Connect with us

Noticias

Claude vs ChatGPT: Which is Better for Your Business?

Published

on

Claude vs ChatGPT: Which is best for your business?

There’s no doubt that OpenAI changed the game in 2022, when it introduced the first iteration of ChatGPT, and showed us all the potential of generative AI bots. ChatGPT quickly became one of the fastest-growing apps of all time, and inspired the creation of countless competing bots – including Claude, the Gen AI assistant created by Anthropic.

While ChatGPT is still arguably the more “popular” tool for most users – Claude has earned a lot of attention in recent years. Both Claude and ChatGPT now have some clear pros and cons that make the more (or less) appealing to specific users.

So, how do you make the right choice? I put both of these solutions to the test to help you make a more informed decision for your business needs.

Claude vs ChatGPT: An Overview

First, it’s worth noting that comparing any generative AI assistant can be complicated. After all, these tools evolve pretty quickly. Claude, for instance, now boasts better “cooperative skills” and capabilities for team members, since the launch of the Sonnet 3.5 model.

ChatGPT, on the other hand, now has more features for specific use cases, thanks to the launch of the o1 models (for advanced reasoning). It also has a wider range of pricing plans to choose from, including Enterprise and Team editions, as well as the new ChatGPT Pro.

Here’s a quick overview of both options, and the “models” that power them.

Introducing Claude AI: Definition and Models

Claude is the AI chatbot created by Anthropic, a startup co-founded by ex-Open AI members. What makes Claude compelling for a lot of users is that Anthropic has focused heavily on making generative AI “safe” and useful. Like ChatGPT, Claude is powered by LLMs, but it features a constitutional design that helps to minimize the risk of bias, discrimination and hallucinations.

Like ChatGPT, Claude can create content, answer questions, and even be accessed to create custom bots, thanks to Anthropic’s APIs. However, it can’t search the web, and it’s not fully “multimodal”. For instance, although Claude can analyze images, it can’t create them, like ChatGPT can with DALL-E 3. The current models available for Claude are:

  • Claude Haiku: The cheapest, fastest, and most lightweight model of Claude, Haiku is available to Claude Pro and Team subscribers via the iOS app and Claude.AI. For developers, Haiku costs $0.25 per million input tokens, and $1.25 per million output tokens.
  • Claude Sonnet: The best combination model for speed and efficiency, Sonnet is available to both paying Claude users, and developers. The API costs $15 per million output tokens, and $3 per million input tokens.
  • Claude Opus: The most advanced and costly model, Opus is available to Pro, Team, and Enterprise users, as well as developers. For API users, Opus costs $75 per million output tokens and $15 per million input tokens.

Claude AI Pricing

I mentioned some of the pricing details for developers using Claude APIs above, but you can find the full list of costs on Anthropic’s website here. If you just want to access the Claude AI chatbot, there’s a free plan for beginners, with limited access to Claude models on the web, iOS and Android.

Paid plans start at $18 per month, per user for the “Pro” plan, which includes early access to new features, projects for organizing chats and documents, and Claude 3.5 Sonnet and Opus models. You also get better usage limits than you would on the free plan.

For business users, there’s Claude Team for $25 per user per month, with central billing and administration, as well as collaboration features. Alternatively, you can choose the custom-priced Enterprise plan for SSO, domain capture, role-based access, SCIM, data source integrations, and audit logs.

Introducing ChatGPT: Definition and Models

As you’ll see throughout this Claude vs ChatGPT comparison, there are a lot of similarities between the two bots. Both offer access to APIs, and come with multiple models to choose from. ChatGPT is a little more versatile, however. The bot, created by OpenAI was first released in 2022, and has since evolved to feature numerous models, such as:

  • GPT-4: The most advanced model available for ChatGPT before the release of GPT-4o. This model is available on all plans (including the free plan). It also supports multimodal capabilities, with the ability to generate images and respond to voice.
  • GPT-4o and GPT-4o Mini: The current “flagship models” for ChatGPT, GPT-4o and 4o-Mini are fast, cost effective, and multimodal. They can understand uploaded files, and generate images. Plus, users can create custom GPTs with these models.
  • The o1 models: The o1 models (GPT o1, o1-mini, and o1 Pro) are the latest models created by OpenAI at the time of writing. They’re specially designed for advanced reasoning capabilities – but can’t browse the web, and are slower than the GPT-4o models.

Compared to Claude, the ChatGPT models are more flexible, with the ability to browse the internet, create different types of content (like images), and advanced API options.

ChatGPT Pricing

API pricing for OpenAI’s ChatGPT models vary by model, however it’s worth noting that you do only pay for what you use, and can get discounts if you use the Batch API. For those who just want to access ChatGPT (without any specific developer features), there are various plans available.

The free plan includes access to GPT-4o mini, standard voice model, limited access to GPT-4o, and limited file upload capabilities. You can use custom GPTs, but you won’t be able to create them. Paid plans start at $20 per month for ChatGPT Plus, with extended messaging and upload limits, advanced voice model, limited access to o1 and o1-mini models, and custom GPT creation.

For businesses, OpenAI offers the Team plan ($25 or $30 per user, per month), with more advanced features, and an admin console for workspace management. There’s also a custom Enterprise plan with high-speed access to the top models, expanded context windows, admin controls, analytics, and domain verification. Plus, OpenAI recently introduced a new plan, ChatGPT Pro, for $200 per month, per user, with advanced access to the o1 models.

Claude vs ChatGPT: Performance Results

The most common way to compare models like Claude vs ChatGPT, is to use “standardized” tests. Most AI leaders share insights into the performance of their models on specific tests, like the MMLU text, which evaluates undergrade-level knowledge, or HumanEval, for coding.

The trouble is that not every AI leader uses the same tests. Even when they do embrace the same “benchmarks”, the results really only offer a limited insight into what these models can do. For instance, Anthropic published a head-to-head comparison of its Sonnet 3.5 model against other models like Llama and GPT-4o, but it really only delivers a snapshot oversight.

Many AI and machine learning experts say that this kind of testing really overstates the progress of LLMs. As new models are released, they can sometimes be trained on their own evaluation data – which means they get better at performing on standardized tests, but not better “overall”.

For a better “hands-on” understanding of how these models compare, I did my own tests, but here’s a quick run-down of the options side by side to get us started.

Comparison Claude ChatGPT
Creator Anthropic OpenAI
Models Claude Sonnet, Haiku, and Opus GPT 4, GPT-4o, GPT 4o-Mini, o1, o1-mini, and o1 Pro
Context window Up to 1 million for some use cases 128,000 tokens
Unique features Advanced safety features, and slightly cheaper pricing Image generation, audio understanding, advanced reasoning (o1 models), and internet access (some models)
Pricing Variable API pricing, free plan, and paid plans starting at $18 per month, per user. Variable API pricing, free plan, and paid plans starting at $20 per month, per user.
File upload Yes Yes
Integrations Yes Yes

Claude vs ChatGPT: Privacy, Safety and Security

As AI governance and security become more of a concern for business users, it’s becoming increasingly important for companies to consider how “safe” the models they access are.

As I mentioned above, one thing that really makes Claude stand out, is Anthropic’s approach to constitutional AI. The company pioneered the approach to training its models with foundational principles and rules that align with human values.

That doesn’t necessarily mean Claude AI will always be safer than ChatGPT, but the model does refuse to answer potentially “harmful” prompts more often. Additionally, it’s worth noting Anthropic doesn’t automatically train its models with user interactions – unless they opt in.

Alternatively, OpenAI does train its models on user interactions, unless you specifically “opt out”, or you’re using a paid business-level plan, like ChatGPT Team or Enterprise. Both companies do implement safety measures and guardrails into their models, but ChatGPT has been a little less transparent about the guardrails it uses.

Notably though, the new o1 models were trained with a new methodology that makes it more effective at mitigating “jailbreak” attempts. For instance, the o1 models scored 84 out of 100 compared to GPT-4o’s score of 22 on an advanced jailbreak test.

Claude vs ChatGPT: Creativity and Content Creation

While there are plenty of use cases for generative AI tools like Claude and ChatGPT these days – one of the most common ways to use these tools is for content creation. Both AI bots excel in this area – but in different ways. For instance, ChatGPT is the better option for diverse content creation.

Unlike Claude, ChatGPT can browse the web to source all kinds of information for up-to-date articles, reports, and other types of content. Because it can check the web for ideas, it’s also a little better at “brainstorming”, ideas for solutions to different problems.

Plus, ChatGPT can generate images, but you can only create images on a paid plan, whereas other alternatives, such as Google Gemini, allow free users to generate visual content too.

Claude AI, on the other hand, excels at “written” output in certain ways. When I asked both tools to write an introduction to an article about LLMs, ChatGPT came up with pretty generic-sounding, flowery content. We’re all tired of seeing the same phrases as “in today’s fast-moving world,” etc.

Claude created slightly more “original” sounding content. It was also very good at assessing the documents and content I uploaded. ChatGPT can do that too, but I often find the bot gets confused when it’s given too much information to review at once.

Claude is better at proof-reading too. When I asked both Claude and ChatGPT to “fix” a passage of content with obvious factual errors and misspellings, Claude identified them all. ChatGPT, on the other hand, still checked the content well, but it seemed to try and “rewrite” everything in a new tone of voice, which was something I didn’t ask it to do.

Unfortunately, since Claude can’t access the internet, it can’t “fact-check” any very recent information from the web.

Image and Content Processing Capabilities

Although Claude has fewer “multimodal” capabilities than ChatGPT – both tools can process “uploaded” content. However, there are limitations on how much information you can upload, based on the plan you choose.

I found both tools to be reasonably effective at analyzing photos, but they can only gather so much information from an image. For instance, both tools seem to struggle with “counting” the number of objects in a photo, or distinguishing the difference between similar objects (like apples and oranges).

ChatGPT is definitely better at summarizing larger documents. Although Claude can process up to 200k tokens from a document (compared to 128k for ChatGPT), GPT-4o was better at understanding the text given to it than Claude in my test.

ChatGPT does a great job of converting large pieces of text into simple summaries with clear “key points”. Claude can summarize text quite well, but it sometimes makes mistakes, like failing to count the number of times a specific word or phrase was used in a document.

Overall, I do think there are better tools out their for content summarization than both Claude and ChatGPT, however. You can find an insight into some of my top recommendations for AI summary tools (like Notta, and Hypotenuse) here.

Complex Reasoning: ChatGPT Comes Out on Top

For complex reasoning tasks (particularly those linked to math and science), ChatGPT is definitely the better tool. That’s particularly true now that we have access to the o1 models, that are specifically designed to use “chain of thought” processes to think deeper about complex tasks.

Claude isn’t really designed to think carefully about tasks, although it does respond well to questions about physics equations. ChatGPT, however, can dive a lot more deeply into questions about science, math, and finance, and deliver a lot more intuitive responses.

For instance, when I asked ChatGPT to reason through a physics problem for me, it took longer to generate a response (with the o1 model). However, it also broke the answer down into clear steps, that felt a lot easier to follow. ChatGPT also answered math questions faster with the GPT-4o model than Claude. Sometimes, Claude didn’t even bother to give a direct answer when I asked it to solve a math equation – it just told me how to figure out the answer for myself.

Both solutions do struggle a little bit with things like sentiment analysis, and solving ethical problems, however. With the o1 models, ChatGPT can provide deep insights into ethical problems (like the trolley problem), and even understand the sentiment within a conversation. Claude can understand sentiment reasonably well, but I found it delivered pretty generic responses to ethical questions.

Of course, that could have something to do with Anthropic introducing such strict guardrails to ensure that the “responses” Claude gives aren’t harmful. These guardrails could prevent the bot from generating responses that might be perceived in a certain way.

Claude vs ChatGPT: Coding Performance

I don’t know much about coding, so it was hard to fully evaluate Claude vs ChatGPT in this area. However, ChatGPT does have a great reputation for producing high-quality code. The GPT-4o model, in particular, is excellent at creating and debugging code quickly.

Additionally, the o1 models achieved brilliant results on various coding “benchmarking” tests. For instance, the o1 model achieved an 89th percentile score in a Codeforces contest. What might make Claude a little better for some coding tasks, is its unique “Artifacts” feature.

The Artifacts feature brings up a preview window for users as they write code – so you can actually see what your code will do as it works. For instance, you could use Artifacts to create characters for a video game and see how they might interact.

Since you can see the results of your code immediately, you can easily ask Claude to make changes to graphics, and specific elements. With ChatGPT, you need a lot more specific programming knowledge to really make the most of the bot’s coding capabilities.

Customization: Integrations and GPTs

One thing that makes ChatGPT a slightly more powerful option than Claude for some businesses, is the ability to create custom GPTs, and leverage a wide range of integrations. Although Claude can integrate with some apps, and enables users to create their own bot experiences through APIs, ChatGPT makes it much easier to build unique experiences with custom GPTs.

You can create your own GPTs with natural language, and add them to the GPT marketplace, where other people can access them. Anthropic doesn’t have a “GPT” equivalent, although there is a prompt library available with “optimized prompts” you can use for certain tasks, like enhancing Python code.

Neither company offers companies the ability to create “full” autonomous agents yet. However, you can create custom agents with similar functionality to ChatGPT through Microsoft Copilot Studio. Anthropic also has a solution for creating AI agents with “function calling” capabilities.

However, there are a lot of better options for autonomous agent creation available right now – such as Google’s Vertex AI system with access to Gemini 2.0, and Amazon Bedrock Studio.

Claude vs ChatGPT: Which is Better Value for Money?

Both Claude and ChatGPT have free plans for people who want to just experiment with the bot (in a limited way), without paying anything. If you’re happy to sign up for a premium plan, Claude’s paid plans are slightly cheaper – starting at $18 per month per user.

However, I do think that ChatGPT offers better value for money overall. First of all, the free plan gives you a lot more for nothing, with access to limited multimodal capabilities, advanced models, and a bot that can actually browse the internet.

Secondly, the paid plans, though slightly more expensive, allow you to do a lot more with your AI, such as creating custom GPTs, or generating images. Those are things you can’t really do on any Claude AI paid plan – no matter how much you spend.

Claude vs ChatGPT: Which is Best?

Overall, Claude and ChatGPT have a lot in common. They’re both powerful AI solutions, ideal for a wide range of tasks, ranging from text analysis, to brainstorming, and even coding.

Claude is probably the better choice if you’re concerned about AI safety, and want a little more “creativity” when you’re creating new content (Even if you can’t create images). It’s also a slightly more user-friendly solution for coding tasks, thanks to the Artifacts feature. Plus, it does feature some handy collaboration capabilities, with things like “Projects” for teams.

ChatGPT, on the other hand, is the better “jack of all trades” AI tool. It can generate text, and images, summarize content more effectively, and even deal with advanced reasoning tasks using the o1 models. Plus, it can browse the web, understand audio input, and be customized with unique GPTs, integrations, and plugins.

For most users, ChatGPT will be the better option overall. However, it’s worth remembering that both of these tools are constantly evolving. Make sure you keep an eye on our latest news stories about both Claude, and ChatGPT – you never know when one might overtake the other.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Apocalipsis Biosciencias para desarrollar Géminis para la infección en pacientes con quemaduras graves

Published

on

– Esta nueva indicación es otro paso para desbloquear todo el potencial de la plataforma Gemini –

San Diego-(Business Wire)-$ Revb #GÉMINISApocalipsis Biosciences, Inc. (NASDAQ: RevB) (la “empresa” o “revelación”), una compañía de ciencias de la vida de etapas clínicas que se centra en reequilibrar la inflamación para optimizar la salud, anunció una nueva indicación de objetivo para Géminis para la prevención de la infección en pacientes con quemaduras graves que requieren hospitalización (el Gema-PBI programa). El uso de Géminis para la prevención de la infección en pacientes con quemaduras severas, así como la prevención de la infección después de la cirugía (el Gema-PSI programa) son parte de la revelación familiar de patentes anteriormente con licencia de la Universidad de Vanderbilt.


“Estamos muy contentos de colaborar con el equipo de Apocalipsis para el avance de Géminis para la prevención de la infección en esta población de pacientes desatendida”, dijo Dra. Julia BohannonProfesor Asociado, Departamento de Anestesiología, Departamento de Patología, Microbiología e Inmunología, Universidad de Vanderbilt. “Creemos que la actividad de biomarcador clínico observada con Gemini se correlaciona fuertemente con nuestra experiencia preclínica en modelos de quemaduras de infecciones”.

El equipo de investigación de Vanderbilt demostrado El tratamiento posterior a la quemadura reduce significativamente la gravedad y la duración de la infección pulmonar de Pseudomonas, así como un nivel general reducido de inflamación en un modelo preclínico.

“La prevención de la infección en pacientes severamente quemados es un esfuerzo importante y complementa que la revelación laboral ha completado hasta la fecha”, dijo “, dijo”, dijo James RolkeCEO de Revelation “El programa Gemini-PBI puede ofrecer varias oportunidades regulatorias, de desarrollo y financiación que la compañía planea explorar”.

Sobre quemaduras e infección después de quemar

Las quemaduras son lesiones en la piel que involucran las dos capas principales: la epidermis externa delgada y/o la dermis más gruesa y profunda. Las quemaduras pueden ser el resultado de una variedad de causas que incluyen fuego, líquidos calientes, productos químicos (como ácidos fuertes o bases fuertes), electricidad, vapor, radiación de radiografías o radioterapia, luz solar o luz ultravioleta. Cada año, aproximadamente medio millón de estadounidenses sufren lesiones por quemaduras que requieren intervención médica. Si bien la mayoría de las lesiones por quemaduras no requieren ingreso a un hospital, se admiten alrededor de 40,000 pacientes, y aproximadamente 30,000 de ellos necesitan tratamiento especializado en un centro de quemaduras certificadas.

El número total anual de muertes relacionadas con quemaduras es de aproximadamente 3.400, siendo la infección invasiva la razón principal de la muerte después de las primeras 24 horas. La tasa de mortalidad general para pacientes con quemaduras graves es de aproximadamente 3.3%, pero esto aumenta al 20.6% en pacientes con quemaduras con lesión cutánea de quemaduras y inhalación, versus 10.5% por lesión por inhalación solo. La infección invasiva, incluida la sepsis, es la causa principal de la muerte después de la lesión por quemaduras, lo que representa aproximadamente el 51% de las muertes.

Actualmente no hay tratamientos aprobados para prevenir la infección sistémica en pacientes con quemaduras.

Sobre Géminis

Géminis es una formulación propietaria y propietaria de disacárido hexaacil fosforilada (PHAD (PHAD®) que reduce el daño asociado con la inflamación al reprogramarse del sistema inmune innato para responder al estrés (trauma, infección, etc.) de manera atenuada. La revelación ha realizado múltiples estudios preclínicos que demuestran el potencial terapéutico de Géminis en las indicaciones objetivo. Revelación anunciado previamente Datos clínicos positivos de fase 1 para el tratamiento intravenoso con Géminis. El punto final de seguridad primario se cumplió en el estudio de fase 1, y los resultados demostraron la actividad farmacodinámica estadísticamente significativa como se observó a través de los cambios esperados en múltiples biomarcadores, incluida la regulación positiva de IL-10.

Géminis se está desarrollando para múltiples indicaciones, incluso como pretratamiento para prevenir o reducir la gravedad y la duración de la lesión renal aguda (programa Gemini-AKI), y como pretratamiento para prevenir o reducir la gravedad y la duración de la infección posquirúrgica (programa GEMINI-PSI). Además, Gemini puede ser un tratamiento para detener o retrasar la progresión de la enfermedad renal crónica (programa Gemini-CKD).

Acerca de Apocalipsis Biosciences, Inc.

Revelation Biosciences, Inc. es una compañía de ciencias de la vida en estadio clínico centrada en aprovechar el poder de la inmunidad entrenada para la prevención y el tratamiento de la enfermedad utilizando su formulación patentada Géminis. Revelation tiene múltiples programas en curso para evaluar Géminis, incluso como prevención de la infección posquirúrgica, como prevención de lesiones renales agudas y para el tratamiento de la enfermedad renal crónica.

Para obtener más información sobre Apocalipsis, visite www.revbiosciences.com.

Declaraciones con avance

Este comunicado de prensa contiene declaraciones prospectivas definidas en la Ley de Reforma de Litigios de Valores Privados de 1995, según enmendada. Las declaraciones prospectivas son declaraciones que no son hechos históricos. Estas declaraciones prospectivas generalmente se identifican por las palabras “anticipar”, “creer”, “esperar”, “estimar”, “plan”, “perspectiva” y “proyecto” y otras expresiones similares. Advirtemos a los inversores que las declaraciones prospectivas se basan en las expectativas de la gerencia y son solo predicciones o declaraciones de las expectativas actuales e involucran riesgos, incertidumbres y otros factores conocidos y desconocidos que pueden hacer que los resultados reales sean materialmente diferentes de los previstos por las declaraciones de prospección. Apocalipsis advierte a los lectores que no depositen una dependencia indebida de tales declaraciones de vista hacia adelante, que solo hablan a partir de la fecha en que se hicieron. Los siguientes factores, entre otros, podrían hacer que los resultados reales difieran materialmente de los descritos en estas declaraciones prospectivas: la capacidad de la revelación para cumplir con sus objetivos financieros y estratégicos, debido a, entre otras cosas, la competencia; la capacidad de la revelación para crecer y gestionar la rentabilidad del crecimiento y retener a sus empleados clave; la posibilidad de que la revelación pueda verse afectada negativamente por otros factores económicos, comerciales y/o competitivos; riesgos relacionados con el desarrollo exitoso de los candidatos de productos de Apocalipsis; la capacidad de completar con éxito los estudios clínicos planificados de sus candidatos de productos; El riesgo de que no podamos inscribir completamente nuestros estudios clínicos o la inscripción llevará más tiempo de lo esperado; riesgos relacionados con la aparición de eventos de seguridad adversos y/o preocupaciones inesperadas que pueden surgir de los datos o análisis de nuestros estudios clínicos; cambios en las leyes o regulaciones aplicables; Iniciación esperada de los estudios clínicos, el momento de los datos clínicos; El resultado de los datos clínicos, incluido si los resultados de dicho estudio son positivos o si se puede replicar; El resultado de los datos recopilados, incluido si los resultados de dichos datos y/o correlación se pueden replicar; el momento, los costos, la conducta y el resultado de nuestros otros estudios clínicos; El tratamiento anticipado de datos clínicos futuros por parte de la FDA, la EMA u otras autoridades reguladoras, incluidos si dichos datos serán suficientes para su aprobación; el éxito de futuras actividades de desarrollo para sus candidatos de productos; posibles indicaciones para las cuales se pueden desarrollar candidatos de productos; la capacidad de revelación para mantener la lista de sus valores en NASDAQ; la duración esperada sobre la cual los saldos de Apocalipsis financiarán sus operaciones; y otros riesgos e incertidumbres descritos en este documento, así como aquellos riesgos e incertidumbres discutidos de vez en cuando en otros informes y otras presentaciones públicas con la SEC por Apocalipsis.

Contactos

Mike Porter

Relaciones con inversores

Porter Levay & Rose Inc.

Correo electrónico: mike@plrinvest.com

Chester Zygmont, III

Director financiero
Apocalipsis Biosciences Inc.

Correo electrónico: czygmont@revbiosciences.com

Continue Reading

Noticias

Why Google’s search engine trial is about AI : NPR

Published

on

An illustration photograph taken on Feb. 20, 2025 shows Grok, DeepSeek and ChatGPT apps displayed on a phone screen. The Justice Department’s 2020 complaint against Google has few mentions of artificial intelligence or AI chatbots. But nearly five years later, as the remedy phase of the trial enters its second week of testimony, the focus has shifted to AI.

Michael M. Santiago/Getty Images/Getty Images North America


hide caption

toggle caption

Michael M. Santiago/Getty Images/Getty Images North America

When the U.S. Department of Justice originally broughtand then won — its case against Google, arguing that the tech behemoth monopolized the search engine market, the focus was on, well … search.

Back then, in 2020, the government’s antitrust complaint against Google had few mentions of artificial intelligence or AI chatbots. But nearly five years later, as the remedy phase of the trial enters its second week of testimony, the focus has shifted to AI, underscoring just how quickly this emerging technology has expanded.

In the past few days, before a federal judge who will assess penalties against Google, the DOJ has argued that the company could use its artificial intelligence products to strengthen its monopoly in online search — and to use the data from its powerful search index to become the dominant player in AI.

In his opening statements last Monday, David Dahlquist, the acting deputy director of the DOJ’s antitrust civil litigation division, argued that the court should consider remedies that could nip a potential Google AI monopoly in the bud. “This court’s remedy should be forward-looking and not ignore what is on the horizon,” he said.

Dahlquist argued that Google has created a system in which its control of search helps improve its AI products, sending more users back to Google search — creating a cycle that maintains the tech company’s dominance and blocks competitors out of both marketplaces.

The integration of search and Gemini, the company’s AI chatbot — which the DOJ sees as powerful fuel for this cycle — is a big focus of the government’s proposed remedies. The DOJ is arguing that to be most effective, those remedies must address all ways users access Google search, so any penalties approved by the court that don’t include Gemini (or other Google AI products now or in the future) would undermine their broader efforts.

Department of Justice lawyer David Dahlquist leaves the Washington, D.C. federal courthouse on Sept. 20, 2023 during the original trial phase of the antitrust case against Google.

Department of Justice lawyer David Dahlquist leaves the Washington, D.C. federal courthouse on Sept. 20, 2023 during the original trial phase of the antitrust case against Google.

Jose Luis Magana/AP/FR159526 AP


hide caption

toggle caption

Jose Luis Magana/AP/FR159526 AP

AI and search are connected like this: Search engine indices are essentially giant databases of pages and information on the web. Google has its own such index, which contains hundreds of billions of webpages and is over 100,000,000 gigabytes, according to court documents. This is the data Google’s search engine scans when responding to a user’s query.

AI developers use these kinds of databases to build and train the models used to power chatbots. In court, attorneys for the DOJ have argued that Google’s Gemini pulls information from the company’s search index, including citing search links and results, extending what they say is a self-serving cycle. They argue that Google’s ability to monopolize the search market gives it user data, at a huge scale — an advantage over other AI developers.

The Justice Department argues Google’s monopoly over search could have a direct effect on the development of generative AI, a type of artificial intelligence that uses existing data to create new content like text, videos or photos, based on a user’s prompts or questions. Last week, the government called executives from several major AI companies, like OpenAI and Perplexity, in an attempt to argue that Google’s stranglehold on search is preventing some of those companies from truly growing.

The government argues that to level the playing field, Google should be forced to open its search data — like users’ search queries, clicks and results — and license it to other competitors at a cost.

This is on top of demands related to Google’s search engine business, most notably that it should be forced to sell off its Chrome browser.

Google flatly rejects the argument that it could monopolize the field of generative AI, saying competition in the AI race is healthy. In a recent blog post on Google’s website, Lee-Anne Mulholland, the company’s vice president of regulatory affairs, wrote that since the federal judge first ruled against Google over a year ago, “AI has already rapidly reshaped the industry, with new entrants and new ways of finding information, making it even more competitive.”

In court, Google’s lawyers have argued that there are a host of AI companies with chatbots — some of which are outperforming Gemini. OpenAI has ChatGPT, Meta has MetaAI and Perplexity has Perplexity AI.

“There is no shortage of competition in that market, and ChatGPT and Meta are way ahead of everybody in terms of the distribution and usage at this point,” said John E. Schmidtlein, a lawyer for Google, during his opening statement. “But don’t take my word for it. Look at the data. Hundreds and hundreds of millions of downloads by ChatGPT.”

Competing in a growing AI field

It should be no surprise that AI is coming up so much at this point in the trial, said Alissa Cooper, the executive director of the Knight-Georgetown Institute, a nonpartisan tech research and policy center at Georgetown University focusing on AI, disinformation and data privacy.

“If you look at search as a product today, you can’t really think about search without thinking about AI,” she said. “I think the case is a really great opportunity to try to … analyze how Google has benefited specifically from the monopoly that it has in search, and ensure that the behavior that led to that can’t be used to gain an unfair advantage in these other markets which are more nascent.”

Having access to Google’s data, she said, “would provide them with the ability to build better chatbots, build better search engines, and potentially build other products that we haven’t even thought of.”

To make that point, the DOJ called Nick Turley, OpenAI’s head of product for ChatGPT, to the stand last Tuesday. During a long day of testimony, Turley detailed how without access to Google’s search index and data, engineers for the growing company tried to build their own.

ChatGPT, a large language model that can generate human-like responses, engage in conversations and perform tasks like explaining a tough-to-understand math lesson, was never intended to be a product for OpenAI, Turley said. But once it launched and went viral, the company found that people were using it for a host of needs.

Though popular, ChatGPT had its drawbacks, like the bot’s limited “knowledge,” Turley said. Early on, ChatGPT was not connected to the internet and could only use information that it had been fed up to a certain point in its training. For example, Turley said, if a user asked “Who is the president?” the program would give a 2022 answer — from when its “knowledge” effectively stopped.

OpenAI couldn’t build their own index fast enough to address their problems; they found that process incredibly expensive, time consuming and potentially years from coming to fruition, Turley said.

So instead, they sought a partnership with a third party search provider. At one point, OpenAI tried to make a deal with Google to gain access to their search, but Google declined, seeing OpenAI as a direct competitor, Turley testified.

But Google says companies like OpenAI are doing just fine without gaining access to the tech giant’s own technology — which it spent decades developing. These companies just want “handouts,” said Schmidtlein.

On the third day of the remedy trial, internal Google documents shared in court by the company’s lawyers compared how many people are using Gemini versus its competitors. According to those documents, ChatGPT and MetaAI are the two leaders, with Gemini coming in third.

They showed that this March, Gemini saw 35 million active daily users and 350 million monthly active users worldwide. That was up from 9 million daily active users in October 2024. But according to those documents, Gemini was still lagging behind ChatGPT, which reached 160 million daily users and around 600 million active users in March.

These numbers show that competitors have no need to use Google’s search data, valuable intellectual property that the tech giant spent decades building and maintaining, the company argues.

“The notion that somehow ChatGPT can’t get distribution is absurd,” Schmidtlein said in court last week. “They have more distribution than anyone.”

Google’s exclusive deals 

In his ruling last year, U.S. District Judge Amit Mehta said Google’s exclusive agreements with device makers, like Apple and Samsung, to make its search engine the default on those companies’ phones helped maintain its monopoly. It remains a core issue for this remedy trial.

Now, the DOJ is arguing that Google’s deals with device manufacturers are also directly affecting AI companies and AI tech.

In court, the DOJ argued that Google has replicated this kind of distribution deal by agreeing to pay Samsung what Dahlquist called a monthly “enormous sum” for Gemini to be installed on smartphones and other devices.

Last Wednesday, the DOJ also called Dmitry Shevelenko, Perplexity’s chief business officer, to testify that Google has effectively cut his company out from making deals with manufacturers and mobile carriers.

Perplexity AIs not preloaded on any mobile devices in the U.S., despite many efforts to get phone companies to establish Perplexity as a default or exclusive app on devices, Shevelenko said. He compared Google’s control in that space to that of a “mob boss.”

But Google’s attorney, Christopher Yeager, noted in questioning Shevelenko that Perplexity has reached a valuation of over $9 billion — insinuating the company is doing just fine in the marketplace.

Despite testifying in court (for which he was subpoenaed, Shevelenko noted), he and other leaders at Perplexity are against the breakup of Google. In a statement on the company’s website, the Perplexity team wrote that neither forcing Google to sell off Chrome nor to license search data to its competitors are the best solutions. “Neither of these address the root issue: consumers deserve choice,” they wrote.

Google and Alphabet CEO Sundar Pichai departs federal court after testifying in October 2023 in Washington, DC. Pichai testified to defend his company in the original antitrust trial. Pichai is expected to testify again during the remedy phase of the legal proceedings.

Google and Alphabet CEO Sundar Pichai departs federal court after testifying in October 2023 in Washington, DC. Pichai testified to defend his company in the original antitrust trial. Pichai is expected to testify again during the remedy phase of the legal proceedings.

Drew Angerer/Getty Images/Getty Images North America


hide caption

toggle caption

Drew Angerer/Getty Images/Getty Images North America

What to expect next

This week the trial continues, with the DOJ calling its final witnesses this morning to testify about the feasibility of a Chrome divestiture and how the government’s proposed remedies would help rivals compete. On Tuesday afternoon, Google will begin presenting its case, which is expected to feature the testimony of CEO Sundar Pichai, although the date of his appearance has not been specified.

Closing arguments are expected at the end of May, and then Mehta will make his ruling. Google says once this phase is settled the company will appeal Mehta’s ruling in the underlying case.

Whatever Mehta decides in this remedy phase, Cooper thinks it will have effects beyond just the business of search engines. No matter what it is, she said, “it will be having some kind of impact on AI.”

Google is a financial supporter of NPR.

Continue Reading

Noticias

API de Meta Oleleshes Llama que se ejecuta 18 veces más rápido que OpenAI: Cerebras Partnership ofrece 2.600 tokens por segundo

Published

on

Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información


Meta anunció hoy una asociación con Cerebras Systems para alimentar su nueva API de LLAMA, ofreciendo a los desarrolladores acceso a velocidades de inferencia hasta 18 veces más rápido que las soluciones tradicionales basadas en GPU.

El anuncio, realizado en la Conferencia inaugural de desarrolladores de Llamacon de Meta en Menlo Park, posiciona a la compañía para competir directamente con Operai, Anthrope y Google en el mercado de servicios de inferencia de IA en rápido crecimiento, donde los desarrolladores compran tokens por miles de millones para impulsar sus aplicaciones.

“Meta ha seleccionado a Cerebras para colaborar para ofrecer la inferencia ultra rápida que necesitan para servir a los desarrolladores a través de su nueva API de LLAMA”, dijo Julie Shin Choi, directora de marketing de Cerebras, durante una sesión de prensa. “En Cerebras estamos muy, muy emocionados de anunciar nuestra primera asociación HyperScaler CSP para ofrecer una inferencia ultra rápida a todos los desarrolladores”.

La asociación marca la entrada formal de Meta en el negocio de la venta de AI Computation, transformando sus populares modelos de llama de código abierto en un servicio comercial. Si bien los modelos de LLAMA de Meta se han acumulado en mil millones de descargas, hasta ahora la compañía no había ofrecido una infraestructura en la nube de primera parte para que los desarrolladores creen aplicaciones con ellos.

“Esto es muy emocionante, incluso sin hablar sobre cerebras específicamente”, dijo James Wang, un ejecutivo senior de Cerebras. “Openai, Anthrope, Google: han construido un nuevo negocio de IA completamente nuevo desde cero, que es el negocio de inferencia de IA. Los desarrolladores que están construyendo aplicaciones de IA comprarán tokens por millones, a veces por miles de millones. Y estas son como las nuevas instrucciones de cómputo que las personas necesitan para construir aplicaciones AI”.

Una tabla de referencia muestra a Cerebras Processing Llama 4 a 2,648 tokens por segundo, superando drásticamente a los competidores Sambanova (747), Groq (600) y servicios basados ​​en GPU de Google y otros, explicando la elección de hardware de Meta para su nueva API. (Crédito: Cerebras)

Breaking the Speed ​​Barrier: Cómo modelos de Llama de Cerebras Supercharges

Lo que distingue a la oferta de Meta es el aumento de la velocidad dramática proporcionado por los chips de IA especializados de Cerebras. El sistema de cerebras ofrece más de 2.600 fichas por segundo para Llama 4 Scout, en comparación con aproximadamente 130 tokens por segundo para ChatGPT y alrededor de 25 tokens por segundo para Deepseek, según puntos de referencia del análisis artificial.

“Si solo se compara con API a API, Gemini y GPT, todos son grandes modelos, pero todos se ejecutan a velocidades de GPU, que son aproximadamente 100 tokens por segundo”, explicó Wang. “Y 100 tokens por segundo están bien para el chat, pero es muy lento para el razonamiento. Es muy lento para los agentes. Y la gente está luchando con eso hoy”.

Esta ventaja de velocidad permite categorías completamente nuevas de aplicaciones que antes no eran prácticas, incluidos los agentes en tiempo real, los sistemas de voz de baja latencia conversacional, la generación de código interactivo y el razonamiento instantáneo de múltiples pasos, todos los cuales requieren encadenamiento de múltiples llamadas de modelo de lenguaje grandes que ahora se pueden completar en segundos en lugar de minutos.

La API de LLAMA representa un cambio significativo en la estrategia de IA de Meta, en la transición de ser un proveedor de modelos a convertirse en una compañía de infraestructura de IA de servicio completo. Al ofrecer un servicio API, Meta está creando un flujo de ingresos a partir de sus inversiones de IA mientras mantiene su compromiso de abrir modelos.

“Meta ahora está en el negocio de vender tokens, y es excelente para el tipo de ecosistema de IA estadounidense”, señaló Wang durante la conferencia de prensa. “Traen mucho a la mesa”.

La API ofrecerá herramientas para el ajuste y la evaluación, comenzando con el modelo LLAMA 3.3 8B, permitiendo a los desarrolladores generar datos, entrenar y probar la calidad de sus modelos personalizados. Meta enfatiza que no utilizará datos de clientes para capacitar a sus propios modelos, y los modelos construidos con la API de LLAMA se pueden transferir a otros hosts, una clara diferenciación de los enfoques más cerrados de algunos competidores.

Las cerebras alimentarán el nuevo servicio de Meta a través de su red de centros de datos ubicados en toda América del Norte, incluidas las instalaciones en Dallas, Oklahoma, Minnesota, Montreal y California.

“Todos nuestros centros de datos que sirven a la inferencia están en América del Norte en este momento”, explicó Choi. “Serviremos Meta con toda la capacidad de las cerebras. La carga de trabajo se equilibrará en todos estos diferentes centros de datos”.

El arreglo comercial sigue lo que Choi describió como “el proveedor de cómputo clásico para un modelo hiperscalador”, similar a la forma en que NVIDIA proporciona hardware a los principales proveedores de la nube. “Están reservando bloques de nuestro cómputo para que puedan servir a su población de desarrolladores”, dijo.

Más allá de las cerebras, Meta también ha anunciado una asociación con Groq para proporcionar opciones de inferencia rápida, brindando a los desarrolladores múltiples alternativas de alto rendimiento más allá de la inferencia tradicional basada en GPU.

La entrada de Meta en el mercado de API de inferencia con métricas de rendimiento superiores podría potencialmente alterar el orden establecido dominado por Operai, Google y Anthrope. Al combinar la popularidad de sus modelos de código abierto con capacidades de inferencia dramáticamente más rápidas, Meta se está posicionando como un competidor formidable en el espacio comercial de IA.

“Meta está en una posición única con 3 mil millones de usuarios, centros de datos de hiper escala y un gran ecosistema de desarrolladores”, según los materiales de presentación de Cerebras. La integración de la tecnología de cerebras “ayuda a Meta Leapfrog OpenAi y Google en rendimiento en aproximadamente 20X”.

Para las cerebras, esta asociación representa un hito importante y la validación de su enfoque especializado de hardware de IA. “Hemos estado construyendo este motor a escala de obleas durante años, y siempre supimos que la primera tarifa de la tecnología, pero en última instancia tiene que terminar como parte de la nube de hiperescala de otra persona. Ese fue el objetivo final desde una perspectiva de estrategia comercial, y finalmente hemos alcanzado ese hito”, dijo Wang.

La API de LLAMA está actualmente disponible como una vista previa limitada, con Meta planifica un despliegue más amplio en las próximas semanas y meses. Los desarrolladores interesados ​​en acceder a la inferencia Ultra-Fast Llama 4 pueden solicitar el acceso temprano seleccionando cerebras de las opciones del modelo dentro de la API de LLAMA.

“Si te imaginas a un desarrollador que no sabe nada sobre cerebras porque somos una empresa relativamente pequeña, solo pueden hacer clic en dos botones en el SDK estándar de SDK estándar de Meta, generar una tecla API, seleccionar la bandera de cerebras y luego, de repente, sus tokens se procesan en un motor gigante a escala de dafers”, explicó las cejas. “Ese tipo de hacernos estar en el back -end del ecosistema de desarrolladores de Meta todo el ecosistema es tremendo para nosotros”.

La elección de Meta de silicio especializada señala algo profundo: en la siguiente fase de la IA, no es solo lo que saben sus modelos, sino lo rápido que pueden pensarlo. En ese futuro, la velocidad no es solo una característica, es todo el punto.

Continue Reading

Trending