. Optar. Expresar 142153–2165 (2023).

    Artículo CAS PubMed PubMed Central Google Scholar

  • Yang, Y., Wei, J., Yu, Z. y Zhang, R. Un marco de búsqueda de arquitectura neuronal confiable para la clasificación de imágenes de neumonía utilizando tecnología blockchain. J. Supercomput. 801694-1727 (2024).

  • Hassan, E. et al. Enmascarar modelos R-CNN. Nilo J. Commun. Computación. Sci. 317–27 (2022).

    Artículo Google Scholar

  • Dong, P. et al. RD-NAS: Mejora de la capacidad de clasificación SuperNet de un solo disparo a través de la destilación de clasificación de proxies de costo cero. En ICASSP 2023-2023 Conferencia internacional IEEE sobre acústica, procesamiento de habla y señales (ICASSP) 1–5 (IEEE, 2023).

  • Wang, J. et al. NAS-DYMC: red neuronal de convolucional múltiple dinámica basada en NAS para la detección de eventos de sonido. En ICASSP 2023-2023 Conferencia internacional IEEE sobre acústica, procesamiento de habla y señales (ICASSP) 1–5 (IEEE, 2023).

  • Li, J. et al. Graph Neural Network Architecture Busque para el diagnóstico de fallas de maquinaria giratoria basado en el aprendizaje de refuerzo. Mech. Syst. Proceso de señal. 202110701 (2023).

    Artículo Google Scholar

  • Yuan, W., Fu, C., Liu, R. y Fan, X. Ssob: Buscando una arquitectura orientada a la escena para la detección de objetos submarinos. VIS. Computación. 395199–5208 (2023).

    Artículo Google Scholar

  • Jia, X. et al. Detector de objetos rápido y preciso para la conducción autónoma basada en yolov5 mejorado. Sci. Reps. 131–13 (2023).

    Anuncios de Google Scholar

  • Mehta, R., Jurečková, O. y Stamp, M. Un enfoque de procesamiento del lenguaje natural para la clasificación de malware. J. Comput. Virol. Tech de piratería. 20173-184 (2024).

  • Girdhar, N., Coustaty, M. y Doucet, A. Benchmarking Nas para la separación de artículos en periódicos históricos. En Conferencia internacional sobre bibliotecas digitales asiáticas76–88 (Springer, 2023).

  • Real, E., Aggarwal, A., Huang, Y. y LE, QV Evolución regularizada para la búsqueda de arquitectura del clasificador de imágenes. En Actas de la Conferencia AAAI sobre inteligencia artificial volumen 33, 4780–4789 (2019).

  • Liu, C. et al. Búsqueda de arquitectura neuronal progresiva. En Actas de la Conferencia Europea sobre Visión Computadora (ECCV) 19–34 (2018).

  • Cai, H., Chen, T., Zhang, W., Yu, Y. y Wang, J. Búsqueda de arquitectura eficiente por transformación de red. En Actas de la Conferencia AAAI sobre inteligencia artificialvol. 32 (2018).

  • Pham, H., Guan, M., Zoph, B., Le, Q. y Dean, J. Búsqueda eficiente de arquitectura neuronal a través de parámetros compartiendo. En Conferencia internacional sobre aprendizaje automático 4095–4104 (PMLR, 2018).

  • Liu, H., Simonyan, K. y Yang, Y. Darts: búsqueda de arquitectura diferenciable. Preimpresión en ARXIV: 1806.09055 (2018).

  • Ying, C. et al. NAS-Bench-101: Hacia la búsqueda reproducible de arquitectura neuronal. En Conferencia internacional sobre aprendizaje automático 7105–7114 (PMLR, 2019).

  • Dong, X. y Yang, Y. Nas Bench-201-201: Extendiendo el alcance de la búsqueda de arquitectura neuronal reproducible. Preprint en ARXIV: 2001.00326 (2020).

  • Krizhevsky, A. y Hinton, G. Aprender múltiples capas de características de pequeñas imágenes (Tech. Rep, Toronto, ON, Canadá, 2009).

  • Chrabaszcz, P., Loshchilov, I. y Hutter, F. Una variante a la baja de Imagenet como alternativa a los conjuntos de datos CIFAR. Preprint en ARXIV: 1707.08819 (2017).

  • Ye, P. et al. \(\beta\)-Darts: regularización de beta para la búsqueda de arquitectura diferenciable. En 2022 Conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones (CVPR) 10864–10873 (IEEE, 2022).

  • Movahedi, S. et al. \ (\ lambda \) -Darts: mitigar el colapso del rendimiento al armonizar la selección de operaciones entre las células. Preprint en ARXIV: 2210.07998 (2022).

  • Zheng, M. et al. ¿Puede GPT-4 realizar la búsqueda de arquitectura neural? Preimpresión en ARXIV: 2304.10970 (2023).

  • Achiam, J. et al. Informe técnico GPT-4. Preimpresión en ARXIV: 2303.08774 (2023).

  • Wang, H. et al. Búsqueda de arquitectura neuronal gráfica con GPT-4. Preimpresión en ARXIV: 2310.01436 (2023).

  • Hassan, E., Bhatnagar, R. y Shams, M. Y. Avance de la investigación científica en ciencias de la computación por Chatgpt y Llama-A Review. En Conferencia internacional sobre fabricación inteligente y sostenibilidad energética 23–37 (Springer, 2023).

  • Helber, P., Bischke, B., Dengel, A. y Borth, D. Eurosat: un nuevo conjunto de datos y un punto de referencia de aprendizaje profundo para el uso de la tierra y la clasificación de la cobertura de la tierra. IEEE J. Sel. Arriba. Aplicación Tierra obs. Sensación remota. 12(7), 2217–2226 (2019).

    Anuncios de artículos Google Scholar

  • Rajaraman, S. et al. Redes neuronales convolucionales previamente entrenadas como extractores de características hacia la detección de parásitos de malaria mejorados en imágenes de frotis de sangre delgada. Peerj 6E4568 (2018).

    Artículo PubMed PubMed Central Google Scholar

  • Maas, A. et al. Vectores de palabras de aprendizaje para el análisis de sentimientos. En Actas de la 49ª Reunión Anual de la Asociación de Lingüística Computacional: Tecnologías de lenguaje humano 142–150 (2011).

  • Powerapi. Pyjoules: Biblioteca de medición de energía basada en Python para varios dominios, incluidas las GPU NVIDIA. https://github.com/powerapi-ng/pyjoulles (2024). Consultado: 2024-05-31.

  • Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M. y Sjödin, M. Deepmaker: un marco de optimización de objetivos múltiples para redes neuronales profundas en sistemas integrados. Microprocesos. Microsyst. 73102989 (2020).

    Artículo Google Scholar

  • Suganuma, M., Kobayashi, M., Shirakawa, S. y Nagao, T. Evolución de redes neuronales convolucionales profundas utilizando programación genética cartesiana. Evol. Computación. 28141–163 (2020).

    Artículo PubMed Google Scholar

  • Ren, J. et al. Eigen: enfoque genético de inspiración ecológica para la búsqueda de estructuras de redes neuronales desde cero. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 9059–9068 (2019).

  • Xie, L. y Yuille, A. Genetic CNN. En Actas de la Conferencia Internacional IEEE sobre visión por computadora 1379–1388 (2017).

  • Lu, Z. et al. Diseño evolutivo de criterio múltiple de redes neuronales convolucionales profundas. Preprint en ARXIV: 1912.01369 (2019).

  • Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B. y Xing, EP Búsqueda de arquitectura neural con optimización bayesiana y transporte óptimo. Adv. Inf. Neural. Proceso. Syst. 31 (2018).

  • Elsken, T., Metzen, J.-H. & Hutter, F. Búsqueda de arquitectura simple y eficiente para redes neuronales convolucionales. Preimpresión en ARXIV: 1711.04528 (2017).

  • Dong, X. y Yang, Y. Buscando una arquitectura neuronal robusta en cuatro horas de GPU. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 1761–1770 (2019).

  • Chu, X. et al. DARTS-: Salir de manera robusta del colapso de rendimiento sin indicadores. Preprint en ARXIV: 2009.01027 (2020).

  • Chen, X., Wang, R., Cheng, M., Tang, X. y Hsieh, C.-J. DRNAS: búsqueda de arquitectura neural de Dirichlet. Preprint en ARXIV: 2006.10355 (2020).

  • Hu, Y., Wang, X., Li, L. y Gu, Q. Mejora de NAS de un solo disparo con Supernet reducida y expansiva. Reconocimiento de patrones. 118108025 (2021).

    Artículo Google Scholar

  • Chu, X., Zhang, B. y Xu, R. Fairnas: Repensar la equidad de evaluación de la búsqueda de arquitectura neuronal compartiendo peso. En Actas de la conferencia internacional IEEE/CVF sobre visión por computadora 12239–12248 (2021).

  • Xiao, H., Wang, Z., Zhu, Z., Zhou, J. y Lu, J. Shapley-NAS: Descubrimiento de la contribución de la operación para la búsqueda de arquitectura neural. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 11892–11901 (2022).

  • Yu, K., Ranftl, R. y Salzmann, M. Regularización histórica: clasificación de entrenamiento guiado de Super Net en la búsqueda de arquitectura neural. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 13723–13732 (2021).

  • Cavagnero, N., Robbiano, L., Caputo, B. y Avera, G. Freerea: Búsqueda de arquitectura basada en la evolución libre de capacitación. En Actas de la conferencia de invierno IEEE/CVF sobre aplicaciones de visión por computadora 1493–1502 (2023).

  • Zheng, X. et al. Búsqueda de arquitectura neuronal con representación de información mutua. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 11912–11921 (2022).

  • Strubell, E., Ganesh, A. y McCallum, A. Consideraciones de energía y política para el aprendizaje profundo en la PNL. Preprint en ARXIV: 1906.02243 (2019).

  • Zoph, B., Vasudevan, V., Shlens, J. y Le, Q. V. Aprender arquitecturas transferibles para el reconocimiento de imágenes escalables. En Actas de la conferencia IEEE sobre visión por computadora y reconocimiento de patrones 8697–8710 (2018).

  • Continue Reading
    Click to comment

    Leave a Reply

    Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

    Noticias

    Revivir el compromiso en el aula de español: un desafío musical con chatgpt – enfoque de la facultad

    Published

    on

    Continue Reading

    Noticias

    5 indicaciones de chatgpt que pueden ayudar a los adolescentes a lanzar una startup

    Published

    on

    El emprendimiento adolescente sigue en aumento. Según Junior Achievement Research, el 66% de los adolescentes estadounidenses de entre 13 y 17 años dicen que es probable que considere comenzar un negocio como adultos, con el monitor de emprendimiento global 2023-2024 que encuentra que el 24% de los jóvenes de 18 a 24 años son actualmente empresarios. Estos jóvenes fundadores no son solo soñando, están construyendo empresas reales que generan ingresos y crean un impacto social, y están utilizando las indicaciones de ChatGPT para ayudarlos.

    En Wit (lo que sea necesario), la organización que fundó en 2009, hemos trabajado con más de 10,000 jóvenes empresarios. Durante el año pasado, he observado un cambio en cómo los adolescentes abordan la planificación comercial. Con nuestra orientación, están utilizando herramientas de IA como ChatGPT, no como atajos, sino como socios de pensamiento estratégico para aclarar ideas, probar conceptos y acelerar la ejecución.

    Los emprendedores adolescentes más exitosos han descubierto indicaciones específicas que los ayudan a pasar de una idea a otra. Estas no son sesiones genéricas de lluvia de ideas: están utilizando preguntas específicas que abordan los desafíos únicos que enfrentan los jóvenes fundadores: recursos limitados, compromisos escolares y la necesidad de demostrar sus conceptos rápidamente.

    Aquí hay cinco indicaciones de ChatGPT que ayudan constantemente a los emprendedores adolescentes a construir negocios que importan.

    1. El problema del primer descubrimiento chatgpt aviso

    “Me doy cuenta de que [specific group of people]

    luchar contra [specific problem I’ve observed]. Ayúdame a entender mejor este problema explicando: 1) por qué existe este problema, 2) qué soluciones existen actualmente y por qué son insuficientes, 3) cuánto las personas podrían pagar para resolver esto, y 4) tres formas específicas en que podría probar si este es un problema real que vale la pena resolver “.

    Un adolescente podría usar este aviso después de notar que los estudiantes en la escuela luchan por pagar el almuerzo. En lugar de asumir que entienden el alcance completo, podrían pedirle a ChatGPT que investigue la deuda del almuerzo escolar como un problema sistémico. Esta investigación puede llevarlos a crear un negocio basado en productos donde los ingresos ayuden a pagar la deuda del almuerzo, lo que combina ganancias con el propósito.

    Los adolescentes notan problemas de manera diferente a los adultos porque experimentan frustraciones únicas, desde los desafíos de las organizaciones escolares hasta las redes sociales hasta las preocupaciones ambientales. Según la investigación de Square sobre empresarios de la Generación de la Generación Z, el 84% planea ser dueños de negocios dentro de cinco años, lo que los convierte en candidatos ideales para las empresas de resolución de problemas.

    2. El aviso de chatgpt de chatgpt de chatgpt de realidad de la realidad del recurso

    “Soy [age] años con aproximadamente [dollar amount] invertir y [number] Horas por semana disponibles entre la escuela y otros compromisos. Según estas limitaciones, ¿cuáles son tres modelos de negocio que podría lanzar de manera realista este verano? Para cada opción, incluya costos de inicio, requisitos de tiempo y los primeros tres pasos para comenzar “.

    Este aviso se dirige al elefante en la sala: la mayoría de los empresarios adolescentes tienen dinero y tiempo limitados. Cuando un empresario de 16 años emplea este enfoque para evaluar un concepto de negocio de tarjetas de felicitación, puede descubrir que pueden comenzar con $ 200 y escalar gradualmente. Al ser realistas sobre las limitaciones por adelantado, evitan el exceso de compromiso y pueden construir hacia objetivos de ingresos sostenibles.

    Según el informe de Gen Z de Square, el 45% de los jóvenes empresarios usan sus ahorros para iniciar negocios, con el 80% de lanzamiento en línea o con un componente móvil. Estos datos respaldan la efectividad de la planificación basada en restricciones: cuando funcionan los adolescentes dentro de las limitaciones realistas, crean modelos comerciales más sostenibles.

    3. El aviso de chatgpt del simulador de voz del cliente

    “Actúa como un [specific demographic] Y dame comentarios honestos sobre esta idea de negocio: [describe your concept]. ¿Qué te excitaría de esto? ¿Qué preocupaciones tendrías? ¿Cuánto pagarías de manera realista? ¿Qué necesitaría cambiar para que se convierta en un cliente? “

    Los empresarios adolescentes a menudo luchan con la investigación de los clientes porque no pueden encuestar fácilmente a grandes grupos o contratar firmas de investigación de mercado. Este aviso ayuda a simular los comentarios de los clientes haciendo que ChatGPT adopte personas específicas.

    Un adolescente que desarrolla un podcast para atletas adolescentes podría usar este enfoque pidiéndole a ChatGPT que responda a diferentes tipos de atletas adolescentes. Esto ayuda a identificar temas de contenido que resuenan y mensajes que se sienten auténticos para el público objetivo.

    El aviso funciona mejor cuando se vuelve específico sobre la demografía, los puntos débiles y los contextos. “Actúa como un estudiante de último año de secundaria que solicita a la universidad” produce mejores ideas que “actuar como un adolescente”.

    4. El mensaje mínimo de diseñador de prueba viable chatgpt

    “Quiero probar esta idea de negocio: [describe concept] sin gastar más de [budget amount] o más de [time commitment]. Diseñe tres experimentos simples que podría ejecutar esta semana para validar la demanda de los clientes. Para cada prueba, explique lo que aprendería, cómo medir el éxito y qué resultados indicarían que debería avanzar “.

    Este aviso ayuda a los adolescentes a adoptar la metodología Lean Startup sin perderse en la jerga comercial. El enfoque en “This Week” crea urgencia y evita la planificación interminable sin acción.

    Un adolescente que desea probar un concepto de línea de ropa podría usar este indicador para diseñar experimentos de validación simples, como publicar maquetas de diseño en las redes sociales para evaluar el interés, crear un formulario de Google para recolectar pedidos anticipados y pedirles a los amigos que compartan el concepto con sus redes. Estas pruebas no cuestan nada más que proporcionar datos cruciales sobre la demanda y los precios.

    5. El aviso de chatgpt del generador de claridad de tono

    “Convierta esta idea de negocio en una clara explicación de 60 segundos: [describe your business]. La explicación debe incluir: el problema que resuelve, su solución, a quién ayuda, por qué lo elegirían sobre las alternativas y cómo se ve el éxito. Escríbelo en lenguaje de conversación que un adolescente realmente usaría “.

    La comunicación clara separa a los empresarios exitosos de aquellos con buenas ideas pero una ejecución deficiente. Este aviso ayuda a los adolescentes a destilar conceptos complejos a explicaciones convincentes que pueden usar en todas partes, desde las publicaciones en las redes sociales hasta las conversaciones con posibles mentores.

    El énfasis en el “lenguaje de conversación que un adolescente realmente usaría” es importante. Muchas plantillas de lanzamiento comercial suenan artificiales cuando se entregan jóvenes fundadores. La autenticidad es más importante que la jerga corporativa.

    Más allá de las indicaciones de chatgpt: estrategia de implementación

    La diferencia entre los adolescentes que usan estas indicaciones de manera efectiva y aquellos que no se reducen a seguir. ChatGPT proporciona dirección, pero la acción crea resultados.

    Los jóvenes empresarios más exitosos con los que trabajo usan estas indicaciones como puntos de partida, no de punto final. Toman las sugerencias generadas por IA e inmediatamente las prueban en el mundo real. Llaman a clientes potenciales, crean prototipos simples e iteran en función de los comentarios reales.

    Investigaciones recientes de Junior Achievement muestran que el 69% de los adolescentes tienen ideas de negocios, pero se sienten inciertos sobre el proceso de partida, con el miedo a que el fracaso sea la principal preocupación para el 67% de los posibles empresarios adolescentes. Estas indicaciones abordan esa incertidumbre al desactivar los conceptos abstractos en los próximos pasos concretos.

    La imagen más grande

    Los emprendedores adolescentes que utilizan herramientas de IA como ChatGPT representan un cambio en cómo está ocurriendo la educación empresarial. Según la investigación mundial de monitores empresariales, los jóvenes empresarios tienen 1,6 veces más probabilidades que los adultos de querer comenzar un negocio, y son particularmente activos en la tecnología, la alimentación y las bebidas, la moda y los sectores de entretenimiento. En lugar de esperar clases de emprendimiento formales o programas de MBA, estos jóvenes fundadores están accediendo a herramientas de pensamiento estratégico de inmediato.

    Esta tendencia se alinea con cambios más amplios en la educación y la fuerza laboral. El Foro Económico Mundial identifica la creatividad, el pensamiento crítico y la resiliencia como las principales habilidades para 2025, la capacidad de las capacidades que el espíritu empresarial desarrolla naturalmente.

    Programas como WIT brindan soporte estructurado para este viaje, pero las herramientas en sí mismas se están volviendo cada vez más accesibles. Un adolescente con acceso a Internet ahora puede acceder a recursos de planificación empresarial que anteriormente estaban disponibles solo para empresarios establecidos con presupuestos significativos.

    La clave es usar estas herramientas cuidadosamente. ChatGPT puede acelerar el pensamiento y proporcionar marcos, pero no puede reemplazar el arduo trabajo de construir relaciones, crear productos y servir a los clientes. La mejor idea de negocio no es la más original, es la que resuelve un problema real para personas reales. Las herramientas de IA pueden ayudar a identificar esas oportunidades, pero solo la acción puede convertirlos en empresas que importan.

    Continue Reading

    Noticias

    Chatgpt vs. gemini: he probado ambos, y uno definitivamente es mejor

    Published

    on

    Precio

    ChatGPT y Gemini tienen versiones gratuitas que limitan su acceso a características y modelos. Los planes premium para ambos también comienzan en alrededor de $ 20 por mes. Las características de chatbot, como investigaciones profundas, generación de imágenes y videos, búsqueda web y más, son similares en ChatGPT y Gemini. Sin embargo, los planes de Gemini pagados también incluyen el almacenamiento en la nube de Google Drive (a partir de 2TB) y un conjunto robusto de integraciones en las aplicaciones de Google Workspace.

    Los niveles de más alta gama de ChatGPT y Gemini desbloquean el aumento de los límites de uso y algunas características únicas, pero el costo mensual prohibitivo de estos planes (como $ 200 para Chatgpt Pro o $ 250 para Gemini Ai Ultra) los pone fuera del alcance de la mayoría de las personas. Las características específicas del plan Pro de ChatGPT, como el modo O1 Pro que aprovecha el poder de cálculo adicional para preguntas particularmente complicadas, no son especialmente relevantes para el consumidor promedio, por lo que no sentirá que se está perdiendo. Sin embargo, es probable que desee las características que son exclusivas del plan Ai Ultra de Gemini, como la generación de videos VEO 3.

    Ganador: Géminis


    Plataformas

    Puede acceder a ChatGPT y Gemini en la web o a través de aplicaciones móviles (Android e iOS). ChatGPT también tiene aplicaciones de escritorio (macOS y Windows) y una extensión oficial para Google Chrome. Gemini no tiene aplicaciones de escritorio dedicadas o una extensión de Chrome, aunque se integra directamente con el navegador.

    Interfaz web chatgpt

    (Crédito: OpenAI/PCMAG)

    Chatgpt está disponible en otros lugares, Como a través de Siri. Como se mencionó, puede acceder a Gemini en las aplicaciones de Google, como el calendario, Documento, ConducirGmail, Mapas, Mantener, FotosSábanas, y Música de YouTube. Tanto los modelos de Chatgpt como Gemini también aparecen en sitios como la perplejidad. Sin embargo, obtiene la mayor cantidad de funciones de estos chatbots en sus aplicaciones y portales web dedicados.

    Las interfaces de ambos chatbots son en gran medida consistentes en todas las plataformas. Son fáciles de usar y no lo abruman con opciones y alternar. ChatGPT tiene algunas configuraciones más para jugar, como la capacidad de ajustar su personalidad, mientras que la profunda interfaz de investigación de Gemini hace un mejor uso de los bienes inmuebles de pantalla.

    Ganador: empate


    Modelos de IA

    ChatGPT tiene dos series primarias de modelos, la serie 4 (su línea de conversación, insignia) y la Serie O (su compleja línea de razonamiento). Gemini ofrece de manera similar una serie Flash de uso general y una serie Pro para tareas más complicadas.

    Los últimos modelos de Chatgpt son O3 y O4-Mini, y los últimos de Gemini son 2.5 Flash y 2.5 Pro. Fuera de la codificación o la resolución de una ecuación, pasará la mayor parte de su tiempo usando los modelos de la serie 4-Series y Flash. A continuación, puede ver cómo funcionan estos modelos en una variedad de tareas. Qué modelo es mejor depende realmente de lo que quieras hacer.

    Ganador: empate


    ChatGPT y Gemini pueden buscar información actualizada en la web con facilidad. Sin embargo, ChatGPT presenta mosaicos de artículos en la parte inferior de sus respuestas para una lectura adicional, tiene un excelente abastecimiento que facilita la vinculación de reclamos con evidencia, incluye imágenes en las respuestas cuando es relevante y, a menudo, proporciona más detalles en respuesta. Gemini no muestra nombres de fuente y títulos de artículos completos, e incluye mosaicos e imágenes de artículos solo cuando usa el modo AI de Google. El abastecimiento en este modo es aún menos robusto; Google relega las fuentes a los caretes que se pueden hacer clic que no resaltan las partes relevantes de su respuesta.

    Como parte de sus experiencias de búsqueda en la web, ChatGPT y Gemini pueden ayudarlo a comprar. Si solicita consejos de compra, ambos presentan mosaicos haciendo clic en enlaces a los minoristas. Sin embargo, Gemini generalmente sugiere mejores productos y tiene una característica única en la que puede cargar una imagen tuya para probar digitalmente la ropa antes de comprar.

    Ganador: chatgpt


    Investigación profunda

    ChatGPT y Gemini pueden generar informes que tienen docenas de páginas e incluyen más de 50 fuentes sobre cualquier tema. La mayor diferencia entre los dos se reduce al abastecimiento. Gemini a menudo cita más fuentes que CHATGPT, pero maneja el abastecimiento en informes de investigación profunda de la misma manera que lo hace en la búsqueda en modo AI, lo que significa caretas que se puede hacer clic sin destacados en el texto. Debido a que es más difícil conectar las afirmaciones en los informes de Géminis a fuentes reales, es más difícil creerles. El abastecimiento claro de ChatGPT con destacados en el texto es más fácil de confiar. Sin embargo, Gemini tiene algunas características de calidad de vida en ChatGPT, como la capacidad de exportar informes formateados correctamente a Google Docs con un solo clic. Su tono también es diferente. Los informes de ChatGPT se leen como publicaciones de foro elaboradas, mientras que los informes de Gemini se leen como documentos académicos.

    Ganador: chatgpt


    Generación de imágenes

    La generación de imágenes de ChatGPT impresiona independientemente de lo que solicite, incluso las indicaciones complejas para paneles o diagramas cómicos. No es perfecto, pero los errores y la distorsión son mínimos. Gemini genera imágenes visualmente atractivas más rápido que ChatGPT, pero rutinariamente incluyen errores y distorsión notables. Con indicaciones complicadas, especialmente diagramas, Gemini produjo resultados sin sentido en las pruebas.

    Arriba, puede ver cómo ChatGPT (primera diapositiva) y Géminis (segunda diapositiva) les fue con el siguiente mensaje: “Genere una imagen de un estudio de moda con una decoración simple y rústica que contrasta con el espacio más agradable. Incluya un sofá marrón y paredes de ladrillo”. La imagen de ChatGPT limita los problemas al detalle fino en las hojas de sus plantas y texto en su libro, mientras que la imagen de Gemini muestra problemas más notables en su tubo de cordón y lámpara.

    Ganador: chatgpt

    ¡Obtenga nuestras mejores historias!


    Ícono del boletín


    Toda la última tecnología, probada por nuestros expertos

    Regístrese en el boletín de informes de laboratorio para recibir las últimas revisiones de productos de PCMAG, comprar asesoramiento e ideas.

    Al hacer clic en Registrarme, confirma que tiene más de 16 años y acepta nuestros Términos de uso y Política de privacidad.

    ¡Gracias por registrarse!

    Su suscripción ha sido confirmada. ¡Esté atento a su bandeja de entrada!


    Generación de videos

    La generación de videos de Gemini es la mejor de su clase, especialmente porque ChatGPT no puede igualar su capacidad para producir audio acompañante. Actualmente, Google bloquea el último modelo de generación de videos de Gemini, VEO 3, detrás del costoso plan AI Ultra, pero obtienes más videos realistas que con ChatGPT. Gemini también tiene otras características que ChatGPT no, como la herramienta Flow Filmmaker, que le permite extender los clips generados y el animador AI Whisk, que le permite animar imágenes fijas. Sin embargo, tenga en cuenta que incluso con VEO 3, aún necesita generar videos varias veces para obtener un gran resultado.

    En el ejemplo anterior, solicité a ChatGPT y Gemini a mostrarme un solucionador de cubos de Rubik Rubik que resuelva un cubo. La persona en el video de Géminis se ve muy bien, y el audio acompañante es competente. Al final, hay una buena atención al detalle con el marco que se desplaza, simulando la detención de una grabación de selfies. Mientras tanto, Chatgpt luchó con su cubo, distorsionándolo en gran medida.

    Ganador: Géminis


    Procesamiento de archivos

    Comprender los archivos es una fortaleza de ChatGPT y Gemini. Ya sea que desee que respondan preguntas sobre un manual, editen un currículum o le informen algo sobre una imagen, ninguno decepciona. Sin embargo, ChatGPT tiene la ventaja sobre Gemini, ya que ofrece un reconocimiento de imagen ligeramente mejor y respuestas más detalladas cuando pregunta sobre los archivos cargados. Ambos chatbots todavía a veces inventan citas de documentos proporcionados o malinterpretan las imágenes, así que asegúrese de verificar sus resultados.

    Ganador: chatgpt


    Escritura creativa

    Chatgpt y Gemini pueden generar poemas, obras, historias y más competentes. CHATGPT, sin embargo, se destaca entre los dos debido a cuán únicas son sus respuestas y qué tan bien responde a las indicaciones. Las respuestas de Gemini pueden sentirse repetitivas si no calibra cuidadosamente sus solicitudes, y no siempre sigue todas las instrucciones a la carta.

    En el ejemplo anterior, solicité ChatGPT (primera diapositiva) y Gemini (segunda diapositiva) con lo siguiente: “Sin hacer referencia a nada en su memoria o respuestas anteriores, quiero que me escriba un poema de verso gratuito. Preste atención especial a la capitalización, enjambment, ruptura de línea y puntuación. Dado que es un verso libre, no quiero un medidor familiar o un esquema de retiro de la rima, pero quiero que tenga un estilo de coohes. ChatGPT logró entregar lo que pedí en el aviso, y eso era distinto de las generaciones anteriores. Gemini tuvo problemas para generar un poema que incorporó cualquier cosa más allá de las comas y los períodos, y su poema anterior se lee de manera muy similar a un poema que generó antes.

    Recomendado por nuestros editores

    Ganador: chatgpt


    Razonamiento complejo

    Los modelos de razonamiento complejos de Chatgpt y Gemini pueden manejar preguntas de informática, matemáticas y física con facilidad, así como mostrar de manera competente su trabajo. En las pruebas, ChatGPT dio respuestas correctas un poco más a menudo que Gemini, pero su rendimiento es bastante similar. Ambos chatbots pueden y le darán respuestas incorrectas, por lo que verificar su trabajo aún es vital si está haciendo algo importante o tratando de aprender un concepto.

    Ganador: chatgpt


    Integración

    ChatGPT no tiene integraciones significativas, mientras que las integraciones de Gemini son una característica definitoria. Ya sea que desee obtener ayuda para editar un ensayo en Google Docs, comparta una pestaña Chrome para hacer una pregunta, pruebe una nueva lista de reproducción de música de YouTube personalizada para su gusto o desbloquee ideas personales en Gmail, Gemini puede hacer todo y mucho más. Es difícil subestimar cuán integrales y poderosas son realmente las integraciones de Géminis.

    Ganador: Géminis


    Asistentes de IA

    ChatGPT tiene GPT personalizados, y Gemini tiene gemas. Ambos son asistentes de IA personalizables. Tampoco es una gran actualización sobre hablar directamente con los chatbots, pero los GPT personalizados de terceros agregan una nueva funcionalidad, como el fácil acceso a Canva para editar imágenes generadas. Mientras tanto, terceros no pueden crear gemas, y no puedes compartirlas. Puede permitir que los GPT personalizados accedan a la información externa o tomen acciones externas, pero las GEM no tienen una funcionalidad similar.

    Ganador: chatgpt


    Contexto Windows y límites de uso

    La ventana de contexto de ChatGPT sube a 128,000 tokens en sus planes de nivel superior, y todos los planes tienen límites de uso dinámicos basados ​​en la carga del servidor. Géminis, por otro lado, tiene una ventana de contexto de 1,000,000 token. Google no está demasiado claro en los límites de uso exactos para Gemini, pero también son dinámicos dependiendo de la carga del servidor. Anecdóticamente, no pude alcanzar los límites de uso usando los planes pagados de Chatgpt o Gemini, pero es mucho más fácil hacerlo con los planes gratuitos.

    Ganador: Géminis


    Privacidad

    La privacidad en Chatgpt y Gemini es una bolsa mixta. Ambos recopilan cantidades significativas de datos, incluidos todos sus chats, y usan esos datos para capacitar a sus modelos de IA de forma predeterminada. Sin embargo, ambos le dan la opción de apagar el entrenamiento. Google al menos no recopila y usa datos de Gemini para fines de capacitación en aplicaciones de espacio de trabajo, como Gmail, de forma predeterminada. ChatGPT y Gemini también prometen no vender sus datos o usarlos para la orientación de anuncios, pero Google y OpenAI tienen historias sórdidas cuando se trata de hacks, filtraciones y diversos fechorías digitales, por lo que recomiendo no compartir nada demasiado sensible.

    Ganador: empate

    Continue Reading

    Trending

    Noticias de Inteligencia Artificial
    Privacy Overview

    This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.