Connect with us

Noticias

En 2024, la inteligencia artificial consistía en poner a trabajar las herramientas de IA | Nacional

Published

on

Si 2023 fue un año de maravillas sobre la inteligencia artificial, 2024 fue el año para intentar que esa maravilla haga algo útil sin arruinarse.

Hubo un “paso de producir modelos a construir productos”, dijo Arvind Narayanan, profesor de informática de la Universidad de Princeton y coautor del nuevo libro “AI Snake Oil: What Artificial Intelligence Can Do, What It Can’t, y Cómo notar la diferencia”.

Los primeros 100 millones de personas que experimentaron con ChatGPT tras su lanzamiento hace dos años buscaron activamente el chatbot, encontrándolo increíblemente útil en algunas tareas o ridículamente mediocre en otras.

Ahora, esta tecnología de IA generativa está integrada en un número cada vez mayor de servicios tecnológicos, ya sea que la busquemos o no, por ejemplo, a través de las respuestas generadas por IA en los resultados de búsqueda de Google o nuevas técnicas de IA en las herramientas de edición de fotografías.

“El principal problema de la IA generativa el año pasado es que las empresas lanzaban estos modelos realmente potentes sin una manera concreta de que la gente pudiera utilizarlos”, afirmó Narayanan. “Lo que estamos viendo este año es la construcción gradual de estos productos que pueden aprovechar esas capacidades y hacer cosas útiles para las personas”.

Al mismo tiempo, desde que OpenAI lanzó GPT-4 en marzo de 2023 y los competidores introdujeron modelos de lenguaje grande de IA con rendimiento similar, estos modelos han dejado de volverse significativamente “más grandes y cualitativamente mejores”, restableciendo expectativas exageradas de que la IA corría cada pocos meses hacia algún tipo. de inteligencia mejor que la humana, dijo Narayanan. Eso también significó que el discurso público ha cambiado de “¿nos va a matar la IA?”. a tratarla como una tecnología normal, dijo.

El impacto de la pegatina de la IA

En las llamadas trimestrales sobre resultados de este año, los ejecutivos de tecnología a menudo escucharon preguntas de analistas de Wall Street que buscaban garantías de beneficios futuros del enorme gasto en investigación y desarrollo de IA. Construir sistemas de IA detrás de herramientas de IA generativa como ChatGPT de OpenAI o Gemini de Google requiere invertir en sistemas informáticos que consumen mucha energía y se ejecutan en chips de IA potentes y costosos. Requieren tanta electricidad que los gigantes tecnológicos anunciaron acuerdos este año para aprovechar la energía nuclear para ayudar a operarlos.

“Estamos hablando de cientos de miles de millones de dólares de capital que se han invertido en esta tecnología”, dijo Kash Rangan, analista de Goldman Sachs.

Otro analista del banco de inversión de Nueva York llamó la atención durante el verano al argumentar que la IA no está resolviendo los problemas complejos que justificarían sus costos. También cuestionó si los modelos de IA, incluso cuando se entrenan con gran parte de los datos escritos y visuales producidos a lo largo de la historia humana, algún día podrán hacer lo que los humanos hacen tan bien. Rangan tiene una visión más optimista.

“Teníamos la fascinación de que esta tecnología iba a ser absolutamente revolucionaria, algo que no había sido en los dos años transcurridos desde la introducción de ChatGPT”, dijo Rangan. “Es más caro de lo que pensábamos y no es tan productivo como pensábamos”.

Rangan, sin embargo, sigue siendo optimista sobre su potencial y dice que las herramientas de inteligencia artificial ya están demostrando ser “absolutamente cada vez más productivas” en ventas, diseño y otras profesiones.

IA y tu trabajo

Algunos trabajadores se preguntan si las herramientas de IA se utilizarán para complementar su trabajo o para reemplazarlas a medida que la tecnología siga creciendo. La empresa de tecnología Borderless AI ha estado utilizando un chatbot de inteligencia artificial de Cohere para redactar contratos de trabajo para trabajadores en Turquía o India sin la ayuda de abogados o traductores externos.

Los artistas de videojuegos del Screen Actors Guild-American Federation of Television and Radio Artists que se declararon en huelga en julio dijeron que temían que la IA pudiera reducir o eliminar las oportunidades laborales porque podría usarse para replicar una actuación en varios otros movimientos sin su consentimiento. . Las preocupaciones sobre cómo los estudios de cine utilizarán la IA ayudaron a impulsar las huelgas de cine y televisión del año pasado por parte del sindicato, que duraron cuatro meses. Las empresas de juegos también firmaron acuerdos paralelos con el sindicato que codifican ciertas protecciones de la IA para seguir trabajando con los actores durante la huelga.

Músicos y autores han expresado preocupaciones similares sobre el hecho de que la IA esté raspando sus voces y sus libros. Pero la IA generativa todavía no puede crear trabajos únicos o “cosas completamente nuevas”, dijo Walid Saad, profesor de ingeniería eléctrica e informática y experto en IA en Virginia Tech.

“Podemos entrenarlo con más datos para que tenga más información. Pero tener más información no significa que seas más creativo”, afirmó. “Como humanos, entendemos el mundo que nos rodea, ¿verdad? Entendemos la física. Entiendes que si lanzas una pelota al suelo, rebotará. Las herramientas de IA actualmente no entienden el mundo”.

Saad señaló un meme sobre la IA como ejemplo de esa deficiencia. Cuando alguien solicitó a un motor de IA que creara una imagen de un salmón nadando en un río, dijo, la IA creó una foto de un río con trozos de salmón cortados que se encuentran en las tiendas de comestibles.

“Lo que le falta a la IA hoy es el sentido común que tenemos los humanos, y creo que ese es el siguiente paso”, afirmó.

Un ‘futuro agente’

Ese tipo de razonamiento es una parte clave del proceso de hacer que las herramientas de IA sean más útiles para los consumidores, dijo Vijoy Pandey, vicepresidente senior de la división de innovación e incubación de Cisco, Outshift. Los desarrolladores de IA están presentando cada vez más la próxima ola de chatbots de IA generativa como “agentes” de IA que pueden hacer cosas más útiles en nombre de las personas.

Eso podría significar poder hacerle una pregunta ambigua a un agente de IA y hacer que el modelo sea capaz de razonar y planificar pasos para resolver un problema ambicioso, dijo Pandey. Mucha tecnología, afirmó, avanzará en esa dirección en 2025.

Pandey predice que, con el tiempo, los agentes de IA podrán unirse y realizar un trabajo de la misma manera que varias personas se unen y resuelven un problema como equipo, en lugar de simplemente realizar tareas como herramientas de IA individuales. Los agentes de IA del futuro trabajarán como un conjunto, afirmó.

El futuro software de Bitcoin, por ejemplo, probablemente dependerá del uso de agentes de software de inteligencia artificial, dijo Pandey. Cada uno de esos agentes tendrá una especialidad, dijo, con “agentes que verifican la corrección, agentes que verifican la seguridad, agentes que verifican la escala”.

“Estamos llegando a un futuro agente”, dijo. “Todos estos agentes serán muy buenos en ciertas habilidades, pero también tendrán un poco de carácter o color, porque así es como operamos”.

La IA logra avances en la medicina

Las herramientas de inteligencia artificial también han simplificado, o en algunos casos prestado una ayuda literal, al campo médico. El Premio Nobel de Química de este año, uno de los dos Nobel otorgados a ciencias relacionadas con la IA, fue para un trabajo dirigido por Google que podría ayudar a descubrir nuevos medicamentos.

Saad, profesor de Virginia Tech, dijo que la IA ha ayudado a lograr diagnósticos más rápidos al brindarles a los médicos un punto de partida desde el cual comenzar a determinar la atención de un paciente. La IA no puede detectar enfermedades, dijo, pero puede digerir datos rápidamente y señalar áreas problemáticas potenciales para que las investigue un médico real. Sin embargo, como ocurre en otros ámbitos, plantea el riesgo de perpetuar falsedades.

El gigante tecnológico OpenAI ha promocionado su herramienta de transcripción Whisper, impulsada por IA, por tener una robustez y precisión casi “a nivel humano”, por ejemplo. Pero los expertos han dicho que Whisper tiene un defecto importante: es propenso a componer fragmentos de texto o incluso oraciones enteras.

Pandey, de Cisco, dijo que algunos de los clientes de la compañía que trabajan en productos farmacéuticos han notado que la IA ha ayudado a cerrar la brecha entre los “laboratorios húmedos”, en los que los humanos realizan investigaciones y experimentos físicos, y los “laboratorios secos”, donde las personas analizan datos y A menudo utilizamos ordenadores para modelar.

Cuando se trata de desarrollo farmacéutico, ese proceso de colaboración puede llevar varios años, dijo; con la IA, el proceso se puede reducir a unos pocos días.

“Ese, para mí, ha sido el uso más dramático”, dijo Pandey.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Soy un entrenador personal. Chatgpt me construyó una rutina de movilidad de 15 minutos para las caderas más sueltas, y me sorprende los resultados

Published

on

Como entrenador que ha estado viendo ChatGPT y AI se vuelven cada vez más prominentes en la industria del fitness, quería ponerlo a prueba. No es la primera vez: le pedí a Chat GPT que construyera un programa de entrenamiento de 4 semanas hace un tiempo, y tuve emociones mixtas sobre los resultados.

Más de dos años después, e incluso más adelante en la línea de desarrollo de IA, decidí ponerlo a prueba nuevamente. Esta vez, pedí una rutina de movilidad de la cadera de 15 minutos que pudiera hacer desde casa usando solo una de las mejores esteras de yoga como equipo. Le expliqué que me considero hacia el extremo avanzado de la escala de movilidad y dejo que haga lo suyo.

Continue Reading

Noticias

Ai ahora ‘en la cúspide de hacer una nueva ciencia’

Published

on

[Image created via OpenAI’s image generation technology]

“Estamos en la cúspide de sistemas que pueden hacer una nueva ciencia”.

Esa línea, en la página 3 del último “Marco de preparación” de OpenAI (versión 2, actualizada el 15 de abril de 2025), señala un posible cambio de paradigma para el ecosistema de I + D, que rápidamente está pasando de ser una etapa interna ansiosa, si no siempre precisa, a una colega potencial de AA, o incluso un investigador principal.

Mirando hacia el futuro, el marco lidia con el potencial de la IA para convertirse en “mejorando recursivamente”. Advierte que la “aceleración importante en la tasa de IA I + D” podría introducir rápidamente nuevas capacidades y riesgos. Esta aceleración podría superar las medidas de seguridad actuales, haciendo que la supervisión sea “insuficiente” y marcando explícitamente el peligro de perder el “mantenimiento del control humano” sobre el sistema de IA.

Hablando en un evento de Goldman Sachs solo unas semanas antes, el 5 de marzo (lanzado el 11 de abril en YouTube), la directora financiera de Operai Sarah Friar reforzó este punto de vista, afirmando que los modelos ya están “presentando cosas novedosas en su campo” y superando simplemente reflejando el conocimiento existente para “extender eso”. Friar señaló además el rápido enfoque hacia la inteligencia general artificial (AGI), lo que sugiere “Podemos estar allí”.

Si bien reconoce el debate en curso con algunos expertos que se balancean incluso en el término AGI y mucho menos su viabilidad, al menos con modelos de idiomas grandes), Friar mencionó la opinión del CEO Sam Altman de que la inteligencia general artificial (AGI), la IA que maneja el trabajo humano más valioso, podría ser “inminente”. Esto sugiere que la transición de la IA como herramienta para los investigadores de la IA como investigador puede estar más cerca de lo que muchos se dan cuenta, con primeros ejemplos potencialmente emergentes en campos como el desarrollo de software.

https://www.youtube.com/watch?v=2kzqm_bue7e

Las principales instituciones de I + D están construyendo activamente capacidades de ‘investigación autónoma’. Por ejemplo, los laboratorios nacionales como Argonne y Oak Ridge están desarrollando ‘laboratorios autónomos’ diseñados específicamente para la ciencia y la química de los materiales. Los Alamos también está trabajando con OpenAi
Probar sus modelos de razonamiento en Energía y Aplicaciones de Seguridad Nacional en su supercomputadora de Venado.

En general, los laboratorios nacionales están explorando el uso de IA para asumir tareas de investigación básicas: generar hipótesis (a menudo a través de estrategias de optimización), diseñar experimentos de varios pasos, controlar la ejecución robótica, analizar los resultados en tiempo real e iterando hacia objetivos de descubrimiento con una intervención humana significativamente reducida dentro de dominios operativos específicos. Si bien aún requiere supervisión humana para la validación y la dirección estratégica, que funciona quizás en un ‘nivel 3’ o ‘nivel 4’ emergente de la autonomía de la investigación, tales iniciativas demuestran que la IA se va más allá del análisis de datos pasivos para participar directamente en el proceso de descubrimiento científico. Esto se extiende más allá de la construcción de sistemas integrados; Implica empoderar directamente a los investigadores, como se ve en el reciente Doe ‘1,000 científico Ai Jam’. Esta colaboración a gran escala reunió a unos 1.500 científicos en múltiples laboratorios nacionales, incluido Argonne, para probar modelos avanzados de razonamiento de IA de compañías como OpenAi y Anthrope en problemas científicos del mundo real. Los investigadores exploraron específicamente su potencial para mejorar las tareas como la generación de hipótesis y la automatización del experimento.

Una transición similar ya está en marcha en el desarrollo de software, aunque los desarrolladores actualmente tienen vistas mixtas sobre el potencial de las herramientas habilitadas para Genai. La IA de hoy a menudo sirve como asistente, pero la tecnología está aumentando rápidamente su juego de software, especialmente para lenguajes comunes que van desde Javascript hasta Python. Los modelos de OpenAI están demostrando un progreso significativo, “acercándose a nivel humano” en puntos de referencia clave, y Fray señaló que uno ya es “literalmente el mejor codificador del mundo”. Esto respalda el potencial fraile descrito para un “ingeniero de software de agente”, una IA que “puede salir y trabajar de forma independiente para usted”, incluidas la construcción, las pruebas y las aplicaciones de documentación. Esta evolución hacia capacidades más autónomas podría remodelar el campo por completo.

AI de 5 niveles de Openai
marco de madurez

Según los informes, Operai utiliza un marco interno de cinco niveles para comparar su progreso hacia la inteligencia general artificial (AGI). Esta estructura, discutida dentro de la compañía a mediados de 2024 y luego informada por puntos de venta como Bloomberg, describe distintas etapas de capacidad de IA:

  1. Nivel 1: Chatbots / AI conversacional: Sistemas expertos en el lenguaje natural, como Chatgpt.
  2. Nivel 2: razonadores: AI capaz de resolver problemas básicos comparables a un humano altamente educado. En este nivel, los modelos también pueden demostrar habilidades de razonamiento emergentes sin herramientas externas.
  3. Nivel 3: Agentes: Sistemas de IA autónomos que pueden administrar tareas complejas y tomar decisiones durante períodos prolongados en nombre de los usuarios.
  4. Nivel 4: Innovadores: La IA contribuye significativamente a la creatividad y el descubrimiento generando ideas novedosas, ayudando a la invención o impulsando los avances.
  5. Nivel 5: Organizaciones: La etapa del ápice donde la IA puede gestionar y operar las funciones complejas de toda una organización, potencialmente excediendo la eficiencia humana.

En general, los laboratorios nacionales están explorando el uso de IA para asumir tareas de investigación básicas: generar hipótesis (a menudo a través de estrategias de optimización), diseñar experimentos de varios pasos, controlar la ejecución robótica, analizar los resultados en tiempo real e iterando hacia objetivos de descubrimiento con una intervención humana significativamente reducida dentro de dominios operativos específicos. Si bien aún requiere supervisión humana para la validación y la dirección estratégica, que funciona quizás en un ‘nivel 3’ o ‘nivel 4’ emergente de la autonomía de la investigación, tales iniciativas demuestran que la IA se va más allá del análisis de datos pasivos para participar directamente en el proceso de descubrimiento científico. Esto se extiende más allá de la construcción de sistemas integrados; Implica empoderar directamente a los investigadores, como se ve en el reciente Doe ‘1,000 científico Ai Jam’. Esta colaboración a gran escala reunió a unos 1.500 científicos en múltiples laboratorios nacionales, incluido Argonne, para probar modelos avanzados de razonamiento de IA de compañías como OpenAi y Anthrope en problemas científicos del mundo real. Los investigadores exploraron específicamente su potencial para mejorar las tareas como la generación de hipótesis y la automatización del experimento.

Una transición similar ya está en marcha en el desarrollo de software, aunque los desarrolladores actualmente tienen vistas mixtas sobre el potencial de las herramientas habilitadas para Genai. La IA de hoy a menudo sirve como asistente, pero la tecnología está aumentando rápidamente su juego de software, especialmente para lenguajes comunes que van desde Javascript hasta Python. Los modelos de OpenAI están demostrando un progreso significativo, “acercándose a nivel humano” en puntos de referencia clave, y Fray señaló que uno ya es “literalmente el mejor codificador del mundo”. Esto respalda el potencial fraile descrito para un “ingeniero de software de agente”, una IA que “puede salir y trabajar de forma independiente para usted”, incluidas la construcción, las pruebas y las aplicaciones de documentación. Esta evolución hacia capacidades más autónomas podría remodelar el campo por completo.

Continue Reading

Noticias

Lo que se puso bien y mal

Published

on

Han pasado casi 30 años desde que fui a Disney World. Mis recuerdos de Disney son felices, pero no recuerdo ningún detalle más allá de usar oídos, hacer que los personajes firmen mi libro especial de autógrafos y permanezcan despierto hasta tarde para ver el espectáculo de fuegos artificiales en Epcot.

Tengo dos hijas, casi 4.5 y 2.5, que están obsesionados con las princesas, por lo que cuando descubrí que mi familia estaría en Orlando durante unos días en junio, decidí buscar ir a Disney World por el día. Haremos un viaje más grande de Disney World en un par de años, pero los niños menores de 3 años son gratuitos (una de las pocas cosas que sabía sobre Disney), así que pensé que aprovecharíamos eso y les daríamos una gran sorpresa.

El único problema es que pensar en planificar un día en Disney es abrumador. Hay Tanta información Acerca de cómo optimizar su tiempo en los parques.

Decidí pedirle a ChatGPT que planifique mi día, y luego tuve a Mary Helen Law, propietaria de la compañía de planificación de Disney Minnie Mouse Counselors y uno de los principales especialistas en viajes de Conde Nast Traveler, revise el itinerario. Siga leyendo para escuchar qué chatgpt se hizo bien y mal y qué tenía que decir un experto en Disney.

Conocer al experto

Mary Helen Law, fundador de Mini Mouse Counselores

Mary Helen es una madre y experta en viajes. Comenzó su carrera como agente de viajes en 2018 mientras trabajaba en marketing y desarrollo de negocios. En 2019 decidió dejar su trabajo diario para expandir su negocio. Desde entonces, ha ayudado a cientos de familias a planificar vacaciones mágicas en todo el mundo y es uno de los principales especialistas en viajes de Conde Nast Traveler.

My Disney World Chatgpt Planning de planificación

Primero, aquí está el aviso que le di a Chatgpt para crear nuestro itinerario de Disney World:

¿Puedes planificar el día de mi familia en Disney World? Seremos yo, mi esposo y mis dos hijas. Serán 2.5 y 4.5 para el viaje, y aman a Ariel, Elsa y Ana, Moana, Belle, 101 Dalmatians, Cenicienta y Mary Poppins.

Nos gustaría ir a dos parques diferentes en el transcurso del día, pero necesitaremos un descanso de tres a cuatro horas en la mitad del día para una siesta. Nos gustaría hacer un almuerzo sentado en un restaurante temático que nuestras niñas les gustaría en función de sus intereses. ¿Puede planificar un itinerario para el día para los parques que recomendaría? Además, debe haber una parada de bocadillos por la mañana y la tarde.

¿Qué chatgpt hizo lo correcto sobre la planificación de un viaje a Disney World?

Hay muchas cosas que ChatGPT se equivocó sobre la planificación de un viaje a Disney (más sobre eso en un momento), pero sí recomendó paseos y actividades que encajarían bien en función de los intereses de mis hijas, como ir al viaje “Under the Sea” y conocer a Ariel, ver “cuentos encantados con Belle”, con un almuerzo en el restaurante de invitados y ver la festival de la fantasía de Magic Kingdom.

Cuando mi hermana usó un planificador de Disney el año pasado, tuvo la experiencia opuesta. El planificador acaba de recomendar todos los paseos más populares, como Tron, en el que mi sobrino no habría tenido interés, por lo que al menos Chatgpt prestó atención a lo que le dije que le gustaban a mis chicas.

También le pregunté a ChatGPT si tenía algún consejo para tener un día exitoso en Disney, y obtuve una buena información, como usar la aplicación de Disney para verificar los tiempos de espera de viaje y pedir comida con anticipación, y que podríamos usar el programa Rider Switch en caso de que mi hijo menor fuera demasiado pequeño para viajar.

También me dio algunas recomendaciones excelentes sobre qué empacar para el día, como protector solar, toallitas para bebés y bocadillos. Law estuvo de acuerdo en que había algunas pepitas de buena información, pero señaló que ChatGPT no incluía empacar un cargador de teléfono portátil, algo que dijo que necesitaríamos.

Qué chatgpt se equivocó sobre nuestro itinerario del día de Disney

Tres cosas principales para recordar sobre ChatGPT es que solo responde a lo que le da, se está retirando de la información en Internet y puede que no siempre sea correcto, y tampoco hay un elemento humano para ayudar a racionalizar la información.

Por ejemplo, le dije a ChatGPT que quería ir a dos parques, por lo que me dio un itinerario basado en ese aviso. Nunca hubiera sugerido que no haga dos parques porque sería poco realista dadas las edades de mis hijos.

ChatGPT carece de la capacidad de decir que no o sugerir ideas alternativas

Chatgpt hizo lo que le pedí, pero si hubiera abrazado las sugerencias, supongo que nunca habríamos regresado al parque después de una siesta y está muy frustrado.

Law, por otro lado, echó un vistazo a mi aviso y me dijo que realmente recomendaría no saltar en el parque y que deberíamos quedarnos en Magic Kingdom todo el día versus tratar de irme y volver.

Law me explicó que debido a que no nos quedamos en un resort de Disney, pasaremos mucho más tiempo pasando del estacionamiento a los parques, y que mi estimación de 30 minutos probablemente fue más como una hora y media. ChatGPT no sabe cuánto tiempo lleva llegar al estacionamiento y regresar a un hotel y no pudo estimar con precisión la logística detrás de esto.

También recomendó una siesta de cochecito en el carrusel de progreso con aire acondicionado, que según ella generalmente era un lugar más tranquilo, en lugar de tratar de irse y volver al parque. ChatGPT también recomendó este lugar y el Salón de Presidentes actualmente cerrado como un gran lugar para tomar un descanso, pero en general necesitaba un humano con más conocimiento de cómo funcionan las cosas en Disney para ayudarme a entender lo que era realista en lugar de no para nuestro viaje.

Chatgpt no incluyó ningún tiempo de espera para los paseos

Si nos fijamos en el itinerario que Chatgpt me dio por Disney, es como si tuviéramos el parque para nosotros mismos. Según ChatGPT, estaríamos en camino o en una nueva atracción cada 30 minutos.

Incluso sé lo suficiente sobre Disney para saber que eso no sonó bien. Law dijo que probablemente estaríamos en el extremo inferior de los tiempos de espera desde que iremos a principios de junio, pero acordamos que la cantidad de cosas que el itinerario dijo que logramos no parecía realista.

En cambio, ella me acompañó a través de la aplicación de Disney y me mostró cómo podré ver cuáles son los tiempos de espera para cada viaje, cuáles son los tiempos de show y cómo ver qué personajes están.

También me habló de las otras formas en que podemos reducir los tiempos de espera comprando pases de rayos o el pase Premier, que es un programa más nuevo (aunque costoso) que Disney está probando que le da una entrada a cada experiencia de Lightning Lane.

Usar ChatGPT sería excelente para preguntar qué paseos serían apropiados para mis niñas en función de su edad e intereses para que tengamos una idea de qué apuntar durante todo el día, pero la información sobre cómo usar la aplicación para ahorrar tiempo que la ley me dio será mucho más útil. También ayudó a establecer el nivel de mis expectativas sobre lo que podremos lograr en un día, lo que me ayudará a no estresarse por no poder hacerlo todo una vez que lleguemos allí.

Chatgpt se equivocó con cosas importantes que habrían arruinado nuestro día en Disney

Recuerde, soy un novato en Disney, así que tomé toda la información que me dio al pie de la letra.

El problema, dice Law, es que “ChatGPT simplemente no puede mantenerse al día con la cantidad que cambia Disney”. Se extrae de fuentes en todo Internet y no puede discernir lo que es correcto o no, así que terminé con cosas en el itinerario que no son precisos.

¿Uno de los mayores errores? El itinerario dijo que podríamos conocer a Ana y Elsa, los personajes favoritos de mis niñas, en el Princess Fairytale Hall, que no es cierto. Se encuentran y saludan en Epcot en el Royal Sommerhus.

Law sintió mi decepción y me aseguró que las chicas podrían saludar a Ana, Elsa y Olaf en la feria de amistad mágica de Mickey o en el desfile de Magic Kingdom.

¿Otras cosas importantes que Chatgpt se equivocó que habría descarrilado nuestro día? Sugirió conocer a Ariel a las 9 am cuando no está disponible hasta las 10 de la mañana; dijo que podríamos ingresar al parque a las 8 a.m., lo cual es incorrecto teniendo en cuenta que Magic Kingdom abre a las 8:30 a.m. para las personas que permanecen en la propiedad y las 9 a.m. para las personas que se mantienen fuera de la propiedad; y dijo que deberíamos usar Genie+ o un paso rápido para reducir los tiempos de espera, los cuales son servicios que ya no existen.

Es fácil suponer que lo que ChatGPT escupe es exacto, pero en nuestro caso todos estos errores habrían causado una frustración significativa para el día.

¿Debería usar ChatGPT para cualquier parte de su planificación de Disney?

Law dijo que podía ver que ChatGPT era útil para “cosas de espectro muy amplio” al planificar un viaje a Disney, como recomendaciones para qué recurre para quedarse o tener una idea general de qué personajes son los parques (aunque tenga en cuenta, ChatGPT me dio información incorrecta sobre esto).

“Creo que hay mucha seguridad laboral en lo que [travel planners] Haga por las relaciones que tenemos y el conocimiento “, dice, pero dice que no cree que sea una mala idea usar ChatGPT para obtener algunas ideas iniciales antes de hablar con un planificador.

Chatgpt Disney World Itinerario
Fuente: @mrscofieldandco | Instagram

¿Debería usar un planificador de Disney para su viaje de Disney?

No tiene que usar un planificador de Disney para planificar su viaje, pero después de mi experiencia con ChatGPT, usaré uno, ya que todavía no sé por dónde comenzar con toda la información.

Trabajar con un planificador de Disney es a menudo gratuito, ya que Disney le paga a una comisión al planificador, pero si no es así, podría valer la pena la inversión solo para asegurarse de obtener la información más precisa.

Si no desea usar un planificador, pregúntele a los amigos que hayan estado en Disney para sus consejos e itinerarios. Puede ser más fácil entender lo que es realista en lugar de no para su familia si tiene hijos de edad similar y aún reducirá el trabajo para usted (Everymom también tiene consejos de mamás para viajar a Disney World con niños pequeños, Disney con un bebé e incluso Disney World mientras está embarazada).

Veredicto final? ChatGPT podría ser bueno para algunos aspectos de la planificación de viajes, pero el itinerario que me dio en base a mi aviso no era realista y tenía muchos errores. Para algo tan complicado como Disney World, tener ideas y juicio humanos se siente como una mejor manera de tratar de garantizar más magia de Disney que los dolores de cabeza.

Elliot Harrell SHOYSHOT

Sobre el autor

Elliott Harrell, escritor colaborador

Elliott es madre de dos niñas y tiene su sede en Raleigh, NC. Pasa sus días dirigiendo un equipo de ventas y lavando la ropa y sus noches escribiendo sobre las cosas que ama. Le apasiona todas las cosas de la maternidad y la salud de las mujeres. Cuando no está trabajando, escribiendo o criando, puede encontrarla probar un nuevo restaurante en la ciudad o trabajar en su último proyecto de aguja.

Continue Reading

Trending