Connect with us

Noticias

Cuando Google no habla, pregúntele a su IA: Gemini da pistas sobre el futuro de Chrome

Published

on

En sábado, La información Se publicó la historia de que Google planea lanzar una IA lista para Chrome que cualquier usuario puede elegir cargar en su escritorio a partir de diciembre.

La iniciativa lleva el nombre en código Proyecto Jarvis, en honor a la inteligencia artificial general ficticia que el multimillonario Tony Stark creó en la franquicia de superhéroes de Marvel, y el modelo de IA de escritorio supuestamente coincidiría con el debut de Google de su próxima generación de Gemini 2.0.

Aquí está la publicación en la plataforma de redes sociales X, antes conocida como Twitter, una vez que la historia se publicó durante el fin de semana.

El artículo afirma que Jarvis AI sería compatible con la actual extensión de Chrome de Google, lo que permitiría que el modelo de IA interactúe con un navegador web y una interfaz de computadora. El sistema sería capaz de automatizar funciones y tareas basadas en la web que el usuario le asignaría tomando capturas de pantalla y analizando las imágenes frente a consultas rápidas.

Según la historia, cualquiera que lleve a Jarvis a una prueba también tendría que confiar en él (y en Google) a pesar de los posibles riesgos de IA con su información personal. Esa información podría incluir compartir con Jarvis detalles de tarjetas de crédito, identificadores confidenciales y contraseñas para permitir que el agente de IA complete sus tareas digitales a través de Internet, como arreglos de viajes, investigaciones y compras.

Anthropic lanzó un sistema algo similar el martes pasado que se descargaría en la computadora personal del usuario. Según se informa, su versión Claude seguiría una indicación del usuario y buscaría entre los diversos archivos de computadora del usuario y abriría pantallas como un cerdo en busca de trufas para cumplir con la solicitud de consulta.

El propósito del proyecto Claude era más bien un modelo de entrenamiento para que la IA pudiera aprender habilidades de navegación por computadora, búsquedas de archivos pequeños y completar tareas administrativas. Mientras que Jarvis AI parece más bien un conserje computarizado de mayor funcionamiento, pero eso es una completa especulación hasta que la compañía lo confirme oficialmente.

Google no quiso comentar sobre el artículo

Desafortunadamente, durante una conversación telefónica con un portavoz de Google, no hicieron comentarios sobre ninguno de los detalles detallados en La información artículo.

Lo único que indicaron fue que, según la historia de Google en el espacio, no es sorprendente que la compañía esté trabajando en capacidades de inteligencia artificial para ayudar a sus usuarios.

Esa no es una “noticia de última hora”, ya que el CEO de Google, Sundar Pichai, fue mucho más allá durante la conferencia de desarrolladores de la compañía en marzo, sugiriendo la posibilidad de que Gemini AI devuelva de forma autónoma una compra de zapatos en su nombre en algún momento en el futuro.

La IA Gemini de Google establece una alta probabilidad para una nueva IA de Chrome

Entonces, si la compañía no comenta sobre la información filtrada sobre una posible nueva versión de Google Gemini y una versión de Chrome habilitada para IA, el siguiente mejor lugar para obtener información es la versión actual de Google Gemini. Aquí está el mensaje que le di a Gemini junto con el artículo completo de La información:

“Como IA creada por Google, lea el artículo de noticias integrado que se publicó ayer por The Information sobre una posible nueva IA descargable para los usuarios [sic] escritorios de computadora como una forma de entrenar la IA con respecto al uso de la computadora y las habilidades de navegación. Una vez que haya leído el artículo, basándose en su formación sobre Google, ¿cuál diría que es el porcentaje de probabilidad del 100 % de que el artículo publicado sea exacto, sabiendo que todavía es especulativo?

A partir de ese mensaje, aquí hay una captura de pantalla de la respuesta de Google Gemini, que está resaltada para mayor claridad.

Después de revisar el artículo y la propia capacitación de su empresa creadora, Google Gemini AI proporcionó una sorprendente probabilidad del 85% de que el artículo fuente pudiera ser cierto.

Vale la pena señalar que Gemini confirmó que no tenía conocimiento previo del Proyecto Jarvis de Google ni de ningún proyecto similar con un nombre en clave diferente, hasta que subí el artículo.

Google Gemini cree que su homónimo innovará

La discusión continuó con un resumen de las principales estrategias de lanzamiento de productos que utilizan las empresas al introducir nuevos productos en un mercado. Las cuatro estrategias principales son:

  1. Lanzamiento preventivo (Innovador): Lanzar temprano un producto, a menudo con características innovadoras, para establecer el estándar del mercado antes de que entren los competidores.
  2. Lanzamiento imitativo (Seguidor rápido): Introducir rápidamente un producto similar después de observar el éxito de un competidor, capitalizando la demanda existente.
  3. Lanzamiento simultáneo (Proveedor alternativo): Ingresar a múltiples mercados o canales al mismo tiempo con un producto que ofrece una opción diferente a la de los competidores existentes.
  4. Lanzamiento secuencial (Rezagado): Lanzar gradualmente un producto a lo largo del tiempo, normalmente después de que los competidores ya hayan establecido su presencia, para reducir los riesgos y optimizar el rendimiento en función de la retroalimentación del mercado.

Una vez establecidas estas definiciones, le hice a Géminis la siguiente pregunta:

“Con respecto a la idea de lanzar una IA a las computadoras de escritorio para capacitar en habilidades informáticas, ¿qué estrategia es más probable que Google implemente hipotéticamente?”

Y aquí hay una captura de pantalla de la respuesta de Gemini.

El cambio parece ser la única constante en Google

Si bien no hay nada seguro sobre el Proyecto Jarvis o su calendario, una cosa sí es segura y es la cantidad de cambios y competencia que enfrenta la organización.

Google ha tenido dificultades para seguir el ritmo de la constante oleada de implementaciones de IA generativa de OpenAI y Anthropic. También tiene que contrarrestar el uso creciente del modelo privado de inteligencia artificial generativa, Perplexity, para búsquedas en Internet, en el que Google fue pionero. El viernes, el cofundador de Perplexity publicó en X que su plataforma de búsqueda de inteligencia artificial ahora maneja 100 millones de consultas por semana.

La empresa matriz de Google, Alphabet, también está apelando una demanda antimonopolio en la que el Departamento de Justicia propuso disolver la empresa como parte de la siguiente etapa del litigio.

Con este constante estado de cambio como telón de fondo, Google trasladó su unidad de aplicaciones Gemini a su laboratorio de investigación DeepMind a mediados de octubre. La compañía posicionó la consolidación como una forma de racionalizar y operacionalizar mejor sus iniciativas de inteligencia artificial frente a una competencia cada vez mayor.

La máquina de inteligencia artificial de Google era más habladora que su máquina de relaciones públicas

La IA tiene sus desafíos y la IA generativa en particular todavía lucha con sus problemas relacionados con conjuntos de datos sintéticos, sesgos inherentes, alucinaciones, colapso de modelos y más. Las interacciones con Google Gemini para este artículo en busca de algunos comentarios irónicos y no oficiales cuando la compañía se negó fueron casi una broma.

Casi.

Si lo piensas bien, las empresas que crean estas IA gastan miles de millones de dólares en crear, entrenar y actualizar estos grandes modelos de lenguaje. Se toman muy en serio estos modelos. Google se toma muy en serio a Géminis.

Es seguro asumir que Google quiere producir el LLM más confiable y líder del mercado, al igual que todos sus competidores.

Pero este artículo demuestra que cuando esas empresas no quieren hablar públicamente con los medios o con cualquier parte interesada externa, la IA generativa lo hará.

Incluso si la IA no actúa como portavoz autorizado de la organización, un mensaje sólido puede producir algunas ideas interesantes del LLM de una empresa, lo suficientemente interesantes como para revelarlas y compartirlas en un artículo.

Puede que no estés de acuerdo, pero Google Gemini AI, que ofrece una evaluación de confianza del 85% de que un modelo AI Chrome probablemente sea legítimo, es mucho más interesante que “sin comentarios” por parte de la empresa. Si bien una empresa puede descartar los comentarios de su IA como “no oficiales”, debe tener cuidado de no ir demasiado lejos desacreditando su creación porque entonces estaría socavando la credibilidad y los cimientos de su futuro, sin mencionar los costos de capital irrecuperable, tiempo, programación y mano de obra.

Otra consideración que vale la pena señalar es que la mayoría de las corporaciones tienen políticas muy estrictas que prohíben cualquier que un empleado no autorizado hable con los medios de comunicación, analistas o inversores de la industria o financieros, y por buenas razones (por ejemplo, divulgaciones ante la SEC, cuestiones de propiedad intelectual, prácticas comerciales confidenciales, posible responsabilidad ante el empleado… etc.). Ahora parece que esas reglas no se aplican y no se pueden aplicar al modelo de IA de la empresa.

Esta situación plantea preguntas importantes que antes no existían:

  • ¿Podría esto convertirse en una nueva técnica de investigación para los periodistas tecnológicos?
  • ¿Qué significa que la IA de una empresa esté dispuesta a especular sobre los planes de la empresa o los rumores del mercado?
  • ¿Cómo podría esto cambiar la dinámica entre las empresas de tecnología, sus IA y los medios de comunicación?

El ritmo de cambio y aceleración dentro del espacio de la IA sólo está acelerando el ritmo. Empresas como Google, Anthropic, OpenAI, Apple, Amazon y todas las demás se están moviendo tan rápido que, sin duda, se descubrirán consecuencias no deseadas, que serán irreversibles. Es muy parecido a la IA de una empresa que habla en público cuando la empresa prefiere no hacerlo.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Apocalipsis Biosciencias para desarrollar Géminis para la infección en pacientes con quemaduras graves

Published

on

– Esta nueva indicación es otro paso para desbloquear todo el potencial de la plataforma Gemini –

San Diego-(Business Wire)-$ Revb #GÉMINISApocalipsis Biosciences, Inc. (NASDAQ: RevB) (la “empresa” o “revelación”), una compañía de ciencias de la vida de etapas clínicas que se centra en reequilibrar la inflamación para optimizar la salud, anunció una nueva indicación de objetivo para Géminis para la prevención de la infección en pacientes con quemaduras graves que requieren hospitalización (el Gema-PBI programa). El uso de Géminis para la prevención de la infección en pacientes con quemaduras severas, así como la prevención de la infección después de la cirugía (el Gema-PSI programa) son parte de la revelación familiar de patentes anteriormente con licencia de la Universidad de Vanderbilt.


“Estamos muy contentos de colaborar con el equipo de Apocalipsis para el avance de Géminis para la prevención de la infección en esta población de pacientes desatendida”, dijo Dra. Julia BohannonProfesor Asociado, Departamento de Anestesiología, Departamento de Patología, Microbiología e Inmunología, Universidad de Vanderbilt. “Creemos que la actividad de biomarcador clínico observada con Gemini se correlaciona fuertemente con nuestra experiencia preclínica en modelos de quemaduras de infecciones”.

El equipo de investigación de Vanderbilt demostrado El tratamiento posterior a la quemadura reduce significativamente la gravedad y la duración de la infección pulmonar de Pseudomonas, así como un nivel general reducido de inflamación en un modelo preclínico.

“La prevención de la infección en pacientes severamente quemados es un esfuerzo importante y complementa que la revelación laboral ha completado hasta la fecha”, dijo “, dijo”, dijo James RolkeCEO de Revelation “El programa Gemini-PBI puede ofrecer varias oportunidades regulatorias, de desarrollo y financiación que la compañía planea explorar”.

Sobre quemaduras e infección después de quemar

Las quemaduras son lesiones en la piel que involucran las dos capas principales: la epidermis externa delgada y/o la dermis más gruesa y profunda. Las quemaduras pueden ser el resultado de una variedad de causas que incluyen fuego, líquidos calientes, productos químicos (como ácidos fuertes o bases fuertes), electricidad, vapor, radiación de radiografías o radioterapia, luz solar o luz ultravioleta. Cada año, aproximadamente medio millón de estadounidenses sufren lesiones por quemaduras que requieren intervención médica. Si bien la mayoría de las lesiones por quemaduras no requieren ingreso a un hospital, se admiten alrededor de 40,000 pacientes, y aproximadamente 30,000 de ellos necesitan tratamiento especializado en un centro de quemaduras certificadas.

El número total anual de muertes relacionadas con quemaduras es de aproximadamente 3.400, siendo la infección invasiva la razón principal de la muerte después de las primeras 24 horas. La tasa de mortalidad general para pacientes con quemaduras graves es de aproximadamente 3.3%, pero esto aumenta al 20.6% en pacientes con quemaduras con lesión cutánea de quemaduras y inhalación, versus 10.5% por lesión por inhalación solo. La infección invasiva, incluida la sepsis, es la causa principal de la muerte después de la lesión por quemaduras, lo que representa aproximadamente el 51% de las muertes.

Actualmente no hay tratamientos aprobados para prevenir la infección sistémica en pacientes con quemaduras.

Sobre Géminis

Géminis es una formulación propietaria y propietaria de disacárido hexaacil fosforilada (PHAD (PHAD®) que reduce el daño asociado con la inflamación al reprogramarse del sistema inmune innato para responder al estrés (trauma, infección, etc.) de manera atenuada. La revelación ha realizado múltiples estudios preclínicos que demuestran el potencial terapéutico de Géminis en las indicaciones objetivo. Revelación anunciado previamente Datos clínicos positivos de fase 1 para el tratamiento intravenoso con Géminis. El punto final de seguridad primario se cumplió en el estudio de fase 1, y los resultados demostraron la actividad farmacodinámica estadísticamente significativa como se observó a través de los cambios esperados en múltiples biomarcadores, incluida la regulación positiva de IL-10.

Géminis se está desarrollando para múltiples indicaciones, incluso como pretratamiento para prevenir o reducir la gravedad y la duración de la lesión renal aguda (programa Gemini-AKI), y como pretratamiento para prevenir o reducir la gravedad y la duración de la infección posquirúrgica (programa GEMINI-PSI). Además, Gemini puede ser un tratamiento para detener o retrasar la progresión de la enfermedad renal crónica (programa Gemini-CKD).

Acerca de Apocalipsis Biosciences, Inc.

Revelation Biosciences, Inc. es una compañía de ciencias de la vida en estadio clínico centrada en aprovechar el poder de la inmunidad entrenada para la prevención y el tratamiento de la enfermedad utilizando su formulación patentada Géminis. Revelation tiene múltiples programas en curso para evaluar Géminis, incluso como prevención de la infección posquirúrgica, como prevención de lesiones renales agudas y para el tratamiento de la enfermedad renal crónica.

Para obtener más información sobre Apocalipsis, visite www.revbiosciences.com.

Declaraciones con avance

Este comunicado de prensa contiene declaraciones prospectivas definidas en la Ley de Reforma de Litigios de Valores Privados de 1995, según enmendada. Las declaraciones prospectivas son declaraciones que no son hechos históricos. Estas declaraciones prospectivas generalmente se identifican por las palabras “anticipar”, “creer”, “esperar”, “estimar”, “plan”, “perspectiva” y “proyecto” y otras expresiones similares. Advirtemos a los inversores que las declaraciones prospectivas se basan en las expectativas de la gerencia y son solo predicciones o declaraciones de las expectativas actuales e involucran riesgos, incertidumbres y otros factores conocidos y desconocidos que pueden hacer que los resultados reales sean materialmente diferentes de los previstos por las declaraciones de prospección. Apocalipsis advierte a los lectores que no depositen una dependencia indebida de tales declaraciones de vista hacia adelante, que solo hablan a partir de la fecha en que se hicieron. Los siguientes factores, entre otros, podrían hacer que los resultados reales difieran materialmente de los descritos en estas declaraciones prospectivas: la capacidad de la revelación para cumplir con sus objetivos financieros y estratégicos, debido a, entre otras cosas, la competencia; la capacidad de la revelación para crecer y gestionar la rentabilidad del crecimiento y retener a sus empleados clave; la posibilidad de que la revelación pueda verse afectada negativamente por otros factores económicos, comerciales y/o competitivos; riesgos relacionados con el desarrollo exitoso de los candidatos de productos de Apocalipsis; la capacidad de completar con éxito los estudios clínicos planificados de sus candidatos de productos; El riesgo de que no podamos inscribir completamente nuestros estudios clínicos o la inscripción llevará más tiempo de lo esperado; riesgos relacionados con la aparición de eventos de seguridad adversos y/o preocupaciones inesperadas que pueden surgir de los datos o análisis de nuestros estudios clínicos; cambios en las leyes o regulaciones aplicables; Iniciación esperada de los estudios clínicos, el momento de los datos clínicos; El resultado de los datos clínicos, incluido si los resultados de dicho estudio son positivos o si se puede replicar; El resultado de los datos recopilados, incluido si los resultados de dichos datos y/o correlación se pueden replicar; el momento, los costos, la conducta y el resultado de nuestros otros estudios clínicos; El tratamiento anticipado de datos clínicos futuros por parte de la FDA, la EMA u otras autoridades reguladoras, incluidos si dichos datos serán suficientes para su aprobación; el éxito de futuras actividades de desarrollo para sus candidatos de productos; posibles indicaciones para las cuales se pueden desarrollar candidatos de productos; la capacidad de revelación para mantener la lista de sus valores en NASDAQ; la duración esperada sobre la cual los saldos de Apocalipsis financiarán sus operaciones; y otros riesgos e incertidumbres descritos en este documento, así como aquellos riesgos e incertidumbres discutidos de vez en cuando en otros informes y otras presentaciones públicas con la SEC por Apocalipsis.

Contactos

Mike Porter

Relaciones con inversores

Porter Levay & Rose Inc.

Correo electrónico: mike@plrinvest.com

Chester Zygmont, III

Director financiero
Apocalipsis Biosciences Inc.

Correo electrónico: czygmont@revbiosciences.com

Continue Reading

Noticias

Why Google’s search engine trial is about AI : NPR

Published

on

An illustration photograph taken on Feb. 20, 2025 shows Grok, DeepSeek and ChatGPT apps displayed on a phone screen. The Justice Department’s 2020 complaint against Google has few mentions of artificial intelligence or AI chatbots. But nearly five years later, as the remedy phase of the trial enters its second week of testimony, the focus has shifted to AI.

Michael M. Santiago/Getty Images/Getty Images North America


hide caption

toggle caption

Michael M. Santiago/Getty Images/Getty Images North America

When the U.S. Department of Justice originally broughtand then won — its case against Google, arguing that the tech behemoth monopolized the search engine market, the focus was on, well … search.

Back then, in 2020, the government’s antitrust complaint against Google had few mentions of artificial intelligence or AI chatbots. But nearly five years later, as the remedy phase of the trial enters its second week of testimony, the focus has shifted to AI, underscoring just how quickly this emerging technology has expanded.

In the past few days, before a federal judge who will assess penalties against Google, the DOJ has argued that the company could use its artificial intelligence products to strengthen its monopoly in online search — and to use the data from its powerful search index to become the dominant player in AI.

In his opening statements last Monday, David Dahlquist, the acting deputy director of the DOJ’s antitrust civil litigation division, argued that the court should consider remedies that could nip a potential Google AI monopoly in the bud. “This court’s remedy should be forward-looking and not ignore what is on the horizon,” he said.

Dahlquist argued that Google has created a system in which its control of search helps improve its AI products, sending more users back to Google search — creating a cycle that maintains the tech company’s dominance and blocks competitors out of both marketplaces.

The integration of search and Gemini, the company’s AI chatbot — which the DOJ sees as powerful fuel for this cycle — is a big focus of the government’s proposed remedies. The DOJ is arguing that to be most effective, those remedies must address all ways users access Google search, so any penalties approved by the court that don’t include Gemini (or other Google AI products now or in the future) would undermine their broader efforts.

Department of Justice lawyer David Dahlquist leaves the Washington, D.C. federal courthouse on Sept. 20, 2023 during the original trial phase of the antitrust case against Google.

Department of Justice lawyer David Dahlquist leaves the Washington, D.C. federal courthouse on Sept. 20, 2023 during the original trial phase of the antitrust case against Google.

Jose Luis Magana/AP/FR159526 AP


hide caption

toggle caption

Jose Luis Magana/AP/FR159526 AP

AI and search are connected like this: Search engine indices are essentially giant databases of pages and information on the web. Google has its own such index, which contains hundreds of billions of webpages and is over 100,000,000 gigabytes, according to court documents. This is the data Google’s search engine scans when responding to a user’s query.

AI developers use these kinds of databases to build and train the models used to power chatbots. In court, attorneys for the DOJ have argued that Google’s Gemini pulls information from the company’s search index, including citing search links and results, extending what they say is a self-serving cycle. They argue that Google’s ability to monopolize the search market gives it user data, at a huge scale — an advantage over other AI developers.

The Justice Department argues Google’s monopoly over search could have a direct effect on the development of generative AI, a type of artificial intelligence that uses existing data to create new content like text, videos or photos, based on a user’s prompts or questions. Last week, the government called executives from several major AI companies, like OpenAI and Perplexity, in an attempt to argue that Google’s stranglehold on search is preventing some of those companies from truly growing.

The government argues that to level the playing field, Google should be forced to open its search data — like users’ search queries, clicks and results — and license it to other competitors at a cost.

This is on top of demands related to Google’s search engine business, most notably that it should be forced to sell off its Chrome browser.

Google flatly rejects the argument that it could monopolize the field of generative AI, saying competition in the AI race is healthy. In a recent blog post on Google’s website, Lee-Anne Mulholland, the company’s vice president of regulatory affairs, wrote that since the federal judge first ruled against Google over a year ago, “AI has already rapidly reshaped the industry, with new entrants and new ways of finding information, making it even more competitive.”

In court, Google’s lawyers have argued that there are a host of AI companies with chatbots — some of which are outperforming Gemini. OpenAI has ChatGPT, Meta has MetaAI and Perplexity has Perplexity AI.

“There is no shortage of competition in that market, and ChatGPT and Meta are way ahead of everybody in terms of the distribution and usage at this point,” said John E. Schmidtlein, a lawyer for Google, during his opening statement. “But don’t take my word for it. Look at the data. Hundreds and hundreds of millions of downloads by ChatGPT.”

Competing in a growing AI field

It should be no surprise that AI is coming up so much at this point in the trial, said Alissa Cooper, the executive director of the Knight-Georgetown Institute, a nonpartisan tech research and policy center at Georgetown University focusing on AI, disinformation and data privacy.

“If you look at search as a product today, you can’t really think about search without thinking about AI,” she said. “I think the case is a really great opportunity to try to … analyze how Google has benefited specifically from the monopoly that it has in search, and ensure that the behavior that led to that can’t be used to gain an unfair advantage in these other markets which are more nascent.”

Having access to Google’s data, she said, “would provide them with the ability to build better chatbots, build better search engines, and potentially build other products that we haven’t even thought of.”

To make that point, the DOJ called Nick Turley, OpenAI’s head of product for ChatGPT, to the stand last Tuesday. During a long day of testimony, Turley detailed how without access to Google’s search index and data, engineers for the growing company tried to build their own.

ChatGPT, a large language model that can generate human-like responses, engage in conversations and perform tasks like explaining a tough-to-understand math lesson, was never intended to be a product for OpenAI, Turley said. But once it launched and went viral, the company found that people were using it for a host of needs.

Though popular, ChatGPT had its drawbacks, like the bot’s limited “knowledge,” Turley said. Early on, ChatGPT was not connected to the internet and could only use information that it had been fed up to a certain point in its training. For example, Turley said, if a user asked “Who is the president?” the program would give a 2022 answer — from when its “knowledge” effectively stopped.

OpenAI couldn’t build their own index fast enough to address their problems; they found that process incredibly expensive, time consuming and potentially years from coming to fruition, Turley said.

So instead, they sought a partnership with a third party search provider. At one point, OpenAI tried to make a deal with Google to gain access to their search, but Google declined, seeing OpenAI as a direct competitor, Turley testified.

But Google says companies like OpenAI are doing just fine without gaining access to the tech giant’s own technology — which it spent decades developing. These companies just want “handouts,” said Schmidtlein.

On the third day of the remedy trial, internal Google documents shared in court by the company’s lawyers compared how many people are using Gemini versus its competitors. According to those documents, ChatGPT and MetaAI are the two leaders, with Gemini coming in third.

They showed that this March, Gemini saw 35 million active daily users and 350 million monthly active users worldwide. That was up from 9 million daily active users in October 2024. But according to those documents, Gemini was still lagging behind ChatGPT, which reached 160 million daily users and around 600 million active users in March.

These numbers show that competitors have no need to use Google’s search data, valuable intellectual property that the tech giant spent decades building and maintaining, the company argues.

“The notion that somehow ChatGPT can’t get distribution is absurd,” Schmidtlein said in court last week. “They have more distribution than anyone.”

Google’s exclusive deals 

In his ruling last year, U.S. District Judge Amit Mehta said Google’s exclusive agreements with device makers, like Apple and Samsung, to make its search engine the default on those companies’ phones helped maintain its monopoly. It remains a core issue for this remedy trial.

Now, the DOJ is arguing that Google’s deals with device manufacturers are also directly affecting AI companies and AI tech.

In court, the DOJ argued that Google has replicated this kind of distribution deal by agreeing to pay Samsung what Dahlquist called a monthly “enormous sum” for Gemini to be installed on smartphones and other devices.

Last Wednesday, the DOJ also called Dmitry Shevelenko, Perplexity’s chief business officer, to testify that Google has effectively cut his company out from making deals with manufacturers and mobile carriers.

Perplexity AIs not preloaded on any mobile devices in the U.S., despite many efforts to get phone companies to establish Perplexity as a default or exclusive app on devices, Shevelenko said. He compared Google’s control in that space to that of a “mob boss.”

But Google’s attorney, Christopher Yeager, noted in questioning Shevelenko that Perplexity has reached a valuation of over $9 billion — insinuating the company is doing just fine in the marketplace.

Despite testifying in court (for which he was subpoenaed, Shevelenko noted), he and other leaders at Perplexity are against the breakup of Google. In a statement on the company’s website, the Perplexity team wrote that neither forcing Google to sell off Chrome nor to license search data to its competitors are the best solutions. “Neither of these address the root issue: consumers deserve choice,” they wrote.

Google and Alphabet CEO Sundar Pichai departs federal court after testifying in October 2023 in Washington, DC. Pichai testified to defend his company in the original antitrust trial. Pichai is expected to testify again during the remedy phase of the legal proceedings.

Google and Alphabet CEO Sundar Pichai departs federal court after testifying in October 2023 in Washington, DC. Pichai testified to defend his company in the original antitrust trial. Pichai is expected to testify again during the remedy phase of the legal proceedings.

Drew Angerer/Getty Images/Getty Images North America


hide caption

toggle caption

Drew Angerer/Getty Images/Getty Images North America

What to expect next

This week the trial continues, with the DOJ calling its final witnesses this morning to testify about the feasibility of a Chrome divestiture and how the government’s proposed remedies would help rivals compete. On Tuesday afternoon, Google will begin presenting its case, which is expected to feature the testimony of CEO Sundar Pichai, although the date of his appearance has not been specified.

Closing arguments are expected at the end of May, and then Mehta will make his ruling. Google says once this phase is settled the company will appeal Mehta’s ruling in the underlying case.

Whatever Mehta decides in this remedy phase, Cooper thinks it will have effects beyond just the business of search engines. No matter what it is, she said, “it will be having some kind of impact on AI.”

Google is a financial supporter of NPR.

Continue Reading

Noticias

API de Meta Oleleshes Llama que se ejecuta 18 veces más rápido que OpenAI: Cerebras Partnership ofrece 2.600 tokens por segundo

Published

on

Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información


Meta anunció hoy una asociación con Cerebras Systems para alimentar su nueva API de LLAMA, ofreciendo a los desarrolladores acceso a velocidades de inferencia hasta 18 veces más rápido que las soluciones tradicionales basadas en GPU.

El anuncio, realizado en la Conferencia inaugural de desarrolladores de Llamacon de Meta en Menlo Park, posiciona a la compañía para competir directamente con Operai, Anthrope y Google en el mercado de servicios de inferencia de IA en rápido crecimiento, donde los desarrolladores compran tokens por miles de millones para impulsar sus aplicaciones.

“Meta ha seleccionado a Cerebras para colaborar para ofrecer la inferencia ultra rápida que necesitan para servir a los desarrolladores a través de su nueva API de LLAMA”, dijo Julie Shin Choi, directora de marketing de Cerebras, durante una sesión de prensa. “En Cerebras estamos muy, muy emocionados de anunciar nuestra primera asociación HyperScaler CSP para ofrecer una inferencia ultra rápida a todos los desarrolladores”.

La asociación marca la entrada formal de Meta en el negocio de la venta de AI Computation, transformando sus populares modelos de llama de código abierto en un servicio comercial. Si bien los modelos de LLAMA de Meta se han acumulado en mil millones de descargas, hasta ahora la compañía no había ofrecido una infraestructura en la nube de primera parte para que los desarrolladores creen aplicaciones con ellos.

“Esto es muy emocionante, incluso sin hablar sobre cerebras específicamente”, dijo James Wang, un ejecutivo senior de Cerebras. “Openai, Anthrope, Google: han construido un nuevo negocio de IA completamente nuevo desde cero, que es el negocio de inferencia de IA. Los desarrolladores que están construyendo aplicaciones de IA comprarán tokens por millones, a veces por miles de millones. Y estas son como las nuevas instrucciones de cómputo que las personas necesitan para construir aplicaciones AI”.

Una tabla de referencia muestra a Cerebras Processing Llama 4 a 2,648 tokens por segundo, superando drásticamente a los competidores Sambanova (747), Groq (600) y servicios basados ​​en GPU de Google y otros, explicando la elección de hardware de Meta para su nueva API. (Crédito: Cerebras)

Breaking the Speed ​​Barrier: Cómo modelos de Llama de Cerebras Supercharges

Lo que distingue a la oferta de Meta es el aumento de la velocidad dramática proporcionado por los chips de IA especializados de Cerebras. El sistema de cerebras ofrece más de 2.600 fichas por segundo para Llama 4 Scout, en comparación con aproximadamente 130 tokens por segundo para ChatGPT y alrededor de 25 tokens por segundo para Deepseek, según puntos de referencia del análisis artificial.

“Si solo se compara con API a API, Gemini y GPT, todos son grandes modelos, pero todos se ejecutan a velocidades de GPU, que son aproximadamente 100 tokens por segundo”, explicó Wang. “Y 100 tokens por segundo están bien para el chat, pero es muy lento para el razonamiento. Es muy lento para los agentes. Y la gente está luchando con eso hoy”.

Esta ventaja de velocidad permite categorías completamente nuevas de aplicaciones que antes no eran prácticas, incluidos los agentes en tiempo real, los sistemas de voz de baja latencia conversacional, la generación de código interactivo y el razonamiento instantáneo de múltiples pasos, todos los cuales requieren encadenamiento de múltiples llamadas de modelo de lenguaje grandes que ahora se pueden completar en segundos en lugar de minutos.

La API de LLAMA representa un cambio significativo en la estrategia de IA de Meta, en la transición de ser un proveedor de modelos a convertirse en una compañía de infraestructura de IA de servicio completo. Al ofrecer un servicio API, Meta está creando un flujo de ingresos a partir de sus inversiones de IA mientras mantiene su compromiso de abrir modelos.

“Meta ahora está en el negocio de vender tokens, y es excelente para el tipo de ecosistema de IA estadounidense”, señaló Wang durante la conferencia de prensa. “Traen mucho a la mesa”.

La API ofrecerá herramientas para el ajuste y la evaluación, comenzando con el modelo LLAMA 3.3 8B, permitiendo a los desarrolladores generar datos, entrenar y probar la calidad de sus modelos personalizados. Meta enfatiza que no utilizará datos de clientes para capacitar a sus propios modelos, y los modelos construidos con la API de LLAMA se pueden transferir a otros hosts, una clara diferenciación de los enfoques más cerrados de algunos competidores.

Las cerebras alimentarán el nuevo servicio de Meta a través de su red de centros de datos ubicados en toda América del Norte, incluidas las instalaciones en Dallas, Oklahoma, Minnesota, Montreal y California.

“Todos nuestros centros de datos que sirven a la inferencia están en América del Norte en este momento”, explicó Choi. “Serviremos Meta con toda la capacidad de las cerebras. La carga de trabajo se equilibrará en todos estos diferentes centros de datos”.

El arreglo comercial sigue lo que Choi describió como “el proveedor de cómputo clásico para un modelo hiperscalador”, similar a la forma en que NVIDIA proporciona hardware a los principales proveedores de la nube. “Están reservando bloques de nuestro cómputo para que puedan servir a su población de desarrolladores”, dijo.

Más allá de las cerebras, Meta también ha anunciado una asociación con Groq para proporcionar opciones de inferencia rápida, brindando a los desarrolladores múltiples alternativas de alto rendimiento más allá de la inferencia tradicional basada en GPU.

La entrada de Meta en el mercado de API de inferencia con métricas de rendimiento superiores podría potencialmente alterar el orden establecido dominado por Operai, Google y Anthrope. Al combinar la popularidad de sus modelos de código abierto con capacidades de inferencia dramáticamente más rápidas, Meta se está posicionando como un competidor formidable en el espacio comercial de IA.

“Meta está en una posición única con 3 mil millones de usuarios, centros de datos de hiper escala y un gran ecosistema de desarrolladores”, según los materiales de presentación de Cerebras. La integración de la tecnología de cerebras “ayuda a Meta Leapfrog OpenAi y Google en rendimiento en aproximadamente 20X”.

Para las cerebras, esta asociación representa un hito importante y la validación de su enfoque especializado de hardware de IA. “Hemos estado construyendo este motor a escala de obleas durante años, y siempre supimos que la primera tarifa de la tecnología, pero en última instancia tiene que terminar como parte de la nube de hiperescala de otra persona. Ese fue el objetivo final desde una perspectiva de estrategia comercial, y finalmente hemos alcanzado ese hito”, dijo Wang.

La API de LLAMA está actualmente disponible como una vista previa limitada, con Meta planifica un despliegue más amplio en las próximas semanas y meses. Los desarrolladores interesados ​​en acceder a la inferencia Ultra-Fast Llama 4 pueden solicitar el acceso temprano seleccionando cerebras de las opciones del modelo dentro de la API de LLAMA.

“Si te imaginas a un desarrollador que no sabe nada sobre cerebras porque somos una empresa relativamente pequeña, solo pueden hacer clic en dos botones en el SDK estándar de SDK estándar de Meta, generar una tecla API, seleccionar la bandera de cerebras y luego, de repente, sus tokens se procesan en un motor gigante a escala de dafers”, explicó las cejas. “Ese tipo de hacernos estar en el back -end del ecosistema de desarrolladores de Meta todo el ecosistema es tremendo para nosotros”.

La elección de Meta de silicio especializada señala algo profundo: en la siguiente fase de la IA, no es solo lo que saben sus modelos, sino lo rápido que pueden pensarlo. En ese futuro, la velocidad no es solo una característica, es todo el punto.

Continue Reading

Trending