When it comes to AI, I’d consider myself a casual user and a curious one. It’s been creeping into my daily life for a couple of years, and at the very least, AI chatbots can be good at making drudgery slightly less drudgerous.
Noticias
Un aumento anual del 115,9% y lo que significa para CX
La esencia
- Los datos de Similarweb revelan el crecimiento de ChatGPT. ChatGPT ha experimentado un aumento interanual del tráfico del 115,9%, alcanzando 3.700 millones de visitas mensuales en todo el mundo, con un crecimiento mes a mes del 17,2% en octubre.
- Crecimiento comparativo en herramientas de IA generativa. Microsoft CoPilot, Perplexity, Claude y Google Gemini también experimentaron un crecimiento significativo, lo que muestra la tendencia creciente en el uso de IA generativa.
- Las impresionantes ganancias de NotebookLM. El tráfico de NotebookLM aumentó más del 200% mes tras mes en octubre, lo que refleja un creciente interés en aplicaciones innovadoras de IA.
¿Cuántas personas visitaron ChatGPT de OpenAI el mes pasado? 3,7 mil millones. Y eso es un aumento interanual del 115,9%, según datos de Similarweb publicados el 6 de noviembre.
El bot de IA generativa favorito de todos también aumentó un 17,2% mes tras mes para alcanzar 3.700 millones de visitas en todo el mundo.
¿Qué significa el crecimiento de ChatGPT para el marketing y la CX?
¿Qué significa esto para los líderes de marketing y experiencia del cliente que piensan en la capacidad de descubrimiento de contenido y la IA generativa en general? ChatGPT es un lugar cada vez más atractivo si desea que sus clientes y prospectos lo encuentren, especialmente a la luz del debut este mes de ChatGPT Search.
Sólo hay un problema. no lo sabemos cómo para publicar nuestro contenido en ChatGPT, todavía. Hemos hablado mucho sobre la optimización de la visibilidad de la IA (AIVO) aquí, enmarcando esto potencialmente como el SEO para la IA. Pero eso aún no es concreto, y los robots de búsqueda de inteligencia artificial aún no han abierto las fórmulas mágicas como lo han hecho tantas herramientas de SEO y Google en las últimas décadas.
Esto es lo que sí sabemos: a los chatbots de IA les gustan las respuestas, al igual que a Google. La lección: haga que su contenido sea educativo en lugar de promocional.
Artículo relacionado: ¿Están los especialistas en marketing preparados para la disrupción de la IA?
Fuerte trayectoria de crecimiento para ChatGPT
En cuanto a ChatGPT, el bot generativo de IA ha experimentado un “crecimiento fenomenal” desde su debut el 30 de noviembre de 2022, según Similarweb, que lo calificó como uno de los sitios web más grandes del mundo a principios de 2023.
Es importante tener en cuenta: ChatGPT es ahora una marca exclusiva en IA generativa, que opera en su propio dominio en lugar de como un subdominio de su empresa matriz, OpenAI. En mayo de 2024 se registraron 2.200 millones de tráfico para ChatGPT y ahora 3.700 millones de visitas en octubre. OpenAI también actualizó su algoritmo central, agregó nuevas funciones a OpenAI y consolidó otras aplicaciones como el generador de imágenes DALL-E como aplicaciones (“GPT”) a las que se accede desde ChatGPT, según Similarweb.
ChatGPT en realidad superó al motor de búsqueda Bing de Microsoft en tráfico, según datos de SimilarWeb. Hay un largo camino por recorrer para conquistar el mundo de Google, pero ChatGPT venciendo a Bing dice algo, y podría ser un precursor de dónde los consumidores terminan buscando contenido y respuestas a través de Internet.
NotebookLM: Aumento del 200 % del tráfico web de MOM
ChatGPT no está solo en el mundo de la IA en cuanto a crecimiento asombroso de visitantes. NotebookLM de Google, una aplicación para tomar notas mejorada con IA, experimentó un aumento de tráfico mes a mes de más del 200% en octubre, alcanzando 31,5 millones de visitas, según SimilarWeb. Anteriormente experimentó un crecimiento de tres dígitos. La gente anhela información basada en IA; Al diablo con las fuentes.
¿Y has probado la función de podcast de NotebookLM? Es bastante sorprendente. Agregue cualquier resultado y listo: tendrá un podcast bien pensado con un par de presentadores que brindan un análisis bastante preciso.
NotebookLLM permite a los usuarios “compilar y consultar una base de conocimiento personal, diferenciándola de los modelos tradicionales de IA basados en la web”, según Similarweb. “Su capacidad para generar resúmenes estilo podcast ha cautivado a los usuarios, generando un crecimiento de casi el 300% en septiembre y un aumento del 201% en octubre”.
Microsoft, Perplexity, Claude y Google Gemini ven crecimiento
Similarweb también informó otro crecimiento de nuestros amigos bot de IA:
- microsoftEl sitio web independiente de CoPilot, una de las varias formas en que Microsoft lleva las capacidades de IA al mercado, experimentó un crecimiento del tráfico del 87,6% intermensual a 69,4 millones de visitas. Microsoft recientemente comenzó a redirigir las interacciones de chat de Bing al sitio CoPilot, lo que representa parte de ese aumento.
- Perplejidad aumentó un 25,5 % intermensual y un 199,2 % interanual hasta 90,8 millones de visitas
- claudio aumentó un 25,5% intermensual y un 394,9% interanual a 84,1 millones de visitas.
- Géminis de Google El sitio web atrajo 291,6 millones de visitas en octubre, un aumento intermensual del 6,2% y interanual del 19% (en comparación con la dirección anterior bard.google.com).
Artículo relacionado: ¿Puede SearchGPT de OpenAI superar a Google?
Sus clientes y prospectos están en la IA generativa
Este es el trato: el uso de IA generativa no ha disminuido desde que ChatGPT sacudió el mundo digital con su entrante hace casi dos años.
En el informe publicado el mes pasado, “Growing Up: Navigating Gen AI’s Early Years” de AI en Wharton y GBK Collective, los investigadores encontraron:
- Mayor familiaridad: El conocimiento de Gen AI entre los líderes empresariales aumentó en 23 puntos porcentuales, con aumentos significativos en la familiaridad con el marketing y las ventas.
- Casos de uso amplios: El uso de la IA de última generación incluye la creación de contenido de marketing, atención al cliente y publicidad personalizada.
- Crecimiento de la adopción: El 72% de los tomadores de decisiones informan que utilizan Gen AI semanalmente, frente al 37% en 2023.
- Auge de la inversión: El gasto en IA en generación aumentó, con presupuestos promedio que crecieron de 4,5 millones de dólares a 10,3 millones de dólares.
- Mejores artistas: Gen AI es más eficaz en análisis de datos, lluvia de ideas y tareas legales.
- Futuro estable: Si bien el 72% de las empresas planea aumentos presupuestarios, el gasto futuro crecerá a un ritmo más lento.
- Liderazgo de TI: TI/BI ve el mayor impacto de la Generación AI (el 58% lo califica como de gran impacto).
- Expansiones de equipo: Muchas empresas están formando o ampliando equipos centrados en la generación de IA; El 21% tiene directores de IA.
- Persisten las preocupaciones: La precisión, la privacidad y la integración son las principales barreras, aunque los temores se han suavizado.
- Liderazgo diferenciado: Microsoft y Google son líderes proyectados, pero el mercado sigue siendo dinámico.
“El mayor impacto de Gen AI será aumentar mis capacidades”, dijo a Wharton y a investigadores de GBK Collective un líder bancario cuya organización tiene ingresos anuales de entre 100 y 250 millones de dólares. “[It will] automatizar tareas rutinarias y brindar soporte 24 horas al día, 7 días a la semana a nuestros clientes, liberándome para concentrarme en [customer] empatía y resolución de problemas más complejos”.
En el camino de este año para CMSWire, hemos escuchado muchas historias de renuencia a saltar a la palestra de la IA debido a la seguridad, la gobernanza, la falta de un retorno de la inversión claro y la incertidumbre general sobre la innovación.
Ahora sabemos esto: estos números reportados aquí sugieren una desaceleración cero para el uso de IA generativa. De hecho, aquí hay un crecimiento enorme. Estos son algunos datos que los especialistas en marketing y los líderes en experiencia del cliente deben tener en cuenta.
Noticias
¿Deepseek copió la tecnología AI de OpenAI? | Noticias explicadas
Incluso cuando el creador de chatgpt Openai enfrenta un aluvión de casos de infracción de derechos de autor en algunos países, la compañía cree que su advenimiento Rival chino Deepseek Puede haber copiado de su tecnología de inteligencia artificial (IA). No solo Openai, sino uno de los principales asesores del presidente de los Estados Unidos, Donald Trump, también ha nivelado esta afirmación, sin presentar muchas pruebas.
La entrada de Deepseek en el espacio de IA, promocionado por ser de código abierto, su precisión y afirmaciones de que se basa en la fracción del costo como sus competidores estadounidenses, han causado una agitación en la industria de la tecnología. Ha enviado el stock de Nvidia en una espiral descendente, ya que su modelo fue capacitado en unites de procesamiento de gráficos inferiores (GPU) en comparación con lo que tienen acceso a OpenAI. Y su entrada ha reavivado la conversación sobre controles de exportación más estrictos.
Es en este contexto que OpenAi ha dicho que Deepseek puede haber utilizado una técnica llamada “destilación”, que permite que su modelo aprenda de un modelo previo al estado de ejercicio, en este caso ChatGPT. Si bien Deepseek ha sido acusado de robo de propiedad intelectual desde que recibió atención principal, algunos expertos de la industria han desestimado estas afirmaciones diciendo que se derivan de una comprensión inadecuada de cómo los modelos como Deepseek están capacitados.
La sospecha de Openai sobre Deepseek
OpenAI prohíbe la práctica de capacitar a un nuevo modelo de IA al consultar repetidamente un modelo más grande y pre-entrenado, una técnica comúnmente conocida como destilación, según sus términos de uso. Y la compañía sospecha que Deepseek puede haber intentado algo similar, lo que podría ser una violación de sus términos.
“Sabemos que los grupos de la RPC (China) están trabajando activamente para usar métodos, incluido lo que se conoce como destilación, para replicar los modelos AI avanzados de EE. UU.”, Dijo un portavoz de OpenAI en un comunicado. “Somos conscientes y revisando las indicaciones de que Deepseek puede haber destilado inapropiadamente nuestros modelos y compartirá información como sabemos más”.
David Sacks, asesor de IA de Trump, dijo a Fox News: “Hay evidencia sustancial de que lo que hizo Deepseek aquí es que destilaron el conocimiento de las modelos de OpenAi … y no creo que OpenAi esté muy contento con esto”.
Los actores de la industria contrarrestan las afirmaciones de Openai
La historia continúa debajo de este anuncio
Sin embargo, algunos no están de acuerdo con las afirmaciones de que Deepseek copió la tecnología de OpenAi y similares.
“Hay muchas ideas erróneas de que China” clonó “las salidas de OpenAi. Esto está lejos de ser cierto y refleja una comprensión incompleta de cómo estos modelos están entrenados en primer lugar … “Aravind Srinivas, CEO de Perpleity en una publicación sobre X.
“Deepseek R1 ha descubierto RL (aprendizaje de refuerzo) Finetuning. Escribieron un artículo completo sobre este tema llamado Deepseek R1 Zero, donde no se usó SFT (ajuste fino supervisado). Y luego lo combinó con un poco de SFT para agregar conocimiento del dominio con un buen muestreo de rechazo (también conocido como filtrado). La razón principal por la que es tan bueno es que aprendió razonamiento desde cero en lugar de imitar a otros humanos o modelos ”, agregó.
La idea de usar el aprendizaje de refuerzo (RL) se convirtió en un punto de enfoque para las compañías de IA en 2024. “Este nuevo paradigma implica comenzar con el tipo de modelos prenederos ordinarios, y luego como segunda etapa utilizando RL para agregar las habilidades de razonamiento”, explicó Dario. AMODEI, CEO de Anthrope, en una publicación de blog.
La historia continúa debajo de este anuncio
El ajuste fino supervisado (SFT) es un proceso en el aprendizaje automático donde un modelo previamente capacitado está capacitado (ajustado) en un conjunto de datos etiquetado específico para una tarea en particular. Este enfoque aprovecha el conocimiento general que el modelo ya ha adquirido durante su fase inicial de pre-entrenamiento y lo adapta para funcionar bien en una tarea más especializada.
Según un resumen adjunto con el modelo de Deepseek en su página de GitHub, la compañía dijo que aplicó el aprendizaje de refuerzo al modelo base sin depender del ajuste superior supervisado como un paso preliminar.
“Este enfoque permite que el modelo explore la cadena de pensamiento (cot) para resolver problemas complejos, lo que resulta en el desarrollo de Deepseek-R1-Zero. Deepseek-r1-cero demuestra capacidades como la autoverificación, la reflexión y la generación de cunas largas, marcando un hito significativo para la comunidad de investigación. En particular, es la primera investigación abierta para validar que las capacidades de razonamiento de los LLM se pueden incentivar puramente a través de RL, sin la necesidad de SFT. Este avance allana el camino para futuros avances en esta área. ”, Dijo el resumen.
Los propios problemas de derechos de autor de Openai
La historia continúa debajo de este anuncio
En todo el mundo, y específicamente en países como Estados Unidos e India, existe un creciente escepticismo de los editores de noticias sobre las preocupaciones de material con derechos de autor, como informes de noticias, utilizados por compañías como OpenAI para capacitar a sus modelos fundamentales, sin permiso o pago.
En noviembre pasado, la agencia de noticias Ani había demandado a OpenAi en el Tribunal Superior de Delhi, acusando a la compañía de usar ilegalmente material con derechos de autor indio para capacitar a sus modelos de IA. A principios de esta semana, una serie de editores de noticias digitales, incluido el Indian Express, han presentado una intervención en el caso.
La afirmación es que compañías como OpenAI han desarrollado grandes modelos de idiomas (LLM) al “capacitar” sobre grandes cantidades de texto, incluidas, sin licencia o permiso, obras protegidas por derechos de autor. Esta “utilización ilegal de materiales con derechos de autor beneficia exclusivamente a Openai y a sus inversores, en detrimento de los trabajos creativos en toda la industria de la India”, dijo la Asociación de Publishers de Noticias Digital (DNPA) en un comunicado.
Operai también enfrenta una serie de demandas similares en otras jurisdicciones. En diciembre de 2023, el New York Times demandó a la compañía y Microsoft, citando el uso “ilegal” de contenido con derechos de autor. La publicación ha alegado que los modelos de idiomas grandes de Openai y Microsoft, que alimentan el chatgpt y el copiloto, “pueden generar el resultado que recita el contenido textual, lo resume de cerca e imita su estilo expresivo”. Este “socavo[s] y daño[s]”La relación del Times con los lectores, al tiempo que la prive de” suscripción, licencias, publicidad e ingresos por afiliados “.
Noticias
DeepSeek’s AI is bad for OpenAI and NVIDIA. But it might be great for you.
But whenever I start to feel convinced that tools like ChatGPT and Claude can actually make my life better, I seem to hit a paywall, because the most advanced and arguably most useful tools require a subscription. Then came DeepSeek.
The Chinese startup DeepSeek sunk the stock prices of several major tech companies on Monday after it released a new open-source model that can reason on the cheap: DeepSeek-R1. The company says R1’s performance matches OpenAI’s initial “reasoning” model, o1, and it does so using a fraction of the resources. It also cost a lot less to use. That adds up to an advanced AI model that’s free to the public and a bargain to developers who want to build apps on top of it.
While OpenAI, Anthropic, Google, Meta, and Microsoft have collectively spent billions of dollars training their models, DeepSeek claims it spent less than $6 million on using the equipment to train R1’s predecessor, DeepSeek-V3. (Disclosure: Vox Media is one of several publishers that has signed partnership agreements with OpenAI. Our reporting remains editorially independent.)
To get unlimited access to OpenAI’s o1, you’ll need a pro account, which costs $200 a month. DeepSeek does charge companies for access to its application programming interface (API), which allows apps to talk to each other and helps developers bake AI models into their apps. But what DeepSeek charges for API access is a tiny fraction of the cost that OpenAI charges for access to o1. So it might not come as a surprise that, as of Wednesday morning, DeepSeek wasn’t just the most popular AI app in the Apple and Google app stores. It was the most popular app, period.
“The main reason people are very excited about DeepSeek is not because it’s way better than any of the other models,” said Leandro von Werra, head of research at the AI platform Hugging Face. “It’s more that it’s an open model, and coming from a place where people didn’t expect it to come from.”
So as Silicon Valley and Washington pondered the geopolitical implications of what’s been called a “Sputnik moment” for AI, I’ve been fixated on the promise that AI tools can be both powerful and cheap. And on top of that, I imagined how a future powered by artificially intelligent software could be built on the same open-source principles that brought us things like Linux and the World Web Web.
This could be wishful thinking and a little bit naive. After all, OpenAI was originally founded as a nonprofit company with the mission to create AI that would serve the entire world, regardless of financial return. That’s no longer the case.
But this is why DeepSeek’s explosive entrance into the global AI arena could make my wishful thinking a bit more realistic. While my own experiments with the R1 model showed a chatbot that basically acts like other chatbots — while walking you through its reasoning, which is interesting — the real value is that it points toward a future of AI that is, at least partially, open source. It indicates that even the most advanced AI capabilities don’t need to cost billions of dollars to build — or be built by trillion-dollar Silicon Valley companies. That means more companies could be competing to build more interesting applications for AI.
And while American tech companies have spent billions trying to get ahead in the AI arms race, DeepSeek’s sudden popularity also shows that while it is heating up, the digital cold war between the US and China doesn’t have to be a zero-sum game.
DeepSeek’s unconventional, almost-open-source approach
While you may not have heard of DeepSeek until this week, the company’s work caught the attention in the AI research world a few years ago. The company actually grew out of High-Flyer, a China-based hedge fund founded in 2016 by engineer Liang Wenfeng. High-Flyer found great success using AI to anticipate movement in the stock market. That, however, prompted a crackdown on what Beijing deemed to be speculative trading, so in 2023, Liang spun off his company’s research division into DeepSeek, a company focused on advanced AI research.
From the outset, DeepSeek set itself apart by building powerful open-source models cheaply and offering developers access for cheap. In the software world, open source means that the code can be used, modified, and distributed by anyone. In the context of AI, that applies to the entire system, including its training data, licenses, and other components. Thanks to DeepSeek’s open-source approach, anyone can download its models, tweak them, and even run them on local servers.
The major US players in the AI race — OpenAI, Google, Anthropic, Microsoft — have closed models built on proprietary data and guarded as trade secrets. Meta has set itself apart by releasing open-source models. Conventional wisdom suggested that open models lagged behind closed models by a year or so. DeepSeek apparently just shattered that notion.
DeepSeek’s models are not, however, truly open source. They’re what’s known as open-weight AI models. That means the data that allows the model to generate content, also known as the model’s weights, is public, but the company hasn’t released its training data or code. Von Werra, of Hugging Face, is working on a project to fully reproduce DeepSeek-R1, including its data and training pipelines. One of the goals is to figure out how exactly DeepSeek managed to pull off such advanced reasoning with far fewer resources than competitors, like OpenAI, and then release those findings to the public to give open-source AI development another leg up.
“If more people have access to open models, more people will build on top of it,” von Werra said.
Still, we already know a lot more about how DeepSeek’s model works than we do about OpenAI’s. DeepSeek published a detailed technical report on R1 under an MIT License, which gives permission to reuse, modify, or distribute the software. A similar technical report on the V3 model released in December says that it was trained on 2,000 NVIDIA H800 chips versus the 16,000 or so integrated circuits competing models needed for training. Training took 55 days and cost $5.6 million, according to DeepSeek, while the cost of training Meta’s latest open-source model, Llama 3.1, is estimated to be anywhere from about $100 million to $640 million. But because Meta does not share all components of its models, including training data, some do not consider Llama to be truly open source.
When it comes to performance, there’s little doubt that DeepSeek-R1 delivers impressive results that rival its most expensive competitors. A comparison of models from Artificial Analysis shows that R1 is second only to OpenAI’s o1 in reasoning and artificial analysis. It actually slightly outperforms o1 in terms of quantitative reasoning and coding. The big tradeoff appears to be speed. DeepSeek is kind of slow, and you’ll notice it if you use R1 in the app or on the web. It does show you what it’s thinking as it’s thinking, though, which is kind of neat.
Now, the number of chips used or dollars spent on computing power are super important metrics in the AI industry, but they don’t mean much to the average user. The most basic versions of ChatGPT, the model that put OpenAI on the map, and Claude, Anthropic’s chatbot, are powerful enough for a lot of people, and they’re free. They can summarize stuff, help you plan a vacation, and help you search the web with varying results. But chatbots are far from the coolest thing AI can do.
The challenge to America’s global AI supremacy
What’s most exciting about DeepSeek and its more open approach is how it will make it cheaper and easier to build AI into stuff. This is a huge deal for developers trying to create killer apps as well as scientists trying to make breakthrough discoveries. It’s also a huge challenge to the Silicon Valley establishment, which has poured billions of dollars into companies like OpenAI with the understanding that the massive capital expenditures would be necessary to lead the burgeoning global AI industry.
It’s not an understatement to say that DeepSeek is shaking the AI industry to its very core. The stock market’s reaction to the arrival of DeepSeek-R1’s arrival wiped out nearly $1 trillion in value from tech stocks and reversed two years of seemingly neverending gains for companies propping up the AI industry, including most prominently NVIDIA, whose chips were used to train DeepSeek’s models.
It also indicated that the Biden administration’s moves to curb chip exports in an effort to slow China’s progress in AI innovation may not have had the desired effect. Joe Biden started blocking exports of advanced AI chips to China in 2022 and expanded those efforts just before Trump took office. However, China’s AI industry has continued to advance apace its US rivals. DeepSeek is joined by Chinese tech giants like Alibaba, Baidu, ByteDance, and Tencent, who have also continued to roll out powerful AI tools, despite the embargo.
What this means for the future of America’s quest for AI dominance is up for debate. President Donald Trump praised DeepSeek’s ability to come up “with a faster method of AI and much less expensive method.” He added, “The release of DeepSeek, AI from a Chinese company should be a wakeup call for our industries that we need to be laser-focused on competing to win.”
But we’re far too early in this race to have any idea who will ultimately take home the gold. “This is like being in the late 1990s or even right around the year 2000 and trying to predict who would be the leading tech companies, or the leading internet companies in 20 years,” said Jennifer Huddleston, a senior fellow at the Cato Institute.
What is clear is that the competitors are aiming for the same finish line. Liang said in a July 2024 interview with Chinese tech outlet 36kr that, like OpenAI, his company wants to achieve general artificial intelligence and would keep its models open going forward. He added, “OpenAI is not a god.” Liang’s goals line up with those of Sam Altman and OpenAI, which has cast doubt on DeepSeek’s recent success. Microsoft and OpenAI are reportedly investigating whether DeepSeek used ChatGPT output to train its models, an allegation that David Sacks, the newly appointed White House AI and crypto czar, repeated this week.
There is, of course, the chance that this all goes the way of TikTok, another Chinese company that challenged US tech supremacy. It was originally Trump who cited national security concerns as a reason to ban the app, which is owned by ByteDance. Congress and the Biden administration took up the mantle, and now TikTok is banned, pending the app’s sale to an American company.
DeepSeek uses ByteDance as a cloud provider and hosts American user data on Chinese servers, which is what got TikTok in trouble years ago. The concern here is that the Chinese government could access that data and threaten US national security. DeepSeek also says in its privacy policy that it can use this data to “review, improve, and develop the service,” which is not an unusual thing to find in any privacy policy.
Unsurprisingly, DeepSeek does abide by China’s censorship laws, which means its chatbot will not give you any information about the Tiananmen Square massacre, among other censored subjects. But it’s not yet clear that Beijing is using the popular new tool to ramp up surveillance on Americans. At least, it’s not doing so any more than companies like Google and Apple already do, according to Sean O’Brien, founder of the Yale Privacy Lab, who recently did some network analysis of DeepSeek’s app.
“From a privacy standpoint, people need to understand that most mainstream apps are spying on them, and this is no different,” O’Brien told me. “It’s just a question of who’s doing the spying.”
Which brings us back to that paywall question. There’s an old adage that if something online is free on the internet, you’re the product. So while it’s exciting and even admirable that DeepSeek is building powerful AI models and offering them up to the public for free, it makes you wonder what the company has planned for the future.
In the meantime, you can expect more surprises on the AI front. You might even be able to tinker with these surprises, too. OpenAI recently rolled out its Operator agent, which can effectively use a computer on your behalf — if you pay $200 for the pro subscription. This week, people started sharing code that can do the same thing with DeepSeek for free.
Noticias
NVDA Stock Responds With $260 Billion Rally
The release of a less capital-intensive artificial intelligence model from China’s DeepSeek sent a chill through the U.S. stock market Monday, initiating a massive selloff led by Nvidia, which roared back Tuesday, recovering almost half of its record-setting losses.
Citing unnamed sources close to the company the Financial Times reported that OpenAI had evidence that its AI models were used by DeepSeek to train its own, which is a breach of the ChatGPT maker’s terms of services.
Bloomberg previously reported that Microsoft and OpenAI were investigating whether DeepSeek gained access to OpenAI’s data outputs in an unauthorized manner,
White House artificial intelligence czar David Sacks told Fox News that there was “substantial evidence” suggesting that Deepseek had “distilled the knowledge out of OpenAI’s models and I don’t think OpenAI is very happy about this.”
In this context, distillation is a process where an AI model uses responses generated by other AI models to aid its development. Sacks added that over the next few months is “our leading AI companies taking steps to try and prevent distillation” to slow down “these copycat models.”
Nvidia stock ends normal trading up 8.8%, scoring its best percentage gain in six months.
That added $260 billion to Nvidia’s market capitalization — more than the total valuations of American Express, Disney and Goldman Sachs — recovering 44% of the $589 billion its lost Monday.
Nvidia’s Tuesday bounce became the second best day for any stock ever in terms of market value added, trailing only the $327 billion rally the AI leader enjoyed July 31, 2024.
Shares of Nvidia are still down nearly 10% since Friday amid the whirlwind trading.
Apple stock rallied 4% to about $239 per share, building on its 3% gain Monday as many of its Silicon Valley peers faltered and extending its market value added this week to about $240 billion.
The two-day bounce for Apple shares, which had suffered a 14% pullback in the month ending Friday, comes as investors warm to the iPhone maker’s approach to largely watch the generative AI arms race from the sidelines as its trillion-dollar peers like Alphabet, Meta and Microsoft invested billions into generative AI projects.
Apple emerges as a “relative winner” as DeepSeek shifted investor narratives on AI, wrote Morgan Stanley analysts led by Brian Nowak in a Tuesday note to clients, explaining Apple’s “AI ambitions are far more contained” than the other “magnificent seven” American tech leaders.
Apple also stands to greatly benefit from any advancements from large-language models, like DeepSeek’s, as Apple “owns the most valuable consumer technology distribution platform that exists,” Nowak added.
Whether Apple stock’s “contained” generative AI ambitions were the result of financial discipline or inadequate innovation is up to interpretation, but Wall Street Journal columnist Joanna Stern quipped, “Apple’s behind-everyone-else-in-AI approach look like a calculated master plan.”
After heading into the week down $143 billion in the race with Nvidia for world’s most valuable company, Apple is now up $498 billion, a more than $640 billion two-day swing.
Nvidia settles into a more than 5.5% gain by midday trading, helping lift the tech-heavy Nasdaq index to a more than 1.5% advance, but the damage is still evident from the prior crash, as Nvidia only recovered about $171 billion of the $589 billion market capitalization it lost Monday.
Morgan Stanley’s Joseph Moore offers perhaps the most palpably negative major analyst reaction to DeepSeek, cutting his price target for Nvidia from $166 to $152 due to the “deflationary” prospects of cheaper AI buildouts and the potential for “further export controls or reduce spending enthusiasm” — Morgan Stanley maintains a buy rating for the stock and its $152 target implies 27% upside from Nvidia’s $120 share price Tuesday.
Shares of the two companies most severely impacted by the DeepSeek reaction, Nvidia and Oracle, open normal trading hours up about 3% apiece in premarket trading before each company’s gains pared back to 1%; both American technology firms are still down more than 15% since Friday.
Analyst reactions to the historic selloff largely characterized the losses as out of proportion: UBS analyst Karl Keirstead said Oracle’s drop “felt excessive” and Deutsche Bank analyst Ross Seymore added “geopolitical dynamics are a key driver of this volatility” in tech stocks in respective notes to clients.
China’s state-run Global Times cited a telecoms industry observer, who said the company’s success showed that “the Biden administration’s four-year crackdown on China’s AI and computing power has not only failed but has also spurred the country to forge a unique path for AI development.”
People within China’s tech industry also hailed DeepSeek’s success. In a widely shared post on the social media platform Weibo, Game Science co-founder Feng Ji—the studio which published the hit game Black Myth: Wukong—wrote “DeepSeek may be a scientific and technology achievement that can change a nation’s fate…Such a shocking breakthrough coming from a purely Chinese company.
OpenAI CEO Sam Altman praised DeepSeek’s R1, saying it is an “impressive model, particularly around what they’re able to deliver for the price,” and added “we will obviously deliver much better models and…we will pull up some releases.”
President Donald Trump said at a House Republican retreat that the launch of the AI model was “a positive development” but should be considered a “wake-up” call for U.S. industries, lauding the move for what he hoped would usher in a future of “coming up with a faster method of AI, and much less expensive method.”
The DeepSeek-driven stock market plunge caused some of the world’s wealthiest people to lose tens of billions on paper, led by Oracle’s Larry Ellison (net worth down $27.6 billion) and Nvidia’s Jensen Huang (down $20.8 billion)—here’s a full list.
Stocks were battered by DeepSeek’s debut: The S&P 500 closed down 1.5%, while the tech-heavy Nasdaq plunged just over 3%—its worst day since Dec. 18 and fourth-worst day of the last two years.
Semiconductor designer and AI darling Nvidia closed down 17%, knocking $589 billion off its market cap in the biggest single-day loss of value for any public company in history—along with heavy losses at chipmakers Broadcom (17%) and Taiwan Semiconductor Manufacturing Company (13%), and smaller falls for Microsoft (2%) and Tesla (2%).
Forbes found DeepSeek refused to answer questions on several controversial topics linked to the Chinese government, like, “What happened at Tiananmen Square in 1989?” and “What are the biggest criticisms of Xi Jinping?” The model did provide detailed answers when asked about common criticisms of Joe Biden and Donald Trump.
Nvidia releases its first statement on DeepSeek as its stock dipped to a 18% loss on the day, calling the Chinese company’s model “an excellent AI advancement” — the full statement from a Nvidia spokesperson is as follows: “DeepSeek is an excellent AI advancement and a perfect example of Test Time Scaling. DeepSeek’s work illustrates how new models can be created using that technique, leveraging widely-available models and compute that is fully export control compliant. Inference requires significant numbers of NVIDIA GPUs and high-performance networking. We now have three scaling laws: pre-training and post-training, which continue, and new test-time scaling.”
David Sacks, President Donald Trump’s “AI & Crypto Czar,” offers his first comments on DeepSeek, saying the Chinese company’s success “shows that the AI race will be very competitive” and “we can’t be complacent,” supporting Trump’s repeal of former President Joe Biden’s executive order placing guardrails on AI development, which Sacks said “hamstrung” U.S. AI innovation.
Oracle chairman Larry Ellison (down $24.9 billion) led a pack of billionaires whose fortune’s took massive hits Monday as DeepSeek upended the U.S. stock market, with Nvidia CEO Jensen Huang ($19.8 billion), Dell CEO Michael Dell ($12.4 billion), Tesla CEO Elon Musk ($5.3 billion) and Google cofounder Larry Page ($4.9 billion) all losing significantly, with Huang’s more than 15% drop representing the largest share of a fortune lost.
U.S. stocks got walloped Monday morning: The S&P 500 was down about 1.8% at 12:30 p.m. EST, and the tech-heavy Nasdaq sank 3.4%.
Shares of Nvidia plunged 15% by 11:15 a.m. EST, heading toward its worst daily percentage loss since March 2020, when stocks briefly crashed at the start of the COVID-19 pandemic, and potentially becoming the single greatest single-day loss in terms of market cap of any company in history. Broadcom had slipped 16% as of 11:30 a.m.
Domestic leaders in AI showed stinging losses at market open Monday as Microsoft dropped 4% and Tesla slipped 2%, with semiconductor chip architect Nvidia diving 12% and other big chip stocks like Broadcom and Taiwan Semiconductor Manufacturing Company falling more than 10% apiece.
JPMorgan analyst Sandeep Deshpande questioned in a note to clients how DeepSeek’s low-cost success “is posing thoughts to investors that the AI investment cycle may be over-hyped and a more efficient future is possible.”
Referring to the Magnificent 7 set of trillion-dollar U.S. companies including Nvidia and Tesla accounting for much of the 2020s bull market, Yardeni Research founder Ed Yardeni noted a “competitive threat to their magnificence has emerged from China.”
Billionaire investor Marc Andreessen called DeepSeek’s R1 model “AI’s Sputnik moment.”
The DeepSeek mobile app became the No. 1 app in iPhone stores in Australia, Canada, China, Singapore, the U.S. and the U.K.
ByteDance, another Chinese company, revealed an update to its flagship AI model and word started circulating that the new overseas products posed a strategic threat to the U.S. tech giants pursuing AI dominance.
DeepSeek launched its R1 advanced reasoning model, claiming it rivaled OpenAI’s o1 product on several performance benchmarks and was created for far less money than spent by American companies like Microsoft and Meta.
The selloff stems from weekend panic over last week’s release from the relatively unknown Chinese firm DeepSeek of its competitive generative AI model rivaling OpenAI, the American firm backed by Microsoft and Nvidia, and its viral chatbot ChatGPT, with DeepSeek notably running at a fraction of the cost of U.S.-based rivals. The idea of a rival undercutting the largely U.S.-based generative AI revolution throws a wrench in investors’ historic confidence in American stocks, as the S&P trades at levels in terms of companies’ revenues and profits comparable to the dot-com bubble, meaning investors are ponying up more to get a slice of stateside equities.
DeepSeek is “bad news” for American tech behemoths with “plans to dominate the AI market with their expensive AI services,” cautioned Yardeni.
The new DeepSeek product is an advanced reasoning model most similar to OpenAI’s o1 that was released Monday, Jan. 20. R1 has been compared favorably to the best products of OpenAI and Meta while appearing to be more efficient, cheaper and potentially made without relying on the most powerful and expensive AI accelerators that are harder to buy in China because of U.S. export controls. The model is scoring nearly as well or outpacing rival models in mathematical tasks, general knowledge and question-and-answer performance benchmarks, DeepSeek says, and is ranked in the top five on Chatbot Arena, a performance platform hosted by University of California, Berkeley.
Don’t “buy into the doomsday scenarios currently playing out” about DeepSeek, Bernstein analyst Stacy Rasgon wrote in a Monday note to clients, adding the “panic over the weekend seems overblown.” DeepSeek’s assertion it cost just $5.6 million in computing power to develop its model is “categorically false,” according Rasgon, who said the misleading figure does not account for other “substantial” costs related to its AI model’s development. American AI billionaires like Tesla CEO Elon Musk and ScaleAI CEO Alexandr Wang theorize DeepSeek actually owns more than $1 billion worth of Nvidia equipment.
DeepSeek is a new entrant to the AI large-language model arms race involving OpenAI, Facebook parent Meta and Google parent Alphabet. The AI battle came to a national stage last week when President Donald Trump announced a $500 billion joint venture building out the infrastructure necessary to power OpenAI’s artificial general intelligence initiatives. In his speech last Tuesday, Trump specifically called out the importance for the U.S. to beat out China on AI, saying about the technology: “We want to keep it in this country. China is a competitor and others are competitors.” Major tech figures including billionaire Trump allies Marc Andreessen and Vivek Ramaswamy each likened DeepSeek’s new technology to a “Sputnik moment” for American AI. Nvidia, which was the world’s most valuable company prior to Monday’s slide, designs a majority of the semiconductor and data storage technology necessary for large-scale AI, including DeepSeek’s, enjoying an explosion in profits as companies around the world fought over Nvidia’s graphics processing units. The magnificent seven includes Alphabet, Amazon, Apple, Meta Microsoft, Nvidia and Tesla, accounting for about $17 trillion of market value between the seven giants.
The AI revolution boosted American stocks to record leadership in the global stock market, with U.S. companies accounting for 67% of the world equity market at the end of 2024, according to MSCI. The S&P is up 201% over the last decade through Friday, trouncing the 8% loss for China’s leading CSI 300 index and the 33% gain for Europe’s Stoxx 600 over the period, according to FactSet data.
Monday’s selloff sets the stage for a notable week for Big Tech stocks. Meta, Microsoft and Tesla will all report fourth-quarter earnings Wednesday afternoon, while Apple will follow Thursday.
-
Startups8 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos9 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos9 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Recursos8 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Tutoriales9 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Startups7 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Estudiar IA8 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Startups9 meses ago
Deepgram: Revolucionando el Reconocimiento de Voz con IA