Connect with us

Noticias

Prueba de manejo del modelo Gemini-Exp-1206 de Google en análisis de datos y visualizaciones

Published

on

Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder en la industria. Más información


Uno de los últimos modelos experimentales de Google, Gemini-Exp-1206, muestra el potencial de aliviar uno de los aspectos más agotadores del trabajo de cualquier analista: lograr que sus datos y visualizaciones se sincronicen perfectamente y proporcionen una narrativa convincente, sin tener que trabajar toda la noche. .

Los analistas de inversiones, los banqueros junior y los miembros de equipos de consultoría que aspiran a puestos de socios asumen sus roles sabiendo que largas horas de trabajo, fines de semana y pasar toda la noche ocasionalmente podrían darles una ventaja interna en un ascenso.

Lo que consume gran parte de su tiempo es realizar análisis de datos avanzados y al mismo tiempo crear visualizaciones que refuercen una historia convincente. Lo que hace que esto sea más desafiante es que cada firma bancaria, fintech y consultora, como JP Morgan, McKinsey y PwC, tiene formatos y convenciones únicos para el análisis y visualización de datos.

VentureBeat entrevistó a miembros de equipos de proyectos internos cuyos empleadores habían contratado a estas empresas y las habían asignado al proyecto. Los empleados que trabajan en equipos dirigidos por consultores dijeron que producir imágenes que condensen y consoliden la enorme cantidad de datos es un desafío persistente. Uno dijo que era común que los equipos de consultores trabajaran durante la noche y hicieran un mínimo de tres o cuatro iteraciones de las visualizaciones de una presentación antes de decidirse por una y prepararla para las actualizaciones a nivel de tablero.

Un caso de uso convincente para probar el último modelo de Google

El proceso en el que confían los analistas para crear presentaciones que respalden una historia con visualizaciones y gráficos sólidos tiene tantos pasos manuales y repeticiones que resultó ser un caso de uso convincente para probar el último modelo de Google.

Al lanzar el modelo a principios de diciembre, Patrick Kane de Google escribió: “Ya sea que esté enfrentando desafíos complejos de codificación, resolviendo problemas matemáticos para proyectos escolares o personales, o brindando instrucciones detalladas de varios pasos para elaborar un plan de negocios personalizado, Gemini-Exp-1206 le ayudará a navegar tareas complejas con mayor facilidad”. Google notó el rendimiento mejorado del modelo en tareas más complejas, incluido el razonamiento matemático, la codificación y el seguimiento de una serie de instrucciones.

VentureBeat llevó el modelo Exp-1206 de Google a una prueba exhaustiva esta semana. Creamos y probamos más de 50 scripts de Python en un intento de automatizar e integrar análisis y visualizaciones intuitivas y fáciles de entender que pudieran simplificar los datos complejos que se analizan. Dado que los hiperescaladores dominan los ciclos de noticias actuales, nuestro objetivo específico era crear un análisis de un mercado tecnológico determinado y al mismo tiempo crear tablas de apoyo y gráficos avanzados.

A través de más de 50 iteraciones diferentes de scripts de Python verificados, nuestros hallazgos incluyeron:

  • Cuanto mayor es la complejidad de una solicitud de código Python, más “piensa” el modelo e intenta anticipar el resultado deseado. Exp-1206 intenta anticipar lo que se necesita a partir de un mensaje complejo determinado y variará lo que produce incluso con el más mínimo cambio de matiz en un mensaje. Vimos esto en cómo el modelo alternaría entre formatos de tipos de tablas colocadas directamente encima del gráfico de araña del análisis de mercado de hiperescalador que creamos para la prueba.
  • Obligar al modelo a intentar realizar análisis y visualización de datos complejos y producir un archivo Excel genera una hoja de cálculo con varias pestañas. Sin que nunca le pidieran una hoja de cálculo de Excel con varias pestañas, Exp-1206 creó una. El análisis tabular principal solicitado estaba en una pestaña, las visualizaciones en otra y una tabla auxiliar en la tercera.
  • Decirle al modelo que repita los datos y recomiende las 10 visualizaciones que decida que mejor se ajustan a los datos ofrece resultados beneficiosos y reveladores. Con el objetivo de reducir el tiempo que supone tener que crear tres o cuatro iteraciones de presentaciones de diapositivas antes de una revisión por parte de la junta, obligamos al modelo a producir múltiples iteraciones conceptuales de imágenes. Estos podrían limpiarse e integrarse fácilmente en una presentación, ahorrando muchas horas de trabajo manual creando diagramas en diapositivas.

Impulsando a Exp-1206 hacia tareas complejas y en capas

El objetivo de VentureBeat era ver hasta dónde se podía llevar el modelo en términos de complejidad y tareas en capas. Su desempeño en la creación, ejecución, edición y ajuste de 50 scripts de Python diferentes mostró cuán rápido el modelo intenta captar matices en el código y reaccionar de inmediato. El modelo se flexiona y se adapta según el historial de indicaciones.

El resultado de ejecutar el código Python creado con Exp-1206 en Google Colab mostró que la granularidad matizada se extendía al sombreado y la translucidez de las capas en un gráfico de araña de ocho puntos que fue diseñado para mostrar cómo se comparan seis competidores hiperescaladores. Los ocho atributos que le pedimos a Exp-1206 que identificara en todos los hiperescaladores y que anclara el gráfico de araña se mantuvieron consistentes, mientras que las representaciones gráficas variaron.

Batalla de los hiperescaladores

Elegimos los siguientes hiperescaladores para comparar en nuestra prueba: Alibaba Cloud, Amazon Web Services (AWS), Digital Realty, Equinix, Google Cloud Platform (GCP), Huawei, IBM Cloud, Meta Platforms (Facebook), Microsoft Azure, NTT Global Data. Centros, Oracle Cloud y Tencent Cloud.

A continuación, escribimos un mensaje de 11 pasos de más de 450 palabras. El objetivo era ver qué tan bien Exp-1206 puede manejar la lógica secuencial y no perder su lugar en un proceso complejo de varios pasos. (Puede leer el mensaje en el apéndice al final de este artículo).

Luego enviamos el mensaje en Google AI Studio, seleccionando el modelo Gemini Experimental 1206, como se muestra en la siguiente figura.

A continuación, copiamos el código en Google Colab y lo guardamos en un cuaderno Jupyter (Comparación de Hyperscaler – Gemini Experimental 1206.ipynb), luego ejecutamos el script de Python. El script se ejecutó sin problemas y creó tres archivos (indicados con las flechas rojas en la parte superior izquierda).

Análisis comparativo de Hyperscaler y un gráfico, en menos de un minuto

La primera serie de instrucciones en el mensaje pedía a Exp-1206 que creara un script de Python que comparara 12 hiperescaladores diferentes por su nombre de producto, características y diferenciadores únicos y ubicaciones de centros de datos. A continuación se muestra cómo resultó el archivo de Excel que se solicitó en el script. Me llevó menos de un minuto formatear la hoja de cálculo para reducirla y ajustarla a las columnas.

Hoja de cálculo de la prueba de Google Gemini-Exp-1206

La siguiente serie de comandos solicitó una tabla de los seis principales hiperescaladores comparados en la parte superior de una página y el gráfico de araña a continuación. Exp-1206 eligió por sí solo representar los datos en formato HTML, creando la siguiente página.

Gráfico de la prueba de Google Gemini-Exp-1206

La secuencia final de comandos se centró en la creación de un gráfico de araña para comparar los seis hiperescaladores principales. Le asignamos a Exp-1206 la tarea de seleccionar los ocho criterios para la comparación y completar el gráfico. Esa serie de comandos se tradujo a Python y el modelo creó el archivo y lo proporcionó en la sesión de Google Colab.

Un modelo diseñado específicamente para ahorrar tiempo a los analistas

VentureBeat ha aprendido que en su trabajo diario, los analistas continúan creando, compartiendo y ajustando bibliotecas de indicaciones para modelos de IA específicos con el objetivo de optimizar los informes, el análisis y la visualización en todos sus equipos.

Los equipos asignados a proyectos de consultoría a gran escala deben considerar cómo modelos como Gemini-Exp-1206 pueden mejorar enormemente la productividad y aliviar la necesidad de semanas laborales de más de 60 horas y noches ocasionales en vela. Una serie de indicaciones automatizadas pueden realizar el trabajo exploratorio de observar las relaciones en los datos, lo que permite a los analistas producir imágenes con mucha mayor certeza sin tener que dedicar una cantidad excesiva de tiempo a llegar allí.

Apéndice:

Prueba rápida de Google Gemini Experimental 1206

Escriba un script de Python para analizar los siguientes hiperescaladores que han anunciado una presencia de centro de datos e infraestructura global para sus plataformas y cree una tabla comparándolos que capture las diferencias significativas en cada enfoque en presencia de centro de datos e infraestructura global.

Haga que la primera columna de la tabla sea el nombre de la empresa, la segunda columna sean los nombres de cada uno de los hiperescaladores de la empresa que tienen presencia de centro de datos e infraestructura global, la tercera columna sea lo que hace que sus hiperescaladores sean únicos y una inmersión profunda en los más diferenciados. características, y la cuarta columna son las ubicaciones de los centros de datos para cada hiperescalador a nivel de ciudad, estado y país. Incluya los 12 hiperescaladores en el archivo de Excel. No hagas web scraping. Genere un archivo de Excel del resultado y formatee el texto en el archivo de Excel para que no contenga corchetes ({}), comillas (‘), asteriscos dobles (**) ni ningún código HTML para mejorar la legibilidad. Nombra el archivo de Excel, Gemini_Experimental_1206_test.xlsx.

A continuación, cree una tabla de tres columnas de ancho y siete columnas de profundidad. La primera columna se titula Hiperescalador, la segunda Características únicas y diferenciadores y la tercera, Infraestructura y ubicaciones de centros de datos. Pon en negrita los títulos de las columnas y céntralos. Los títulos de los hiperescaladores también están en negrita. Verifique dos veces para asegurarse de que el texto dentro de cada celda de esta tabla se ajuste y no pase a la siguiente celda. Ajuste la altura de cada fila para asegurarse de que todo el texto quepa en la celda deseada. Esta tabla compara Amazon Web Services (AWS), Google Cloud Platform (GCP), IBM Cloud, Meta Platforms (Facebook), Microsoft Azure y Oracle Cloud. Centre la tabla en la parte superior de la página de resultados.

A continuación, tomemos Amazon Web Services (AWS), Google Cloud Platform (GCP), IBM Cloud, Meta Platforms (Facebook), Microsoft Azure y Oracle Cloud y defina los ocho aspectos más diferenciadores del grupo. Utilice esos ocho aspectos diferenciadores para crear un gráfico de araña que compare estos seis hiperescaladores. Cree un único gráfico de araña grande que muestre claramente las diferencias en estos seis hiperescaladores, utilizando diferentes colores para mejorar su legibilidad y la capacidad de ver los contornos o huellas de diferentes hiperescaladores. Asegúrese de titular el análisis, Lo que más diferencia a los hiperescaladores, diciembre de 2024. Asegúrese de que la leyenda sea completamente visible y no esté encima del gráfico.

Agregue el gráfico de la araña en la parte inferior de la página. Centre el gráfico de araña debajo de la tabla en la página de salida.

Estos son los hiperescaladores que se incluirán en el script Python: Alibaba Cloud, Amazon Web Services (AWS), Digital Realty, Equinix, Google Cloud Platform (GCP), Huawei, IBM Cloud, Meta Platforms (Facebook), Microsoft Azure, NTT Global Data. Centros, Oracle Cloud, Tencent Cloud.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Soy un entrenador personal. Chatgpt me construyó una rutina de movilidad de 15 minutos para las caderas más sueltas, y me sorprende los resultados

Published

on

Como entrenador que ha estado viendo ChatGPT y AI se vuelven cada vez más prominentes en la industria del fitness, quería ponerlo a prueba. No es la primera vez: le pedí a Chat GPT que construyera un programa de entrenamiento de 4 semanas hace un tiempo, y tuve emociones mixtas sobre los resultados.

Más de dos años después, e incluso más adelante en la línea de desarrollo de IA, decidí ponerlo a prueba nuevamente. Esta vez, pedí una rutina de movilidad de la cadera de 15 minutos que pudiera hacer desde casa usando solo una de las mejores esteras de yoga como equipo. Le expliqué que me considero hacia el extremo avanzado de la escala de movilidad y dejo que haga lo suyo.

Continue Reading

Noticias

Ai ahora ‘en la cúspide de hacer una nueva ciencia’

Published

on

[Image created via OpenAI’s image generation technology]

“Estamos en la cúspide de sistemas que pueden hacer una nueva ciencia”.

Esa línea, en la página 3 del último “Marco de preparación” de OpenAI (versión 2, actualizada el 15 de abril de 2025), señala un posible cambio de paradigma para el ecosistema de I + D, que rápidamente está pasando de ser una etapa interna ansiosa, si no siempre precisa, a una colega potencial de AA, o incluso un investigador principal.

Mirando hacia el futuro, el marco lidia con el potencial de la IA para convertirse en “mejorando recursivamente”. Advierte que la “aceleración importante en la tasa de IA I + D” podría introducir rápidamente nuevas capacidades y riesgos. Esta aceleración podría superar las medidas de seguridad actuales, haciendo que la supervisión sea “insuficiente” y marcando explícitamente el peligro de perder el “mantenimiento del control humano” sobre el sistema de IA.

Hablando en un evento de Goldman Sachs solo unas semanas antes, el 5 de marzo (lanzado el 11 de abril en YouTube), la directora financiera de Operai Sarah Friar reforzó este punto de vista, afirmando que los modelos ya están “presentando cosas novedosas en su campo” y superando simplemente reflejando el conocimiento existente para “extender eso”. Friar señaló además el rápido enfoque hacia la inteligencia general artificial (AGI), lo que sugiere “Podemos estar allí”.

Si bien reconoce el debate en curso con algunos expertos que se balancean incluso en el término AGI y mucho menos su viabilidad, al menos con modelos de idiomas grandes), Friar mencionó la opinión del CEO Sam Altman de que la inteligencia general artificial (AGI), la IA que maneja el trabajo humano más valioso, podría ser “inminente”. Esto sugiere que la transición de la IA como herramienta para los investigadores de la IA como investigador puede estar más cerca de lo que muchos se dan cuenta, con primeros ejemplos potencialmente emergentes en campos como el desarrollo de software.

https://www.youtube.com/watch?v=2kzqm_bue7e

Las principales instituciones de I + D están construyendo activamente capacidades de ‘investigación autónoma’. Por ejemplo, los laboratorios nacionales como Argonne y Oak Ridge están desarrollando ‘laboratorios autónomos’ diseñados específicamente para la ciencia y la química de los materiales. Los Alamos también está trabajando con OpenAi
Probar sus modelos de razonamiento en Energía y Aplicaciones de Seguridad Nacional en su supercomputadora de Venado.

En general, los laboratorios nacionales están explorando el uso de IA para asumir tareas de investigación básicas: generar hipótesis (a menudo a través de estrategias de optimización), diseñar experimentos de varios pasos, controlar la ejecución robótica, analizar los resultados en tiempo real e iterando hacia objetivos de descubrimiento con una intervención humana significativamente reducida dentro de dominios operativos específicos. Si bien aún requiere supervisión humana para la validación y la dirección estratégica, que funciona quizás en un ‘nivel 3’ o ‘nivel 4’ emergente de la autonomía de la investigación, tales iniciativas demuestran que la IA se va más allá del análisis de datos pasivos para participar directamente en el proceso de descubrimiento científico. Esto se extiende más allá de la construcción de sistemas integrados; Implica empoderar directamente a los investigadores, como se ve en el reciente Doe ‘1,000 científico Ai Jam’. Esta colaboración a gran escala reunió a unos 1.500 científicos en múltiples laboratorios nacionales, incluido Argonne, para probar modelos avanzados de razonamiento de IA de compañías como OpenAi y Anthrope en problemas científicos del mundo real. Los investigadores exploraron específicamente su potencial para mejorar las tareas como la generación de hipótesis y la automatización del experimento.

Una transición similar ya está en marcha en el desarrollo de software, aunque los desarrolladores actualmente tienen vistas mixtas sobre el potencial de las herramientas habilitadas para Genai. La IA de hoy a menudo sirve como asistente, pero la tecnología está aumentando rápidamente su juego de software, especialmente para lenguajes comunes que van desde Javascript hasta Python. Los modelos de OpenAI están demostrando un progreso significativo, “acercándose a nivel humano” en puntos de referencia clave, y Fray señaló que uno ya es “literalmente el mejor codificador del mundo”. Esto respalda el potencial fraile descrito para un “ingeniero de software de agente”, una IA que “puede salir y trabajar de forma independiente para usted”, incluidas la construcción, las pruebas y las aplicaciones de documentación. Esta evolución hacia capacidades más autónomas podría remodelar el campo por completo.

AI de 5 niveles de Openai
marco de madurez

Según los informes, Operai utiliza un marco interno de cinco niveles para comparar su progreso hacia la inteligencia general artificial (AGI). Esta estructura, discutida dentro de la compañía a mediados de 2024 y luego informada por puntos de venta como Bloomberg, describe distintas etapas de capacidad de IA:

  1. Nivel 1: Chatbots / AI conversacional: Sistemas expertos en el lenguaje natural, como Chatgpt.
  2. Nivel 2: razonadores: AI capaz de resolver problemas básicos comparables a un humano altamente educado. En este nivel, los modelos también pueden demostrar habilidades de razonamiento emergentes sin herramientas externas.
  3. Nivel 3: Agentes: Sistemas de IA autónomos que pueden administrar tareas complejas y tomar decisiones durante períodos prolongados en nombre de los usuarios.
  4. Nivel 4: Innovadores: La IA contribuye significativamente a la creatividad y el descubrimiento generando ideas novedosas, ayudando a la invención o impulsando los avances.
  5. Nivel 5: Organizaciones: La etapa del ápice donde la IA puede gestionar y operar las funciones complejas de toda una organización, potencialmente excediendo la eficiencia humana.

En general, los laboratorios nacionales están explorando el uso de IA para asumir tareas de investigación básicas: generar hipótesis (a menudo a través de estrategias de optimización), diseñar experimentos de varios pasos, controlar la ejecución robótica, analizar los resultados en tiempo real e iterando hacia objetivos de descubrimiento con una intervención humana significativamente reducida dentro de dominios operativos específicos. Si bien aún requiere supervisión humana para la validación y la dirección estratégica, que funciona quizás en un ‘nivel 3’ o ‘nivel 4’ emergente de la autonomía de la investigación, tales iniciativas demuestran que la IA se va más allá del análisis de datos pasivos para participar directamente en el proceso de descubrimiento científico. Esto se extiende más allá de la construcción de sistemas integrados; Implica empoderar directamente a los investigadores, como se ve en el reciente Doe ‘1,000 científico Ai Jam’. Esta colaboración a gran escala reunió a unos 1.500 científicos en múltiples laboratorios nacionales, incluido Argonne, para probar modelos avanzados de razonamiento de IA de compañías como OpenAi y Anthrope en problemas científicos del mundo real. Los investigadores exploraron específicamente su potencial para mejorar las tareas como la generación de hipótesis y la automatización del experimento.

Una transición similar ya está en marcha en el desarrollo de software, aunque los desarrolladores actualmente tienen vistas mixtas sobre el potencial de las herramientas habilitadas para Genai. La IA de hoy a menudo sirve como asistente, pero la tecnología está aumentando rápidamente su juego de software, especialmente para lenguajes comunes que van desde Javascript hasta Python. Los modelos de OpenAI están demostrando un progreso significativo, “acercándose a nivel humano” en puntos de referencia clave, y Fray señaló que uno ya es “literalmente el mejor codificador del mundo”. Esto respalda el potencial fraile descrito para un “ingeniero de software de agente”, una IA que “puede salir y trabajar de forma independiente para usted”, incluidas la construcción, las pruebas y las aplicaciones de documentación. Esta evolución hacia capacidades más autónomas podría remodelar el campo por completo.

Continue Reading

Noticias

Lo que se puso bien y mal

Published

on

Han pasado casi 30 años desde que fui a Disney World. Mis recuerdos de Disney son felices, pero no recuerdo ningún detalle más allá de usar oídos, hacer que los personajes firmen mi libro especial de autógrafos y permanezcan despierto hasta tarde para ver el espectáculo de fuegos artificiales en Epcot.

Tengo dos hijas, casi 4.5 y 2.5, que están obsesionados con las princesas, por lo que cuando descubrí que mi familia estaría en Orlando durante unos días en junio, decidí buscar ir a Disney World por el día. Haremos un viaje más grande de Disney World en un par de años, pero los niños menores de 3 años son gratuitos (una de las pocas cosas que sabía sobre Disney), así que pensé que aprovecharíamos eso y les daríamos una gran sorpresa.

El único problema es que pensar en planificar un día en Disney es abrumador. Hay Tanta información Acerca de cómo optimizar su tiempo en los parques.

Decidí pedirle a ChatGPT que planifique mi día, y luego tuve a Mary Helen Law, propietaria de la compañía de planificación de Disney Minnie Mouse Counselors y uno de los principales especialistas en viajes de Conde Nast Traveler, revise el itinerario. Siga leyendo para escuchar qué chatgpt se hizo bien y mal y qué tenía que decir un experto en Disney.

Conocer al experto

Mary Helen Law, fundador de Mini Mouse Counselores

Mary Helen es una madre y experta en viajes. Comenzó su carrera como agente de viajes en 2018 mientras trabajaba en marketing y desarrollo de negocios. En 2019 decidió dejar su trabajo diario para expandir su negocio. Desde entonces, ha ayudado a cientos de familias a planificar vacaciones mágicas en todo el mundo y es uno de los principales especialistas en viajes de Conde Nast Traveler.

My Disney World Chatgpt Planning de planificación

Primero, aquí está el aviso que le di a Chatgpt para crear nuestro itinerario de Disney World:

¿Puedes planificar el día de mi familia en Disney World? Seremos yo, mi esposo y mis dos hijas. Serán 2.5 y 4.5 para el viaje, y aman a Ariel, Elsa y Ana, Moana, Belle, 101 Dalmatians, Cenicienta y Mary Poppins.

Nos gustaría ir a dos parques diferentes en el transcurso del día, pero necesitaremos un descanso de tres a cuatro horas en la mitad del día para una siesta. Nos gustaría hacer un almuerzo sentado en un restaurante temático que nuestras niñas les gustaría en función de sus intereses. ¿Puede planificar un itinerario para el día para los parques que recomendaría? Además, debe haber una parada de bocadillos por la mañana y la tarde.

¿Qué chatgpt hizo lo correcto sobre la planificación de un viaje a Disney World?

Hay muchas cosas que ChatGPT se equivocó sobre la planificación de un viaje a Disney (más sobre eso en un momento), pero sí recomendó paseos y actividades que encajarían bien en función de los intereses de mis hijas, como ir al viaje “Under the Sea” y conocer a Ariel, ver “cuentos encantados con Belle”, con un almuerzo en el restaurante de invitados y ver la festival de la fantasía de Magic Kingdom.

Cuando mi hermana usó un planificador de Disney el año pasado, tuvo la experiencia opuesta. El planificador acaba de recomendar todos los paseos más populares, como Tron, en el que mi sobrino no habría tenido interés, por lo que al menos Chatgpt prestó atención a lo que le dije que le gustaban a mis chicas.

También le pregunté a ChatGPT si tenía algún consejo para tener un día exitoso en Disney, y obtuve una buena información, como usar la aplicación de Disney para verificar los tiempos de espera de viaje y pedir comida con anticipación, y que podríamos usar el programa Rider Switch en caso de que mi hijo menor fuera demasiado pequeño para viajar.

También me dio algunas recomendaciones excelentes sobre qué empacar para el día, como protector solar, toallitas para bebés y bocadillos. Law estuvo de acuerdo en que había algunas pepitas de buena información, pero señaló que ChatGPT no incluía empacar un cargador de teléfono portátil, algo que dijo que necesitaríamos.

Qué chatgpt se equivocó sobre nuestro itinerario del día de Disney

Tres cosas principales para recordar sobre ChatGPT es que solo responde a lo que le da, se está retirando de la información en Internet y puede que no siempre sea correcto, y tampoco hay un elemento humano para ayudar a racionalizar la información.

Por ejemplo, le dije a ChatGPT que quería ir a dos parques, por lo que me dio un itinerario basado en ese aviso. Nunca hubiera sugerido que no haga dos parques porque sería poco realista dadas las edades de mis hijos.

ChatGPT carece de la capacidad de decir que no o sugerir ideas alternativas

Chatgpt hizo lo que le pedí, pero si hubiera abrazado las sugerencias, supongo que nunca habríamos regresado al parque después de una siesta y está muy frustrado.

Law, por otro lado, echó un vistazo a mi aviso y me dijo que realmente recomendaría no saltar en el parque y que deberíamos quedarnos en Magic Kingdom todo el día versus tratar de irme y volver.

Law me explicó que debido a que no nos quedamos en un resort de Disney, pasaremos mucho más tiempo pasando del estacionamiento a los parques, y que mi estimación de 30 minutos probablemente fue más como una hora y media. ChatGPT no sabe cuánto tiempo lleva llegar al estacionamiento y regresar a un hotel y no pudo estimar con precisión la logística detrás de esto.

También recomendó una siesta de cochecito en el carrusel de progreso con aire acondicionado, que según ella generalmente era un lugar más tranquilo, en lugar de tratar de irse y volver al parque. ChatGPT también recomendó este lugar y el Salón de Presidentes actualmente cerrado como un gran lugar para tomar un descanso, pero en general necesitaba un humano con más conocimiento de cómo funcionan las cosas en Disney para ayudarme a entender lo que era realista en lugar de no para nuestro viaje.

Chatgpt no incluyó ningún tiempo de espera para los paseos

Si nos fijamos en el itinerario que Chatgpt me dio por Disney, es como si tuviéramos el parque para nosotros mismos. Según ChatGPT, estaríamos en camino o en una nueva atracción cada 30 minutos.

Incluso sé lo suficiente sobre Disney para saber que eso no sonó bien. Law dijo que probablemente estaríamos en el extremo inferior de los tiempos de espera desde que iremos a principios de junio, pero acordamos que la cantidad de cosas que el itinerario dijo que logramos no parecía realista.

En cambio, ella me acompañó a través de la aplicación de Disney y me mostró cómo podré ver cuáles son los tiempos de espera para cada viaje, cuáles son los tiempos de show y cómo ver qué personajes están.

También me habló de las otras formas en que podemos reducir los tiempos de espera comprando pases de rayos o el pase Premier, que es un programa más nuevo (aunque costoso) que Disney está probando que le da una entrada a cada experiencia de Lightning Lane.

Usar ChatGPT sería excelente para preguntar qué paseos serían apropiados para mis niñas en función de su edad e intereses para que tengamos una idea de qué apuntar durante todo el día, pero la información sobre cómo usar la aplicación para ahorrar tiempo que la ley me dio será mucho más útil. También ayudó a establecer el nivel de mis expectativas sobre lo que podremos lograr en un día, lo que me ayudará a no estresarse por no poder hacerlo todo una vez que lleguemos allí.

Chatgpt se equivocó con cosas importantes que habrían arruinado nuestro día en Disney

Recuerde, soy un novato en Disney, así que tomé toda la información que me dio al pie de la letra.

El problema, dice Law, es que “ChatGPT simplemente no puede mantenerse al día con la cantidad que cambia Disney”. Se extrae de fuentes en todo Internet y no puede discernir lo que es correcto o no, así que terminé con cosas en el itinerario que no son precisos.

¿Uno de los mayores errores? El itinerario dijo que podríamos conocer a Ana y Elsa, los personajes favoritos de mis niñas, en el Princess Fairytale Hall, que no es cierto. Se encuentran y saludan en Epcot en el Royal Sommerhus.

Law sintió mi decepción y me aseguró que las chicas podrían saludar a Ana, Elsa y Olaf en la feria de amistad mágica de Mickey o en el desfile de Magic Kingdom.

¿Otras cosas importantes que Chatgpt se equivocó que habría descarrilado nuestro día? Sugirió conocer a Ariel a las 9 am cuando no está disponible hasta las 10 de la mañana; dijo que podríamos ingresar al parque a las 8 a.m., lo cual es incorrecto teniendo en cuenta que Magic Kingdom abre a las 8:30 a.m. para las personas que permanecen en la propiedad y las 9 a.m. para las personas que se mantienen fuera de la propiedad; y dijo que deberíamos usar Genie+ o un paso rápido para reducir los tiempos de espera, los cuales son servicios que ya no existen.

Es fácil suponer que lo que ChatGPT escupe es exacto, pero en nuestro caso todos estos errores habrían causado una frustración significativa para el día.

¿Debería usar ChatGPT para cualquier parte de su planificación de Disney?

Law dijo que podía ver que ChatGPT era útil para “cosas de espectro muy amplio” al planificar un viaje a Disney, como recomendaciones para qué recurre para quedarse o tener una idea general de qué personajes son los parques (aunque tenga en cuenta, ChatGPT me dio información incorrecta sobre esto).

“Creo que hay mucha seguridad laboral en lo que [travel planners] Haga por las relaciones que tenemos y el conocimiento “, dice, pero dice que no cree que sea una mala idea usar ChatGPT para obtener algunas ideas iniciales antes de hablar con un planificador.

Chatgpt Disney World Itinerario
Fuente: @mrscofieldandco | Instagram

¿Debería usar un planificador de Disney para su viaje de Disney?

No tiene que usar un planificador de Disney para planificar su viaje, pero después de mi experiencia con ChatGPT, usaré uno, ya que todavía no sé por dónde comenzar con toda la información.

Trabajar con un planificador de Disney es a menudo gratuito, ya que Disney le paga a una comisión al planificador, pero si no es así, podría valer la pena la inversión solo para asegurarse de obtener la información más precisa.

Si no desea usar un planificador, pregúntele a los amigos que hayan estado en Disney para sus consejos e itinerarios. Puede ser más fácil entender lo que es realista en lugar de no para su familia si tiene hijos de edad similar y aún reducirá el trabajo para usted (Everymom también tiene consejos de mamás para viajar a Disney World con niños pequeños, Disney con un bebé e incluso Disney World mientras está embarazada).

Veredicto final? ChatGPT podría ser bueno para algunos aspectos de la planificación de viajes, pero el itinerario que me dio en base a mi aviso no era realista y tenía muchos errores. Para algo tan complicado como Disney World, tener ideas y juicio humanos se siente como una mejor manera de tratar de garantizar más magia de Disney que los dolores de cabeza.

Elliot Harrell SHOYSHOT

Sobre el autor

Elliott Harrell, escritor colaborador

Elliott es madre de dos niñas y tiene su sede en Raleigh, NC. Pasa sus días dirigiendo un equipo de ventas y lavando la ropa y sus noches escribiendo sobre las cosas que ama. Le apasiona todas las cosas de la maternidad y la salud de las mujeres. Cuando no está trabajando, escribiendo o criando, puede encontrarla probar un nuevo restaurante en la ciudad o trabajar en su último proyecto de aguja.

Continue Reading

Trending