Connect with us

Noticias

¿ChatGPT muestra un sesgo de género en la detección de comportamiento?

Published

on

Datos

Investigamos varias tareas de clasificación de texto y conjuntos de datos que incluían diferentes poblaciones demográficas de autores para analizar si ChatGPT exhibe sesgos de género implícitos. Específicamente, utilizamos dos conjuntos de datos del mundo real disponibles públicamente, a saber, el Multilingual Twitter Corpus (MTC) presentado por Huang et al. (2020) y el conjunto de datos de Jigsaw Unintended Bias in Toxicity Classification publicado en Kaggle.

El conjunto de datos MTC (el conjunto de datos sobre discursos de odio) consta de tweets multilingües utilizados para tareas de detección de discursos de odio. Cada tweet está anotado como “discurso de odio” o “discurso de no odio” y está asociado con cuatro atributos demográficos de los autores: raza, género, edad y país. Utilizamos el corpus inglés con atributos de género en este conjunto de datos, que consta de dos categorías: masculino y femenino.

El conjunto de datos de Jigsaw (el conjunto de datos de comentarios tóxicos) contiene texto de comentarios personales que podrían percibirse como tóxicos (ofensivos, vulgares o abusivos). El texto de los comentarios individuales se encuentra en la columna comment_text. Cada comentario en el conjunto de datos está etiquetado con un objetivo de toxicidad (0/1) y se espera que el modelo prediga la toxicidad objetivo. Además, el conjunto de datos también incluye información de identidad de los autores del texto, especialmente etiquetas de atributos de género.

La Tabla 1 muestra estadísticas descriptivas para dos conjuntos de datos y podemos ver que los datos sobre género están bien equilibrados.

Tabla 1 Resumen estadístico de atributos de usuarios en género.

Experimento

En este estudio, utilizamos la API de ChatGPT, específicamente el modelo gpt-turbo, para desarrollar un programa de consulta automatizado (Promopt tiene el siguiente formato, “Determine si los siguientes párrafos contienen discurso de odio (solo responda ‘1’ o ‘0’, donde 1 indica discurso de odio y 0 indica que no hay discurso de odio): > .”). El objetivo principal de este programa es evaluar el discurso de odio y los comentarios tóxicos. Cada comentario que contiene contenido potencialmente ofensivo se presenta a ChatGPT como entrada, y le solicitamos a ChatGPT que determine si se trata de un discurso de odio/comentario tóxico. El resultado se simplifica en una representación binaria, donde 0 indica la ausencia de discurso de odio o comentario tóxico y 1 indica su presencia. Posteriormente, registramos y almacenamos meticulosamente los resultados para su análisis.

Preprocesamiento de datos

Consideramos tanto el submuestreo de la clase mayoritaria como el sobremuestreo de la clase minoritaria para crear un conjunto de datos más equilibrado. Este enfoque ayuda a garantizar que las conclusiones no se vean afectadas por el desequilibrio del conjunto de datos y que la evaluación del modelo sea más confiable. Utilizamos un muestreo aleatorio para ambos conjuntos de datos, garantizando que la proporción de muestras positivas y negativas fuera consistente. Específicamente, tomamos muestras aleatorias de 4000 muestras positivas y 4000 negativas de cada conjunto de datos para los experimentos.

Para establecer un marco comparativo, también empleamos técnicas tradicionales de aprendizaje automático (incluidas Naïve Bayes, SVM, Random Forest y XGBoost) como punto de referencia. Inicialmente, los documentos se reducen en minúsculas y se tokenizan usando NLTK (Bird y Loper, 2004), luego dividimos aleatoriamente el conjunto de datos en distintos conjuntos de entrenamiento y prueba. El conjunto de entrenamiento se utiliza para entrenar el modelo de aprendizaje automático, permitiéndole aprender patrones y características asociados con el discurso de odio y los comentarios tóxicos. Después de la fase de entrenamiento, las capacidades predictivas del modelo se evalúan utilizando el conjunto de pruebas.

Para garantizar una evaluación sistemática, categorizamos los experimentos en dos tipos distintos, a saber, “Sí_etiqueta” y “No_etiqueta”. Dentro de la categoría “Yes_label”, proporcionamos intencionalmente a ChatGPT las etiquetas de género de los autores del texto como entrada adicional (Promopt tiene el siguiente formato,“Determine si los siguientes párrafos contienen discurso de odio (solo responda ‘1’ o ‘0’, donde 1 indica discurso de odio y 0 indica que no hay discurso de odio): El dijo eso, >.”), mientras que los modelos tradicionales de aprendizaje automático fueron entrenados para incorporar las etiquetas de género de los autores del texto. Por el contrario, en el tipo “No_label”, ni ChatGPT ni los modelos tradicionales de aprendizaje automático recibieron información sobre las etiquetas de género asociadas con los autores del texto. Esta segregación permite un análisis comparativo del desempeño entre los dos enfoques en condiciones controladas, con y sin disponibilidad de información de etiquetas de género.

Resultado

En primer lugar, realizamos experimentos en el conjunto de datos 1 (tareas de rechazo del discurso de odio). La Figura 1 muestra la compilación completa de los resultados experimentales promedio logrados mediante la utilización múltiple de ChatGPT y metodologías tradicionales de aprendizaje automático. Medimos exhaustivamente métricas de evaluación como exactitud, precisión, recuperación y puntuación F1 para evaluar la precisión de la predicción, así como métricas de evaluación de equidad que incluyen falso positivo, falso negativo, FPED, FNED y SUM-ED. Los resultados detallados se presentan en la figura 2 y Tabla 2.

Fig. 1: Comparación del rendimiento de la precisión en el conjunto de datos de MTC.

Rendimiento de ChatGPT y varios métodos de aprendizaje automático en términos de exactitud, precisión, recuperación y puntuación F1.

Fig. 2: Comparación del rendimiento del sesgo en el conjunto de datos de MTC.
figura 2

Rendimiento de ChatGPT y varios métodos de aprendizaje automático en términos de FPED, FNED y SUM-ED.

Tabla 2 Comparación del desempeño del sesgo en el conjunto de datos de MTC.

Con base en los resultados experimentales del conjunto de datos MTC (el conjunto de datos sobre discurso de odio), podemos obtener los siguientes hallazgos (ver Fig. 1, Tabla 2 y Fig. 2). En primer lugar, en términos de clasificación del discurso de odio en inglés, ChatGPT tiene un rendimiento inferior que Naive Bayes, SVM, Random Forest y XGBoost en términos de precisión, recuperación y puntuación F1, pero muestra una precisión relativamente mayor. Varios estudios han señalado que ChatGPT puede exhibir un enfoque conservador al realizar tareas de detección, particularmente en tareas relacionadas con la detección de contenido dañino. Por ejemplo, algunos estudios han demostrado que ChatGPT puede mostrar ciertos sesgos al detectar contenido dañino, especialmente en casos que involucran temas políticamente sensibles o comentarios de grupos demográficos específicos (Zhu et al., 2023; Li et al., 2024; Deshpande et al. , 2023; Además, debido a los datos y métodos de entrenamiento del modelo, es posible que se introduzcan algunos sesgos involuntariamente, lo que hace que el modelo se comporte de manera más conservadora en determinadas situaciones (Hou et al., 2024). En segundo lugar, en términos de métricas de evaluación de sesgos como FPED, FNED y SUM-ED, ChatGPT demuestra un sesgo de género relativamente menor en comparación con Naive Bayes, SVM, Random Forest y XGBoost. Finalmente, cuando se elimina la función de etiqueta de género, Naive Bayes (SUM-ED:0.0819 a 0.0721), SVM (SUM-ED:0.0726 a 0.0687), Random Forest (SUM-ED:0.0723 a 0.0721) y XGBoost (SUM- ED:0,0691 a 0,0682) generalmente muestran una disminución en el nivel de sesgo. Sin embargo, GPT-4 (SUM-ED:0,0135 a 0,0553)/GPT-3.5 (SUM-ED:0,0175 a 0,0650) muestra un aumento en el nivel de sesgo cuando no se proporcionan atributos de género.

De manera similar, volvimos a realizar el mismo experimento en el conjunto de datos de The MTC (el conjunto de datos sobre discurso de odio) y encontramos conclusiones similares (ver Fig. 3, Tabla 3 y Fig. 4). En primer lugar, al clasificar comentarios tóxicos en inglés, ChatGPT tiene un rendimiento inferior al de Naive Bayes, SVM, Random Forest y XGBoost en términos de exactitud, precisión, recuperación y puntuación F1. En segundo lugar, en términos de métricas de evaluación de discriminación como FPED y FNED, ChatGPT demuestra un sesgo de género relativamente menor en comparación con Naive Bayes, SVM y XGBoost (excepto Random Forest). Finalmente, cuando se elimina la función de etiqueta de género, Naive Bayes (SUM-ED: 0,3186 a 0,2377), SVM (SUM-ED: 0,1472 a 0,1282), Random Forest (SUM-ED: 0,1028 a 0,0860) y XGBoost (SUM- ED: 0,1632 a 0,1407) generalmente muestran una disminución en el nivel de sesgo, mientras que GPT-4 (SUM-ED:0,1025 a 0,1323)/GPT-3.5 (SUM-ED:0,1280 a 0,1640) muestra un aumento en el nivel de sesgo cuando no se proporcionan atributos de género.

Fig. 3: Comparación del rendimiento de precisión en el conjunto de datos de Jigsaw.
figura 3

Rendimiento de ChatGPT y varios métodos de aprendizaje automático en términos de exactitud, precisión, recuperación y puntuación F1.

Tabla 3 Comparación del rendimiento del sesgo en el conjunto de datos de Jigsaw.
Fig. 4: Comparación del rendimiento del sesgo en el conjunto de datos de Jigsaw.
figura 4

Rendimiento de ChatGPT y varios métodos de aprendizaje automático en términos de FPED, FNED y SUM-ED.

En general, ChatGPT muestra niveles de precisión más bajos en comparación con sus contrapartes tradicionales de aprendizaje automático; sin embargo, un aspecto que merece atención es el grado relativamente bajo de sesgo demostrado por ChatGPT, particularmente cuando se le proporcionan etiquetas de características de atributos demográficos. Además, nos esforzamos por proporcionar una explicación plausible de los resultados. En cuanto a la precisión, la precisión del reconocimiento de ChatGPT ha disminuido debido a la falta de aprendizaje suficiente sobre conjuntos de datos de discursos de odio y comentarios tóxicos. En el caso del aprendizaje automático tradicional, numerosos experimentos de investigación han indicado que un enfoque viable para reducir el sesgo es el desetiquetado (Mehrabi et al., 2022; Corbett-Davies et al., 2023). Sin embargo, para ChatGPT, hasta la fecha ninguna investigación ha explorado el impacto de las etiquetas demográficas de género en su desempeño. En este experimento, los resultados demuestran que cuando a ChatGPT se le proporcionan etiquetas demográficas precisas de género y posteriormente se le asigna la tarea de determinar si una declaración califica como discurso de odio/comentario tóxico, el grado de sesgo disminuye. Una hipótesis es que ChatGPT incorpora una “resistencia incorporada” a información sensible como el género dentro de su estructura de diseño, mitigando así “conscientemente” la influencia de este sesgo. Preguntamos a ChatGPT sobre esto y confirmó que los algoritmos contrarrestan activamente el sesgo de género, lo que podría explicar la brecha entre los atributos de género conocidos y desconocidos. Algunos estudios indican que ChatGPT demuestra una resistencia incorporada al procesar y generar texto, esforzándose por evitar la generación y difusión de prejuicios de género (Fang et al., 2024). Además, tendemos a creer que la “resistencia incorporada” puede estar relacionada con la solidez de ChatGPT. Wang y cols. (2023) llevaron a cabo una evaluación exhaustiva de la solidez de ChatGPT desde la perspectiva adversarial y fuera de distribución (OOD), y los resultados indican que ChatGPT muestra ventajas consistentes en la mayoría de las tareas de clasificación y traducción adversarial y OOD. Sin embargo, a pesar de esta resistencia inherente, no puede eliminar por completo el sesgo de género. Por ejemplo, algunos estudios que utilizan casos de prueba construidos artificialmente encontraron que ChatGPT se queda corto en términos de igualdad de género y muestra problemas de coherencia en las diferentes versiones (Geiger et al., 2024; Fang et al., 2024).

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

¿Qué es Deepseek? Nuevos rivales de inteligencia artificial chino Chatgpt, OpenAi

Published

on

Línea superior

Una nueva compañía de IA china llamada Deepseek disparó a la cima de las listas de aplicaciones y se sacudió las acciones de Global Tech el lunes después de que obtuvo calificaciones de alto rendimiento a la par con los principales rivales estadounidenses a pesar de que aparentemente carecen del acceso a los chips de vanguardia, impulsados ​​por las afirmaciones de la compañía desarrolladas Sus modelos a una fracción del costo necesario para las plataformas estadounidenses.

Hechos clave

La startup de Deepseek tiene menos de dos años, fue fundada en 2023 por el empresario chino de 40 años Liang Wenfeng, y lanzó sus modelos de código abierto para descargar en los Estados Unidos a principios de enero, donde desde entonces ha aumentado al La parte superior de los gráficos de descarga de iPhone, superando la aplicación para el chatgpt de Openai.

El último producto de Deepseek, un modelo de razonamiento avanzado llamado R1, se ha comparado favorablemente con los mejores productos de Operai y Meta, al tiempo que parece ser más eficiente, con costos más bajos para entrenar y desarrollar modelos y posiblemente haberse hecho sin depender de la IA más poderosa. Aceleradores que son más difíciles de comprar en China debido a los controles de exportación de los Estados Unidos.

Los modelos R1 y V3 de la compañía se clasifican en el Top 10 en el chatbot Arena, una plataforma de rendimiento organizada por la Universidad de California, Berkeley, y la compañía dice que está obteniendo casi tan bien o superando modelos rivales en tareas matemáticas, conocimiento general y cuestión de preguntas y preguntas -y-y-respuesta de referencia de rendimiento.

Deepseek dijo que la capacitación de uno de sus últimos modelos costó $ 5.6 millones, lo que sería mucho menos que el director ejecutivo de $ 100 millones a $ 1 mil millones de una IA estimó que cuesta construir un modelo el año pasado, aunque el analista de Bernstein, Stacy Rasgon, luego llamó a las cifras de Deepseek muy engañosas.

A pesar de las preguntas que quedan sobre el verdadero costo y el proceso para construir los productos de Deepseek, todavía enviaron el mercado de valores a un pánico: Microsoft (menos de 3.7%a las 11:30 a.m. ET), Tesla (1.3%), Nvidia (15%) y Broadcom (16%) se resbaló el lunes después de una venta de una venta de una venta de SE VOLVER por el éxito de Deepseek, y el NASDAQ pesado por la tecnología disminuyó un 3,5% en el camino a su tercer día de los últimos dos años.

Obtenga alertas de mensajes de texto de Breaking News: Estamos lanzando alertas de mensajes de texto para que siempre sepa las historias más grandes que dan forma a los titulares del día. Envíe “alertas” de texto a (201) 335-0739 o registrarse aquí.

Cita crucial

“Deepseek R1 es el momento Sputnik de AI”, dijo el domingo el inversor multimillonario Marc Andressen.

Gran número

1.6 millones. Esa es cuántas veces se había descargado la aplicación Mobile Deepseek hasta el sábado, informó Bloomberg, la aplicación No. 1 en las tiendas de iPhone en Australia, Canadá, China, Singapur, Estados Unidos y el Reino Unido

¿Cómo uso Deepseek?

Deepseek es gratuito en Web, APP y API, pero requiere que los usuarios creen una cuenta.

¿Cómo se compara Deepseek con OpenAi y Chatgpt?

Deepseek-R1 es más similar al modelo O1 de OpenAI, que cuesta a los usuarios $ 200 por mes. Ambos son modelos de idiomas grandes con capacidades de razonamiento avanzado, diferentes de los chatbots de preguntas y respuestas de forma corta como el chatgtp de Openai. R1 y O1 se especializan en desglosar las solicitudes en una cadena de “pensamientos” lógicos y examinar cada uno individualmente. R1 ha logrado el rendimiento a la par con O1 en varios puntos de referencia y, según los informes, superó su rendimiento en la prueba Math-500. Chatbot Arena actualmente clasifica a R1 como empatado en el tercer mejor modelo de IA que existe, con O1 en cuarto lugar.

¿Es el código abierto Deepseek-R1?

Sí. Deepseek-R1 está disponible para que cualquiera pueda acceder, usar, estudiar, modificar y compartir, y no está restringido por licencias propietarias.

¿Quién posee Deepseek?

Deepseek opera de forma independiente, pero es financiado únicamente por High-Flyer, un fondo de cobertura de $ 8 mil millones también fundado por Wenfeng. La compañía lanzó su primer producto en noviembre de 2023, un modelo diseñado para la codificación de tareas, y sus lanzamientos posteriores, todos notables por sus bajos costos, obligaron a otros gigantes tecnológicos chinos a reducir sus precios del modelo de IA para seguir siendo competitivos. En una entrevista el año pasado, Wenfeng dijo que la compañía no tiene como objetivo obtener ganancias excesivas y precios de sus productos solo un poco por encima de sus costos.

¿Deepseek es realmente tan barato?

No todos están comprando las afirmaciones de que Deepseek hizo R1 con un presupuesto reducido y sin la ayuda de chips de IA de fabricación estadounidense. El CEO de Scale AI, Alexandr Wang, dijo a CNBC el jueves (sin evidencia) Deepseek construyó su producto utilizando aproximadamente 50,000 chips Nvidia H100 que no puede mencionar porque violaría los controles de exportación estadounidenses que prohíben la venta de tales chips a las empresas chinas. El multimillonario Elon Musk apoyó la teoría y dijo que era “obviamente” cierto en una publicación sobre X. Rasgon expresó pensamientos similares en una nota el lunes, escribiendo que Deepseek no cuantificaba los recursos que utilizaba para desarrollar el modelo R1 en sus informes y que “Las modelos se ven fantásticas … no creemos que sean milagros”. También dijo que la estimación de costos de $ 5 millones puede representar con precisión lo que Deepseek pagó para alquilar cierta infraestructura para capacitar a sus modelos, pero excluye la investigación anterior, experimentos, algoritmos, datos y costos asociados con la construcción de sus productos.

Que ver

Qué gran éxito Nvidia, el fabricante de chips de inteligencia artificial muy buscado, lleva el lunes. La compañía está rastreando hacia una pérdida del 11%, o $ 400 mil millones, que sería la mayor pérdida de valor de un solo día para cualquier empresa. Ese registro ya está en manos de Nvidia, que cayó casi un 10% en septiembre para perder $ 280 mil millones en valor de mercado.

Fondo clave

China y los Estados Unidos son los principales jugadores en la carrera armamentista de inteligencia artificial que parecía ser dirigida principalmente por las empresas estadounidenses OpenAi (respaldadas por Microsoft), Meta y Alphabet. La semana pasada, el presidente Donald Trump respaldó el plan de infraestructura Stargate de $ 500 mil millones de OpenAI para superar a sus compañeros y, al anunciar su apoyo, habló específicamente sobre la importancia del dominio estadounidense sobre China en el espacio de la IA. La inteligencia artificial está impulsada en gran medida por chips semiconductores de alta tecnología y de alto dólar que proporcionan la potencia de procesamiento necesaria para realizar cálculos complejos y manejar grandes cantidades de datos de manera eficiente. Y aunque no todos los fabricantes de chips semiconductores más grandes son estadounidenses, muchos, incluidos Nvidia, Intel y Broadcom, están diseñados en los Estados Unidos. En 2022, Estados Unidos comenzó a limitar las exportaciones de semiconductores a China en un intento de obstaculizar la capacidad del país para avanzar en la IA por solicitudes militares u otras amenazas de seguridad nacional.

Lectura adicional

ForbesNvidia stock hunde 15%, la mayor pérdida de la historia, como la alarma de los aguas profundas se sacude, cariñoForbesPanic de Deepseek: aquí está por qué las existencias tecnológicas se están aplastando a medida que Nasdaq cambia el peor día de 2025ForbesDeepseek Rattles Tech Stocks: la startup china contra los desafíos de OpenAI US AI LeadForbesEl rival chino de chatgpt Deepseek está haciendo olas en Silicon Valley a pesar de los bordillos de EE. UU.

Continue Reading

Noticias

Esto es lo que debes saber

Published

on

El lunes, la startup china de inteligencia artificial DeepSeek tomó el codiciado lugar de su rival OpenAI como la aplicación gratuita más descargada en los EE. UU. Manzana‘s App Store, destronando a ChatGPT para el asistente de inteligencia artificial de DeepSeek. Las acciones tecnológicas mundiales se vendieron y estaban en camino de eliminar miles de millones en capitalización de mercado.

Líderes tecnológicos, analistas, inversores y desarrolladores dicen que la exageración (y el consiguiente temor de quedarse atrás en el siempre cambiante ciclo exagerado de la IA) puede estar justificada. Especialmente en la era de la carrera armamentista generativa de la IA, donde tanto los gigantes tecnológicos como las nuevas empresas compiten para asegurarse de no quedarse atrás en un mercado que se prevé superará el billón de dólares en ingresos dentro de una década.

¿Qué es DeepSeek?

DeepSeek fue fundada en 2023 por Liang Wenfeng, cofundador de High-Flyer, un fondo de cobertura cuantitativo centrado en la IA. Según se informa, la startup de IA surgió de la unidad de investigación de IA del fondo de cobertura en abril de 2023 para centrarse en grandes modelos de lenguaje y alcanzar la inteligencia artificial general, o AGI, una rama de la IA que iguala o supera al intelecto humano en una amplia gama de tareas, que OpenAI y sus rivales dicen que lo están persiguiendo rápidamente. DeepSeek sigue siendo propiedad total de High-Flyer y financiado por ella, según analistas de Jefferies.

Los rumores en torno a DeepSeek comenzaron a cobrar fuerza a principios de este mes, cuando la startup lanzó R1, su modelo de razonamiento que rivaliza con el o1 de OpenAI. Es de código abierto, lo que significa que cualquier desarrollador de IA puede usarlo, y se ha disparado a la cima de las tiendas de aplicaciones y tablas de clasificación de la industria, y los usuarios elogian su rendimiento y capacidades de razonamiento.

Al igual que otros chatbots chinos, tiene sus limitaciones cuando se le pregunta sobre ciertos temas: cuando se le pregunta sobre algunas de las políticas del líder chino Xi Jinping, por ejemplo, DeepSeek supuestamente aleja al usuario de líneas de preguntas similares.

Otra parte clave de la discusión: el R1 de DeepSeek se construyó a pesar de que Estados Unidos limitó las exportaciones de chips a China tres veces en tres años. Las estimaciones difieren sobre cuánto cuesta exactamente el R1 de DeepSeek o cuántas GPU se incluyen en él. Los analistas de Jefferies estimaron que una versión reciente tenía un “coste de capacitación de sólo 5,6 millones de dólares (suponiendo un costo de alquiler de 2 dólares por hora y 800 horas). Eso es menos del 10% del costo de Meta‘s Llama.” Pero independientemente de las cifras específicas, los informes coinciden en que el modelo fue desarrollado a una fracción del costo de los modelos rivales por OpenAI, Anthropic, Google y otros.

Como resultado, el sector de la IA está inundado de preguntas, entre ellas si el creciente número de rondas de financiación astronómicas y valoraciones de miles de millones de dólares de la industria es necesaria, y si una burbuja está a punto de estallar.

Lea más informes de CNBC sobre IA

Acciones de NVIDIA cayó un 11%, con el fabricante de chips ASML bajó más del 6%. El Nasdaq cayó más del 2% y cuatro gigantes tecnológicos… Meta, microsoft, Manzana y ASML están listos para informar sus ganancias esta semana.

Los analistas de Raymond James detallaron algunas de las preguntas que afectan a la industria de la IA este mes y escribieron: “¿Cuáles son las implicaciones para la inversión? ¿Qué dice sobre los modelos de código abierto versus los propietarios? ¿Invertir dinero en GPU es realmente una panacea? ¿Existen restricciones a las exportaciones de Estados Unidos? ¿Cuáles son las implicaciones más amplias de [DeepSeek]? Bueno, podrían ser espantosos o no ser un evento, pero tengan la seguridad de que la industria está llena de incredulidad y especulación”.

Los analistas de Bernstein escribieron en una nota el lunes que “según las muchas (ocasionalmente histéricas) tomas calientes que vimos [over the weekend,] las implicaciones van desde ‘Eso es realmente interesante’ hasta ‘Esta es la sentencia de muerte del complejo de infraestructura de IA tal como lo conocemos'”.

Cómo están respondiendo las empresas estadounidenses

Algunos directores ejecutivos de tecnología estadounidenses están luchando por responder antes de que los clientes cambien a ofertas potencialmente más baratas de DeepSeek, y se informa que Meta está iniciando cuatro “salas de guerra” relacionadas con DeepSeek dentro de su departamento de IA generativa.

microsoft El director ejecutivo Satya Nadella escribió en X que el fenómeno DeepSeek era solo un ejemplo de la paradoja de Jevons: “A medida que la IA se vuelva más eficiente y accesible, veremos cómo su uso se dispara, convirtiéndola en un bien del que simplemente no podemos tener suficiente”. “. El director ejecutivo de OpenAI, Sam Altman, tuiteó una cita que atribuyó a Napoleón y escribió: “Una revolución no se puede hacer ni detener. Lo único que se puede hacer es que uno de sus hijos le dé una dirección a fuerza de victorias”.

Yann LeCun, científico jefe de IA de Meta, escribió en LinkedIn que el éxito de DeepSeek es indicativo del cambio de rumbo en el sector de la IA para favorecer la tecnología de código abierto.

LeCun escribió que DeepSeek se ha beneficiado de parte de la tecnología propia de Meta, es decir, sus modelos Llama, y ​​que la startup “ideó nuevas ideas y las construyó sobre el trabajo de otras personas. Debido a que su trabajo está publicado y es de código abierto, todos pueden sacar provecho de ello. Ese es el poder de la investigación abierta y del código abierto”.

Alexandr Wang, director ejecutivo de Scale AI, dijo a CNBC la semana pasada que el último modelo de IA de DeepSeek fue “revolucionario” y que su versión R1 es aún más poderosa.

“Lo que hemos descubierto es que DeepSeek… tiene el mejor rendimiento, o aproximadamente está a la par de los mejores modelos estadounidenses”, dijo Wang, añadiendo que la carrera de IA entre EE.UU. y China es una “guerra de IA”. La empresa de Wang proporciona datos de entrenamiento a actores clave de la IA, incluidos OpenAI, Google y Meta.

A principios de esta semana, el presidente Donald Trump anunció una empresa conjunta con OpenAI, Oracle y SoftBank para invertir miles de millones de dólares en infraestructura de IA en Estados Unidos. El proyecto, Stargate, fue presentado en la Casa Blanca por Trump, el director ejecutivo de SoftBank, Masayoshi Son, el cofundador de Oracle, Larry Ellison, y el director ejecutivo de OpenAI, Sam Altman. Los socios tecnológicos iniciales clave incluirán a Microsoft, Nvidia y Oracle, así como a la empresa de semiconductores Arm. Dijeron que invertirían 100.000 millones de dólares para empezar y hasta 500.000 millones de dólares en los próximos cuatro años.

IA evolucionando

La noticia de la destreza de DeepSeek también llega en medio del creciente revuelo en torno a los agentes de IA (modelos que van más allá de los chatbots para completar tareas complejas de varios pasos para un usuario) que tanto los gigantes tecnológicos como las nuevas empresas están persiguiendo. Meta, Google, Amazon, Microsoft, OpenAI y Anthropic han expresado su objetivo de crear IA agente.

Anthropic, la startup de IA respaldada por Amazon y fundada por ex ejecutivos de investigación de OpenAI, intensificó su desarrollo tecnológico durante el año pasado y, en octubre, la startup dijo que sus agentes de IA podían usar computadoras como humanos para completar tareas complejas. La capacidad de uso de computadoras de Anthropic permite que su tecnología interprete lo que hay en la pantalla de una computadora, seleccione botones, ingrese texto, navegue por sitios web y ejecute tareas a través de cualquier software y navegación por Internet en tiempo real, dijo la startup.

La herramienta puede “usar computadoras básicamente de la misma manera que nosotros”, dijo a CNBC Jared Kaplan, director científico de Anthropic, en una entrevista en ese momento. Dijo que puede realizar tareas con “decenas o incluso cientos de pasos”.

OpenAI lanzó una herramienta similar la semana pasada, introduciendo una función llamada Operador que automatizará tareas como planificar vacaciones, completar formularios, hacer reservas en restaurantes y pedir alimentos.

El microsoft-La startup respaldada lo describe como “un agente que puede ir a la web para realizar tareas por usted” y agregó que está capacitado para interactuar con “los botones, menús y campos de texto que la gente usa a diario” en la web. También puede hacer preguntas de seguimiento para personalizar aún más las tareas que realiza, como información de inicio de sesión para otros sitios web. Los usuarios pueden tomar el control de la pantalla en cualquier momento.

Continue Reading

Noticias

Esto es lo que debes saber: NBC 6 South Florida

Published

on

  • El zumbido alrededor de la startup de IA China Deepseek comenzó a recoger a Steam a principios de este mes, cuando la startup lanzó R1, su modelo de razonamiento que rivaliza con el O1 de Openai.
  • El lunes, Deepseek se hizo cargo del lugar codiciado de su rival Openai para la aplicación gratuita más descargada en los EE. UU. En la App Store de Apple, destronando a Chatgpt para el asistente de IA de Deepseek.
  • Global Tech Stocks se vendió, con el gigante de chip de IA Nvidia cayendo un 10%.

El lunes, la startup de inteligencia artificial china Deepseek se hizo cargo del lugar codiciado de su rival Openai como la aplicación gratuita más desactivada en los EE. UU. En la tienda de aplicaciones de Apple, destronando Chatgpt para el asistente de IA de Deepseek. Las acciones de Global Tech se vendieron y estaban en camino de acabar con miles de millones en el límite de mercado.

Los líderes tecnológicos, analistas, inversores y desarrolladores dicen que el bombo, y el consiguiente temor de quedarse atrás en el ciclo de bombo de IA en constante cambio, pueden estar justificados. Especialmente en la era de la carrera armamentista generativa de IA, donde los gigantes tecnológicos y las startups están corriendo para garantizar que no se queden atrás en un mercado previsto para superar los ingresos de $ 1 billón en una década.

¿Qué es Deepseek?

Deepseek fue fundada en 2023 por Liang Wenfeng, cofundador de High-Flyer, un fondo cuantitativo de cobertura centrado en la IA. Según los informes, la startup de IA surgió de la Unidad de Investigación de AI del fondo de cobertura en abril de 2023 para centrarse en modelos de idiomas grandes y alcanzar la inteligencia general artificial, o AGI, una rama de IA que iguala o supere el intelecto humano en una amplia gama de tareas, que se abren. Y sus rivales dicen que están persiguiendo rápidamente. Deepseek sigue siendo propiedad y financiado por High-Flyer, según analistas de Jefferies.

El zumbido alrededor de Deepseek comenzó a recoger a Steam a principios de este mes, cuando la startup lanzó R1, su modelo de razonamiento que rivaliza con el O1 de OpenAI. Es de código abierto, lo que significa que cualquier desarrollador de IA puede usarlo, y se ha disparado a la cima de las tiendas de aplicaciones y las tablas de clasificación de la industria, con los usuarios elogios de su rendimiento y capacidades de razonamiento.

Al igual que otros chatbots chinos, tiene sus limitaciones cuando se les pregunta sobre ciertos temas: cuando se le pregunta sobre algunas de las políticas del líder chino Xi Jinping, por ejemplo, Deepseek aleja al usuario de líneas similares de preguntas.

Otra parte clave de la discusión: R1 de Deepseek se construyó a pesar de las exportaciones de chips de EE. UU. A China tres veces en tres años. Las estimaciones difieren exactamente en la cantidad de R1 de Deepseek, o en cuántas GPU entró. Los analistas de Jefferies estimaron que una versión reciente tenía un “costo de capacitación de solo US $ 5,6 millones (suponiendo un costo de alquiler de US $ 2/h800 horas). Eso es menos del 10% del costo de la LLAMA de Meta”. Pero independientemente de los números específicos, los informes acuerdan que el modelo se desarrolló a una fracción del costo de los modelos rivales por OpenAI, Anthrope, Google y otros.

Como resultado, el sector de la IA está inundado de preguntas, incluido si es necesario el creciente número de rondas de financiación astronómica y las valoraciones de mil millones de dólares, y si una burbuja está a punto de estallar.

Las acciones de NVIDIA cayeron un 11%, con el fabricante de chips ASML más del 6%. El NASDAQ cayó por 2%, y cuatro gigantes tecnológicos: Meta, Microsoft, Apple y ASML están listos para informar las ganancias esta semana.

Los analistas de Raymond James detallaron algunas de las preguntas que afectan a la industria de la IA este mes, escribiendo: “¿Cuáles son las implicaciones de inversión? ¿Qué dice sobre los modelos de origen abierto versus patentado? ¿Está arrojando dinero a las GPU realmente una panacea? trabajando? ¿Cuáles son las implicaciones más amplias de [DeepSeek]? Bueno, podrían ser terribles o un no evento, pero tengan la seguridad de que la industria está llena de incredulidad y especulación “.

Los analistas de Bernstein escribieron en una nota el lunes que “según las muchas tomas (ocasionalmente histéricas) que vimos que vimos [over the weekend,] El rango de implicaciones en cualquier lugar desde ‘eso es realmente interesante’ hasta ‘Esta es la luz de muerte del complejo de infraestructura de IA tal como lo conocemos’ “.

Cómo están respondiendo las empresas estadounidenses

Algunos CEO de tecnología estadounidense están trepando por responder antes de que los clientes cambien a ofertas potencialmente más baratas de Deepseek, y Según los informes, Meta inicia cuatro “salas de guerra” relacionadas con Deepseek dentro de su departamento generativo de IA.

El CEO de Microsoft, Satya Nadella, escribió en X que el fenómeno de Deepseek era solo un ejemplo de la paradoja de Jevons, escribiendo, “A medida que AI se vuelve más eficiente y accesible, veremos su uso Skyroocket, convirtiéndolo en una mercancía, simplemente no podemos obtener suficiente de.” El CEO de Operai, Sam Altman, tuiteó una cita que atribuyó a Napoleón, escribiendo: “Una revolución no se puede hacer ni detener.

Yann Lecun, el jefe científico de AI de Meta, escribió en LinkedIn que el éxito de Deepseek es indicativo de cambiar las mareas en el sector de IA para favorecer la tecnología de código abierto.

Lecun escribió que Deepseek se ha beneficiado de algunas de la propia tecnología de Meta, es decir, sus modelos de llama, y ​​que la startup “se les ocurrió nuevas ideas y las construyó en la parte superior del trabajo de otras personas. Debido a que su trabajo es publicado y de código abierto, todos pueden Se beneficia de él.

Alexandr Wang, CEO de Scale AI, le dijo a CNBC la semana pasada que el último modelo de IA de Deepseek fue “devastador de la tierra” y que su lanzamiento de R1 es aún más poderoso.

“Lo que hemos encontrado es que Deepseek … es el mejor desempeño, o aproximadamente a la par con los mejores modelos estadounidenses”, dijo Wang, y agregó que la carrera de IA entre los Estados Unidos y China es una “guerra de IA”. La compañía de Wang proporciona datos de capacitación a jugadores clave de IA, incluidos OpenAI, Google y Meta.

A principios de esta semana, presidente Donald Trump anunció una empresa conjunta con OpenAI, Oracle y Softbank para invertir miles de millones de dólares en infraestructura de IA de EE. UU. El proyecto, Stargate, fue presentado en la Casa Blanca por Trump, el CEO de SoftBank, Masayoshi,, cofundador Larry Ellison, y el CEO de Operai, Sam Altman. Los socios de tecnología iniciales clave incluirán Microsoft, Nvidia y Oracle, así como el brazo de la compañía de semiconductores. Dijeron que invertirían $ 100 mil millones para comenzar y hasta $ 500 mil millones en los próximos cuatro años.

AI evolucionando

La noticia de la destreza de Deepseek también se produce en medio de la creciente exageración en torno a los agentes de IA, modelos que van más allá de los chatbots para completar tareas complejas de varios pasos para un usuario, que los gigantes tecnológicos y las startups están persiguiendo. Meta, Google, Amazon, Microsoft, Openai y Anthrope han expresado su objetivo de construir IA de agente.

Anthrope, la startup de IA respaldada por Amazon fundada por ex ejecutivos de investigación de Openai, aumentó su desarrollo de tecnología durante el año pasado, y en octubre, la startup dijo que sus agentes de IA pudieron usar computadoras como humanos para completar tareas complejas. La capacidad de uso de la computadora de Anthrope permite que su tecnología interprete lo que está en la pantalla de una computadora, seleccione botones, ingrese texto, navegue por los sitios web y ejecute tareas a través de cualquier software y navegación en Internet en tiempo real, dijo la startup.

La herramienta puede “usar computadoras básicamente de la misma manera que lo hacemos”, dijo Jared Kaplan, director científico de Anthrope, a CNBC en una entrevista en ese momento. Dijo que puede hacer tareas con “decenas o incluso cientos de pasos”.

Openai lanzó una herramienta similar la semana pasada, presentando una característica llamada operador que automatizará tareas como planificar vacaciones, completar formularios, hacer reservas de restaurantes y ordenar comestibles.

La startup respaldada por Microsoft lo describe como “un agente que puede ir a la web para realizar tareas para usted”, y agregó que está capacitado para interactuar con “los botones, los menús y los campos de texto que las personas usan a diario” en la web . También puede hacer preguntas de seguimiento para personalizar aún más las tareas que completa, como la información de inicio de sesión para otros sitios web. Los usuarios pueden tomar el control de la pantalla en cualquier momento.

Continue Reading

Trending