Connect with us

Noticias

8 Of The Best Midjourney Alternatives To Create AI-Generated Images

Published

on






Midjourney is a popular tool for creating AI-generated images. If you’re familiar with it, you know that it works well, generating multiple images at once, allowing you to adjust aspect ratios, upscale, and refine results. However, it’s not without limitations.

Advertisement

The biggest drawback of Midjourney is that there’s no free option. It doesn’t offer a free trial either, so if you want to get started with Midjourney, you’ll need to pay out $10 before you can do anything. This $10 Basic Plan allows you around 200 prompt generations per month. If you want unlimited image generation, you’ll need to sign up for the pricier plans. Some advanced editing features are only accessible to yearly subscribers, which requires a sizeable upfront payment.

If you want to produce a lot of AI-generated images, then it’s likely that you’re going to need to commit to regular payments, whichever model you go for. Although most AI generation tools have free options, you’ll be limited to how many images you can produce and what features you can access. If you’re new to AI image generation and just want to dip your toe in the water, then a free tool might be all you need to play with some image generation prompts and find out what all the fuss is about.

Advertisement

Methodology

For this article, I tested eight different AI generation tools. I asked each one to produce an image using this prompt: “Photo-realistic image of a shiny silver robot wearing a felt beret, holding an easel and painting on a canvas in a light and airy artist’s studio.” The pictures produced by Midjourney were mostly pretty good, but it did struggle sometimes to depict a robot hand holding a paintbrush. Sometimes, the paintbrushes were the wrong way round, held in an unrealistic way, or missing altogether. This was something that many of the models also had problems with.

Advertisement

As well as assessing the quality of each image, I looked at how well each of them followed the prompt, which says the robot should be ‘holding an easel.’ None of the image generation tools took it literally. Instead, the robots were depicted standing by easels and sometimes holding a paint palette, demonstrating that, on the whole, AI will generate what makes more logical sense and what it thinks you want rather than what was precisely written in the prompt.

Where possible, I have used each service’s free plan. Although you would expect slower run times than with paid models, all the tools produced images in around 30 seconds or less. Midjourney only took a few seconds, but I was using its paid-for model since it doesn’t have a free version. I compared the quality of images generated by different AI tools, but your results will vary depending on the type of image you want and the prompt you provide. To make it as fair as possible, I’ve used the best example to illustrate each section.

Advertisement

DALL-E is best for conversation-based prompts

DALL-E is produced by OpenAI and is the visual partner to ChatGPT. The best thing about DALL-E is that you can have a conversation with it and follow previous prompts with simple instructions like “Please give the robot more humanoid features,” and it will remember your previous prompt. You can also edit your prompt by clicking the edit icon, updating the text, and resending.

Advertisement

Signing up for a free ChatGPT account gets you access to DALL-E along with other GPTs. However, this will only grant a limited number of image generations before you’re told you have reached your image creation limit for the day. Unlike other free accounts, it is not clear how many credits you have remaining. I was able to generate 12 images from six prompts before I was told to try again tomorrow. For better access, you can upgrade to a Plus account for $20 per month.

DALL-E will produce one or two images compared to the four generated by Midjourney. There’s no “regenerate” button like there is with ChatGPT text prompt answers, so if you want to create more images for the same prompt, you will need to copy and paste the prompt again. The pictures are generally very good. DALL-E provided plenty of detail and followed the prompt. Unfortunately, even with the paid version, there’s no upscale option to produce higher-res images like in Midjourney.

Advertisement

Copilot is best for beginners

Copilot image generation is easy to get started with. If you already have a Microsoft account — and if you’re a Windows user — then you don’t even need to sign up. It’s free to use and works like DALL-E, so you can give prompts to the chatbot and then follow up with any adjustments. There are no features or style presets with Copilot, but the quality of images is good. It understood the prompts and successfully managed to produce convincing-looking robot hands. It only produces one image at a time, so it can be quite slow if you want to create a lot of images. A big drawback is that it doesn’t do aspect ratios other than 1:1. Even when I asked for 16:9 and landscape in the prompt instructions, it still produced a square picture.

Advertisement

There is a paid version called Copilot Pro that costs $20 per month, but this doesn’t necessarily offer any advantages in terms of image generation except for quicker image generation. The main selling point of Copilot Pro is its ability to integrate AI into other Microsoft apps like Word, Excel, and Outlook. Copilot’s free version is a good choice for those with existing Microsoft logins who want to create an AI image without setting up an account with a third party or starting a free trial. If you’re new to AI images and just want a quick play, this is a good place to start.

Leonardo AI is best for comprehensive style settings

Leonardo AI offers an impressive array of styles and settings. There’s a free plan available that gives you 150 tokens per day. However, you may use these up quite quickly as generating a set of images uses 24 tokens. Some editing features, like removing the background, cost additional credits. Subscribing to one of the paid plans, which start at $12 per month, will ensure faster image generation and extra features like upscaling. It is easy to see what is available on the free plan and what you need an upgrade to use. A diamond icon marks the paid plan features on the dashboard.

Advertisement

Leonardo has many features, settings, and editing options, and you may want to invest some time exploring them all if you want to use Leonardo to its full potential. You can turn on the Prompt Enhancer feature to have Leonardo rewrite your prompt, which is intended to improve the quality of your results. I found that it contained a lot of unnecessarily specific information that didn’t reflect what I was looking for. For example, “felt beret” in the original was rewritten as “emerald green felt beret adorned with a delicate, golden brooch.” However, it does provide an interesting exercise in learning how to write more detailed prompts.

The images it produced were excellent, with fewer mistakes than some other AI generation tools. The first four images it produced all followed the prompt (apart from the ‘holding an easel’ bit, which everyone ignored) and were all usable results. This is important when you’re using the credit-based free model and don’t want to keep regenerating images until you get one with decent robot fingers.

Advertisement

Stability AI’s Stable Assistant is best for easy editing

Stable Assistant is a chat interface created by Stability AI to easily access its stable diffusion model. There’s no free version of Stable Assistant, although at the moment you can access a free 3-day trial. Plans start at $9 per month. Given that I was using a paid version of the product, the results were not particularly impressive compared to some of its free competitors. It took longer to generate images, often ignored aspects of the prompt, and struggled to produce realistic depictions of a hand holding a paintbrush. It also didn’t seem to know what a beret was.

Advertisement

The area where Stable Assistant shines is the ease with which you can edit images. “Inpaint” and “Search & Replace” offer different ways to replace part of the image with something else. You can also expand your image and remove the background, along with many other options, including basics like selecting ratios and uploading images into prompts. I found the editing options less reliable than their Midjourney equivalents. When I tried ‘Zoom out,’ the expanded image ignored the original prompt. It looked more like a surreal robot manufacturing plant than an artist’s studio. I do recommend its “Sketch to image” option, though, as a fun way to turn a scrappy doodle into a piece of AI art.

One odd omission in Stable Assistant is the lack of a download button. It’s not a big deal as you can right-click and select “Save image” to keep a copy of your artwork, but having to do so doesn’t really mesh with Stable Assistant’s otherwise user-friendly interface.

Advertisement

Canva Dream Lab is best for incorporating into other artwork

Canva is best known as a graphic design platform. Its AI image generation tool, Dream Lab, is worth considering, especially if you want to incorporate AI images into designs like posters, flyers, and social media prompts. Canva Free users can use Dream Lab for up to 20 prompts per month, but if you subscribe to Canva Pro for $13 per month, you can generate up to 500 prompts monthly. It works similarly to Midjourney in that each prompt is standalone — so you can’t just type in a follow-up suggestion like you can in conversational models like DALL-E, Gemini, and Copilot.

Advertisement

The tool is easy to use. It offers six different ratio options and creates four results in one go, which you can then finesse using Canva’s editing tools. This enables you to adjust brightness and contrast, add filters, and apply effects like autofocus and blur. However, many of the cleverer editing options like removing the background, replacing parts of an image with something else, or removing items from a picture, are only available with the paid plans.

It is an excellent tool for anyone familiar with Canva editing software, as you can incorporate AI images into your designs. Its pictures were well-executed, with the usual missteps, like one of the robots having its hand on backward and others not holding paintbrushes while painting. Its biggest drawback is that you cannot upload existing images for it to use as part of a prompt.

Advertisement

Google’s Gemini AI is best for existing Google One users

You can generate images using Gemini, Google’s AI assistant, in a similar way to DALL-E or Copilot. The images are created using Google’s Imagen 3 model in response to conversation-based prompts, and if you have an existing Google login, you don’t need to sign up again. There is another way to produce images using Imagen 3 which is through Google’s ImageFX product. This is still in the test phase and is available at The AI Test Kitchen.

Advertisement

Using Gemini is free, but you can upgrade to Gemini Advanced as part of a Google One subscription for $19.99 per month. The images produced in the free version were good, but a frustrating restriction is that Gemini will not create pictures of people unless you subscribe to Gemini Advanced. Like Copilot, it ignores any instruction to change the ratio to a wider format. There are no edit buttons, but you can create new prompts with further instructions or go back and edit your original prompt by clicking on the ‘edit’ icon, making changes, and selecting the ‘update’ button.

Signing up for Gemini Advanced is more expensive than other image generation models on this list, but it does give you access to all Google One features, including 2TB of data. If you already have a Google One account, it is probably worth checking out, but if all you’re after is image generation, it might be best to give this one a miss.

Advertisement

Kling is best for converting into videos

Kling AI is better known for its video creation capabilities than as a static image generator. Although we’re not focusing on video in this article, it’s worth mentioning that Kling gives you the option to turn your images into videos with just one button click, although if you are using the free version, this is painfully slow. In fact, the free version of Kling is a bit of a non-starter all around, as any images it produces come with a Kling watermark. The cheapest paid plan is $10 per month.

Advertisement

It does give you multiple ratio choices and the option to upload your own image or easily reuse one of your images as part of the next prompt. However, I found the quality of the image generation is unreliable. For the first four images I produced, only one was usable. The other three had issues with missing arms and physics-defying paintbrush holding. There is an option to enhance images and upscale them, but this is only for paid plans.

You can generate between one and nine images but the more images you create, the more credits are used. It costs 0.2 credits per image generated, so generating nine images requires 1.8 credits. The free plan doesn’t specify a set number of credits, but I got 360 credits for signing up. Even the paid plans give you a finite number of credits. For example, the cheapest paid plan gives you 660 credits per month, and the most expensive Premium plan at $92 gives you a monthly allowance of 8,000 credits.

Advertisement

Tengrai is best for connecting with AI on an emotional level

Tengrai was the least impressive image generator that I used. The one thing it has that sets it apart from the rest is a feature called EmotionFlow, a bunch of swirly graphics you can play with while you’re waiting and which, according to the website, will be used to “interpret and reflect” your emotional state. I tried interacting with EmotionFlow for one set of images, and Tengrai produced disappointing results that ignored half the prompt. It produced equally poor images when I didn’t interact, so I don’t think my emotions are to blame. Most of the robots in the images were hatless, and few managed to hold their paintbrushes convincingly.

Advertisement

Tengrai has a free plan, and its paid plans start at $12 per month, which allows you to create 36,000 images each month. Free accounts are limited to 32 images every eight hours. It offers twelve ratio options, and you can upload images alongside your prompt. Upscaling is only available on the paid model, and there are no editing options, like zoom out or background remover, even for pro plans. It does, however, offer a lot of options alongside the prompt, including different color tones and camera angles. In my tests, Tengrai completely ignored whatever was selected.

Tengrai’s paid option is not any cheaper than other AI generation models, and it offers fewer features and produces poorer results. Unless you’re a strong believer in its EmotionFlow “intuitive and empathic” abilities, there isn’t much to recommend this one.

Advertisement



Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Apocalipsis Biosciencias para desarrollar Géminis para la infección en pacientes con quemaduras graves

Published

on

– Esta nueva indicación es otro paso para desbloquear todo el potencial de la plataforma Gemini –

San Diego-(Business Wire)-$ Revb #GÉMINISApocalipsis Biosciences, Inc. (NASDAQ: RevB) (la “empresa” o “revelación”), una compañía de ciencias de la vida de etapas clínicas que se centra en reequilibrar la inflamación para optimizar la salud, anunció una nueva indicación de objetivo para Géminis para la prevención de la infección en pacientes con quemaduras graves que requieren hospitalización (el Gema-PBI programa). El uso de Géminis para la prevención de la infección en pacientes con quemaduras severas, así como la prevención de la infección después de la cirugía (el Gema-PSI programa) son parte de la revelación familiar de patentes anteriormente con licencia de la Universidad de Vanderbilt.


“Estamos muy contentos de colaborar con el equipo de Apocalipsis para el avance de Géminis para la prevención de la infección en esta población de pacientes desatendida”, dijo Dra. Julia BohannonProfesor Asociado, Departamento de Anestesiología, Departamento de Patología, Microbiología e Inmunología, Universidad de Vanderbilt. “Creemos que la actividad de biomarcador clínico observada con Gemini se correlaciona fuertemente con nuestra experiencia preclínica en modelos de quemaduras de infecciones”.

El equipo de investigación de Vanderbilt demostrado El tratamiento posterior a la quemadura reduce significativamente la gravedad y la duración de la infección pulmonar de Pseudomonas, así como un nivel general reducido de inflamación en un modelo preclínico.

“La prevención de la infección en pacientes severamente quemados es un esfuerzo importante y complementa que la revelación laboral ha completado hasta la fecha”, dijo “, dijo”, dijo James RolkeCEO de Revelation “El programa Gemini-PBI puede ofrecer varias oportunidades regulatorias, de desarrollo y financiación que la compañía planea explorar”.

Sobre quemaduras e infección después de quemar

Las quemaduras son lesiones en la piel que involucran las dos capas principales: la epidermis externa delgada y/o la dermis más gruesa y profunda. Las quemaduras pueden ser el resultado de una variedad de causas que incluyen fuego, líquidos calientes, productos químicos (como ácidos fuertes o bases fuertes), electricidad, vapor, radiación de radiografías o radioterapia, luz solar o luz ultravioleta. Cada año, aproximadamente medio millón de estadounidenses sufren lesiones por quemaduras que requieren intervención médica. Si bien la mayoría de las lesiones por quemaduras no requieren ingreso a un hospital, se admiten alrededor de 40,000 pacientes, y aproximadamente 30,000 de ellos necesitan tratamiento especializado en un centro de quemaduras certificadas.

El número total anual de muertes relacionadas con quemaduras es de aproximadamente 3.400, siendo la infección invasiva la razón principal de la muerte después de las primeras 24 horas. La tasa de mortalidad general para pacientes con quemaduras graves es de aproximadamente 3.3%, pero esto aumenta al 20.6% en pacientes con quemaduras con lesión cutánea de quemaduras y inhalación, versus 10.5% por lesión por inhalación solo. La infección invasiva, incluida la sepsis, es la causa principal de la muerte después de la lesión por quemaduras, lo que representa aproximadamente el 51% de las muertes.

Actualmente no hay tratamientos aprobados para prevenir la infección sistémica en pacientes con quemaduras.

Sobre Géminis

Géminis es una formulación propietaria y propietaria de disacárido hexaacil fosforilada (PHAD (PHAD®) que reduce el daño asociado con la inflamación al reprogramarse del sistema inmune innato para responder al estrés (trauma, infección, etc.) de manera atenuada. La revelación ha realizado múltiples estudios preclínicos que demuestran el potencial terapéutico de Géminis en las indicaciones objetivo. Revelación anunciado previamente Datos clínicos positivos de fase 1 para el tratamiento intravenoso con Géminis. El punto final de seguridad primario se cumplió en el estudio de fase 1, y los resultados demostraron la actividad farmacodinámica estadísticamente significativa como se observó a través de los cambios esperados en múltiples biomarcadores, incluida la regulación positiva de IL-10.

Géminis se está desarrollando para múltiples indicaciones, incluso como pretratamiento para prevenir o reducir la gravedad y la duración de la lesión renal aguda (programa Gemini-AKI), y como pretratamiento para prevenir o reducir la gravedad y la duración de la infección posquirúrgica (programa GEMINI-PSI). Además, Gemini puede ser un tratamiento para detener o retrasar la progresión de la enfermedad renal crónica (programa Gemini-CKD).

Acerca de Apocalipsis Biosciences, Inc.

Revelation Biosciences, Inc. es una compañía de ciencias de la vida en estadio clínico centrada en aprovechar el poder de la inmunidad entrenada para la prevención y el tratamiento de la enfermedad utilizando su formulación patentada Géminis. Revelation tiene múltiples programas en curso para evaluar Géminis, incluso como prevención de la infección posquirúrgica, como prevención de lesiones renales agudas y para el tratamiento de la enfermedad renal crónica.

Para obtener más información sobre Apocalipsis, visite www.revbiosciences.com.

Declaraciones con avance

Este comunicado de prensa contiene declaraciones prospectivas definidas en la Ley de Reforma de Litigios de Valores Privados de 1995, según enmendada. Las declaraciones prospectivas son declaraciones que no son hechos históricos. Estas declaraciones prospectivas generalmente se identifican por las palabras “anticipar”, “creer”, “esperar”, “estimar”, “plan”, “perspectiva” y “proyecto” y otras expresiones similares. Advirtemos a los inversores que las declaraciones prospectivas se basan en las expectativas de la gerencia y son solo predicciones o declaraciones de las expectativas actuales e involucran riesgos, incertidumbres y otros factores conocidos y desconocidos que pueden hacer que los resultados reales sean materialmente diferentes de los previstos por las declaraciones de prospección. Apocalipsis advierte a los lectores que no depositen una dependencia indebida de tales declaraciones de vista hacia adelante, que solo hablan a partir de la fecha en que se hicieron. Los siguientes factores, entre otros, podrían hacer que los resultados reales difieran materialmente de los descritos en estas declaraciones prospectivas: la capacidad de la revelación para cumplir con sus objetivos financieros y estratégicos, debido a, entre otras cosas, la competencia; la capacidad de la revelación para crecer y gestionar la rentabilidad del crecimiento y retener a sus empleados clave; la posibilidad de que la revelación pueda verse afectada negativamente por otros factores económicos, comerciales y/o competitivos; riesgos relacionados con el desarrollo exitoso de los candidatos de productos de Apocalipsis; la capacidad de completar con éxito los estudios clínicos planificados de sus candidatos de productos; El riesgo de que no podamos inscribir completamente nuestros estudios clínicos o la inscripción llevará más tiempo de lo esperado; riesgos relacionados con la aparición de eventos de seguridad adversos y/o preocupaciones inesperadas que pueden surgir de los datos o análisis de nuestros estudios clínicos; cambios en las leyes o regulaciones aplicables; Iniciación esperada de los estudios clínicos, el momento de los datos clínicos; El resultado de los datos clínicos, incluido si los resultados de dicho estudio son positivos o si se puede replicar; El resultado de los datos recopilados, incluido si los resultados de dichos datos y/o correlación se pueden replicar; el momento, los costos, la conducta y el resultado de nuestros otros estudios clínicos; El tratamiento anticipado de datos clínicos futuros por parte de la FDA, la EMA u otras autoridades reguladoras, incluidos si dichos datos serán suficientes para su aprobación; el éxito de futuras actividades de desarrollo para sus candidatos de productos; posibles indicaciones para las cuales se pueden desarrollar candidatos de productos; la capacidad de revelación para mantener la lista de sus valores en NASDAQ; la duración esperada sobre la cual los saldos de Apocalipsis financiarán sus operaciones; y otros riesgos e incertidumbres descritos en este documento, así como aquellos riesgos e incertidumbres discutidos de vez en cuando en otros informes y otras presentaciones públicas con la SEC por Apocalipsis.

Contactos

Mike Porter

Relaciones con inversores

Porter Levay & Rose Inc.

Correo electrónico: mike@plrinvest.com

Chester Zygmont, III

Director financiero
Apocalipsis Biosciences Inc.

Correo electrónico: czygmont@revbiosciences.com

Continue Reading

Noticias

Why Google’s search engine trial is about AI : NPR

Published

on

An illustration photograph taken on Feb. 20, 2025 shows Grok, DeepSeek and ChatGPT apps displayed on a phone screen. The Justice Department’s 2020 complaint against Google has few mentions of artificial intelligence or AI chatbots. But nearly five years later, as the remedy phase of the trial enters its second week of testimony, the focus has shifted to AI.

Michael M. Santiago/Getty Images/Getty Images North America


hide caption

toggle caption

Michael M. Santiago/Getty Images/Getty Images North America

When the U.S. Department of Justice originally broughtand then won — its case against Google, arguing that the tech behemoth monopolized the search engine market, the focus was on, well … search.

Back then, in 2020, the government’s antitrust complaint against Google had few mentions of artificial intelligence or AI chatbots. But nearly five years later, as the remedy phase of the trial enters its second week of testimony, the focus has shifted to AI, underscoring just how quickly this emerging technology has expanded.

In the past few days, before a federal judge who will assess penalties against Google, the DOJ has argued that the company could use its artificial intelligence products to strengthen its monopoly in online search — and to use the data from its powerful search index to become the dominant player in AI.

In his opening statements last Monday, David Dahlquist, the acting deputy director of the DOJ’s antitrust civil litigation division, argued that the court should consider remedies that could nip a potential Google AI monopoly in the bud. “This court’s remedy should be forward-looking and not ignore what is on the horizon,” he said.

Dahlquist argued that Google has created a system in which its control of search helps improve its AI products, sending more users back to Google search — creating a cycle that maintains the tech company’s dominance and blocks competitors out of both marketplaces.

The integration of search and Gemini, the company’s AI chatbot — which the DOJ sees as powerful fuel for this cycle — is a big focus of the government’s proposed remedies. The DOJ is arguing that to be most effective, those remedies must address all ways users access Google search, so any penalties approved by the court that don’t include Gemini (or other Google AI products now or in the future) would undermine their broader efforts.

Department of Justice lawyer David Dahlquist leaves the Washington, D.C. federal courthouse on Sept. 20, 2023 during the original trial phase of the antitrust case against Google.

Department of Justice lawyer David Dahlquist leaves the Washington, D.C. federal courthouse on Sept. 20, 2023 during the original trial phase of the antitrust case against Google.

Jose Luis Magana/AP/FR159526 AP


hide caption

toggle caption

Jose Luis Magana/AP/FR159526 AP

AI and search are connected like this: Search engine indices are essentially giant databases of pages and information on the web. Google has its own such index, which contains hundreds of billions of webpages and is over 100,000,000 gigabytes, according to court documents. This is the data Google’s search engine scans when responding to a user’s query.

AI developers use these kinds of databases to build and train the models used to power chatbots. In court, attorneys for the DOJ have argued that Google’s Gemini pulls information from the company’s search index, including citing search links and results, extending what they say is a self-serving cycle. They argue that Google’s ability to monopolize the search market gives it user data, at a huge scale — an advantage over other AI developers.

The Justice Department argues Google’s monopoly over search could have a direct effect on the development of generative AI, a type of artificial intelligence that uses existing data to create new content like text, videos or photos, based on a user’s prompts or questions. Last week, the government called executives from several major AI companies, like OpenAI and Perplexity, in an attempt to argue that Google’s stranglehold on search is preventing some of those companies from truly growing.

The government argues that to level the playing field, Google should be forced to open its search data — like users’ search queries, clicks and results — and license it to other competitors at a cost.

This is on top of demands related to Google’s search engine business, most notably that it should be forced to sell off its Chrome browser.

Google flatly rejects the argument that it could monopolize the field of generative AI, saying competition in the AI race is healthy. In a recent blog post on Google’s website, Lee-Anne Mulholland, the company’s vice president of regulatory affairs, wrote that since the federal judge first ruled against Google over a year ago, “AI has already rapidly reshaped the industry, with new entrants and new ways of finding information, making it even more competitive.”

In court, Google’s lawyers have argued that there are a host of AI companies with chatbots — some of which are outperforming Gemini. OpenAI has ChatGPT, Meta has MetaAI and Perplexity has Perplexity AI.

“There is no shortage of competition in that market, and ChatGPT and Meta are way ahead of everybody in terms of the distribution and usage at this point,” said John E. Schmidtlein, a lawyer for Google, during his opening statement. “But don’t take my word for it. Look at the data. Hundreds and hundreds of millions of downloads by ChatGPT.”

Competing in a growing AI field

It should be no surprise that AI is coming up so much at this point in the trial, said Alissa Cooper, the executive director of the Knight-Georgetown Institute, a nonpartisan tech research and policy center at Georgetown University focusing on AI, disinformation and data privacy.

“If you look at search as a product today, you can’t really think about search without thinking about AI,” she said. “I think the case is a really great opportunity to try to … analyze how Google has benefited specifically from the monopoly that it has in search, and ensure that the behavior that led to that can’t be used to gain an unfair advantage in these other markets which are more nascent.”

Having access to Google’s data, she said, “would provide them with the ability to build better chatbots, build better search engines, and potentially build other products that we haven’t even thought of.”

To make that point, the DOJ called Nick Turley, OpenAI’s head of product for ChatGPT, to the stand last Tuesday. During a long day of testimony, Turley detailed how without access to Google’s search index and data, engineers for the growing company tried to build their own.

ChatGPT, a large language model that can generate human-like responses, engage in conversations and perform tasks like explaining a tough-to-understand math lesson, was never intended to be a product for OpenAI, Turley said. But once it launched and went viral, the company found that people were using it for a host of needs.

Though popular, ChatGPT had its drawbacks, like the bot’s limited “knowledge,” Turley said. Early on, ChatGPT was not connected to the internet and could only use information that it had been fed up to a certain point in its training. For example, Turley said, if a user asked “Who is the president?” the program would give a 2022 answer — from when its “knowledge” effectively stopped.

OpenAI couldn’t build their own index fast enough to address their problems; they found that process incredibly expensive, time consuming and potentially years from coming to fruition, Turley said.

So instead, they sought a partnership with a third party search provider. At one point, OpenAI tried to make a deal with Google to gain access to their search, but Google declined, seeing OpenAI as a direct competitor, Turley testified.

But Google says companies like OpenAI are doing just fine without gaining access to the tech giant’s own technology — which it spent decades developing. These companies just want “handouts,” said Schmidtlein.

On the third day of the remedy trial, internal Google documents shared in court by the company’s lawyers compared how many people are using Gemini versus its competitors. According to those documents, ChatGPT and MetaAI are the two leaders, with Gemini coming in third.

They showed that this March, Gemini saw 35 million active daily users and 350 million monthly active users worldwide. That was up from 9 million daily active users in October 2024. But according to those documents, Gemini was still lagging behind ChatGPT, which reached 160 million daily users and around 600 million active users in March.

These numbers show that competitors have no need to use Google’s search data, valuable intellectual property that the tech giant spent decades building and maintaining, the company argues.

“The notion that somehow ChatGPT can’t get distribution is absurd,” Schmidtlein said in court last week. “They have more distribution than anyone.”

Google’s exclusive deals 

In his ruling last year, U.S. District Judge Amit Mehta said Google’s exclusive agreements with device makers, like Apple and Samsung, to make its search engine the default on those companies’ phones helped maintain its monopoly. It remains a core issue for this remedy trial.

Now, the DOJ is arguing that Google’s deals with device manufacturers are also directly affecting AI companies and AI tech.

In court, the DOJ argued that Google has replicated this kind of distribution deal by agreeing to pay Samsung what Dahlquist called a monthly “enormous sum” for Gemini to be installed on smartphones and other devices.

Last Wednesday, the DOJ also called Dmitry Shevelenko, Perplexity’s chief business officer, to testify that Google has effectively cut his company out from making deals with manufacturers and mobile carriers.

Perplexity AIs not preloaded on any mobile devices in the U.S., despite many efforts to get phone companies to establish Perplexity as a default or exclusive app on devices, Shevelenko said. He compared Google’s control in that space to that of a “mob boss.”

But Google’s attorney, Christopher Yeager, noted in questioning Shevelenko that Perplexity has reached a valuation of over $9 billion — insinuating the company is doing just fine in the marketplace.

Despite testifying in court (for which he was subpoenaed, Shevelenko noted), he and other leaders at Perplexity are against the breakup of Google. In a statement on the company’s website, the Perplexity team wrote that neither forcing Google to sell off Chrome nor to license search data to its competitors are the best solutions. “Neither of these address the root issue: consumers deserve choice,” they wrote.

Google and Alphabet CEO Sundar Pichai departs federal court after testifying in October 2023 in Washington, DC. Pichai testified to defend his company in the original antitrust trial. Pichai is expected to testify again during the remedy phase of the legal proceedings.

Google and Alphabet CEO Sundar Pichai departs federal court after testifying in October 2023 in Washington, DC. Pichai testified to defend his company in the original antitrust trial. Pichai is expected to testify again during the remedy phase of the legal proceedings.

Drew Angerer/Getty Images/Getty Images North America


hide caption

toggle caption

Drew Angerer/Getty Images/Getty Images North America

What to expect next

This week the trial continues, with the DOJ calling its final witnesses this morning to testify about the feasibility of a Chrome divestiture and how the government’s proposed remedies would help rivals compete. On Tuesday afternoon, Google will begin presenting its case, which is expected to feature the testimony of CEO Sundar Pichai, although the date of his appearance has not been specified.

Closing arguments are expected at the end of May, and then Mehta will make his ruling. Google says once this phase is settled the company will appeal Mehta’s ruling in the underlying case.

Whatever Mehta decides in this remedy phase, Cooper thinks it will have effects beyond just the business of search engines. No matter what it is, she said, “it will be having some kind of impact on AI.”

Google is a financial supporter of NPR.

Continue Reading

Noticias

API de Meta Oleleshes Llama que se ejecuta 18 veces más rápido que OpenAI: Cerebras Partnership ofrece 2.600 tokens por segundo

Published

on

Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información


Meta anunció hoy una asociación con Cerebras Systems para alimentar su nueva API de LLAMA, ofreciendo a los desarrolladores acceso a velocidades de inferencia hasta 18 veces más rápido que las soluciones tradicionales basadas en GPU.

El anuncio, realizado en la Conferencia inaugural de desarrolladores de Llamacon de Meta en Menlo Park, posiciona a la compañía para competir directamente con Operai, Anthrope y Google en el mercado de servicios de inferencia de IA en rápido crecimiento, donde los desarrolladores compran tokens por miles de millones para impulsar sus aplicaciones.

“Meta ha seleccionado a Cerebras para colaborar para ofrecer la inferencia ultra rápida que necesitan para servir a los desarrolladores a través de su nueva API de LLAMA”, dijo Julie Shin Choi, directora de marketing de Cerebras, durante una sesión de prensa. “En Cerebras estamos muy, muy emocionados de anunciar nuestra primera asociación HyperScaler CSP para ofrecer una inferencia ultra rápida a todos los desarrolladores”.

La asociación marca la entrada formal de Meta en el negocio de la venta de AI Computation, transformando sus populares modelos de llama de código abierto en un servicio comercial. Si bien los modelos de LLAMA de Meta se han acumulado en mil millones de descargas, hasta ahora la compañía no había ofrecido una infraestructura en la nube de primera parte para que los desarrolladores creen aplicaciones con ellos.

“Esto es muy emocionante, incluso sin hablar sobre cerebras específicamente”, dijo James Wang, un ejecutivo senior de Cerebras. “Openai, Anthrope, Google: han construido un nuevo negocio de IA completamente nuevo desde cero, que es el negocio de inferencia de IA. Los desarrolladores que están construyendo aplicaciones de IA comprarán tokens por millones, a veces por miles de millones. Y estas son como las nuevas instrucciones de cómputo que las personas necesitan para construir aplicaciones AI”.

Una tabla de referencia muestra a Cerebras Processing Llama 4 a 2,648 tokens por segundo, superando drásticamente a los competidores Sambanova (747), Groq (600) y servicios basados ​​en GPU de Google y otros, explicando la elección de hardware de Meta para su nueva API. (Crédito: Cerebras)

Breaking the Speed ​​Barrier: Cómo modelos de Llama de Cerebras Supercharges

Lo que distingue a la oferta de Meta es el aumento de la velocidad dramática proporcionado por los chips de IA especializados de Cerebras. El sistema de cerebras ofrece más de 2.600 fichas por segundo para Llama 4 Scout, en comparación con aproximadamente 130 tokens por segundo para ChatGPT y alrededor de 25 tokens por segundo para Deepseek, según puntos de referencia del análisis artificial.

“Si solo se compara con API a API, Gemini y GPT, todos son grandes modelos, pero todos se ejecutan a velocidades de GPU, que son aproximadamente 100 tokens por segundo”, explicó Wang. “Y 100 tokens por segundo están bien para el chat, pero es muy lento para el razonamiento. Es muy lento para los agentes. Y la gente está luchando con eso hoy”.

Esta ventaja de velocidad permite categorías completamente nuevas de aplicaciones que antes no eran prácticas, incluidos los agentes en tiempo real, los sistemas de voz de baja latencia conversacional, la generación de código interactivo y el razonamiento instantáneo de múltiples pasos, todos los cuales requieren encadenamiento de múltiples llamadas de modelo de lenguaje grandes que ahora se pueden completar en segundos en lugar de minutos.

La API de LLAMA representa un cambio significativo en la estrategia de IA de Meta, en la transición de ser un proveedor de modelos a convertirse en una compañía de infraestructura de IA de servicio completo. Al ofrecer un servicio API, Meta está creando un flujo de ingresos a partir de sus inversiones de IA mientras mantiene su compromiso de abrir modelos.

“Meta ahora está en el negocio de vender tokens, y es excelente para el tipo de ecosistema de IA estadounidense”, señaló Wang durante la conferencia de prensa. “Traen mucho a la mesa”.

La API ofrecerá herramientas para el ajuste y la evaluación, comenzando con el modelo LLAMA 3.3 8B, permitiendo a los desarrolladores generar datos, entrenar y probar la calidad de sus modelos personalizados. Meta enfatiza que no utilizará datos de clientes para capacitar a sus propios modelos, y los modelos construidos con la API de LLAMA se pueden transferir a otros hosts, una clara diferenciación de los enfoques más cerrados de algunos competidores.

Las cerebras alimentarán el nuevo servicio de Meta a través de su red de centros de datos ubicados en toda América del Norte, incluidas las instalaciones en Dallas, Oklahoma, Minnesota, Montreal y California.

“Todos nuestros centros de datos que sirven a la inferencia están en América del Norte en este momento”, explicó Choi. “Serviremos Meta con toda la capacidad de las cerebras. La carga de trabajo se equilibrará en todos estos diferentes centros de datos”.

El arreglo comercial sigue lo que Choi describió como “el proveedor de cómputo clásico para un modelo hiperscalador”, similar a la forma en que NVIDIA proporciona hardware a los principales proveedores de la nube. “Están reservando bloques de nuestro cómputo para que puedan servir a su población de desarrolladores”, dijo.

Más allá de las cerebras, Meta también ha anunciado una asociación con Groq para proporcionar opciones de inferencia rápida, brindando a los desarrolladores múltiples alternativas de alto rendimiento más allá de la inferencia tradicional basada en GPU.

La entrada de Meta en el mercado de API de inferencia con métricas de rendimiento superiores podría potencialmente alterar el orden establecido dominado por Operai, Google y Anthrope. Al combinar la popularidad de sus modelos de código abierto con capacidades de inferencia dramáticamente más rápidas, Meta se está posicionando como un competidor formidable en el espacio comercial de IA.

“Meta está en una posición única con 3 mil millones de usuarios, centros de datos de hiper escala y un gran ecosistema de desarrolladores”, según los materiales de presentación de Cerebras. La integración de la tecnología de cerebras “ayuda a Meta Leapfrog OpenAi y Google en rendimiento en aproximadamente 20X”.

Para las cerebras, esta asociación representa un hito importante y la validación de su enfoque especializado de hardware de IA. “Hemos estado construyendo este motor a escala de obleas durante años, y siempre supimos que la primera tarifa de la tecnología, pero en última instancia tiene que terminar como parte de la nube de hiperescala de otra persona. Ese fue el objetivo final desde una perspectiva de estrategia comercial, y finalmente hemos alcanzado ese hito”, dijo Wang.

La API de LLAMA está actualmente disponible como una vista previa limitada, con Meta planifica un despliegue más amplio en las próximas semanas y meses. Los desarrolladores interesados ​​en acceder a la inferencia Ultra-Fast Llama 4 pueden solicitar el acceso temprano seleccionando cerebras de las opciones del modelo dentro de la API de LLAMA.

“Si te imaginas a un desarrollador que no sabe nada sobre cerebras porque somos una empresa relativamente pequeña, solo pueden hacer clic en dos botones en el SDK estándar de SDK estándar de Meta, generar una tecla API, seleccionar la bandera de cerebras y luego, de repente, sus tokens se procesan en un motor gigante a escala de dafers”, explicó las cejas. “Ese tipo de hacernos estar en el back -end del ecosistema de desarrolladores de Meta todo el ecosistema es tremendo para nosotros”.

La elección de Meta de silicio especializada señala algo profundo: en la siguiente fase de la IA, no es solo lo que saben sus modelos, sino lo rápido que pueden pensarlo. En ese futuro, la velocidad no es solo una característica, es todo el punto.

Continue Reading

Trending