Connect with us

Noticias

Claude vs ChatGPT: Which is Better for Your Business?

Published

on

Claude vs ChatGPT: Which is best for your business?

There’s no doubt that OpenAI changed the game in 2022, when it introduced the first iteration of ChatGPT, and showed us all the potential of generative AI bots. ChatGPT quickly became one of the fastest-growing apps of all time, and inspired the creation of countless competing bots – including Claude, the Gen AI assistant created by Anthropic.

While ChatGPT is still arguably the more “popular” tool for most users – Claude has earned a lot of attention in recent years. Both Claude and ChatGPT now have some clear pros and cons that make the more (or less) appealing to specific users.

So, how do you make the right choice? I put both of these solutions to the test to help you make a more informed decision for your business needs.

Claude vs ChatGPT: An Overview

First, it’s worth noting that comparing any generative AI assistant can be complicated. After all, these tools evolve pretty quickly. Claude, for instance, now boasts better “cooperative skills” and capabilities for team members, since the launch of the Sonnet 3.5 model.

ChatGPT, on the other hand, now has more features for specific use cases, thanks to the launch of the o1 models (for advanced reasoning). It also has a wider range of pricing plans to choose from, including Enterprise and Team editions, as well as the new ChatGPT Pro.

Here’s a quick overview of both options, and the “models” that power them.

Introducing Claude AI: Definition and Models

Claude is the AI chatbot created by Anthropic, a startup co-founded by ex-Open AI members. What makes Claude compelling for a lot of users is that Anthropic has focused heavily on making generative AI “safe” and useful. Like ChatGPT, Claude is powered by LLMs, but it features a constitutional design that helps to minimize the risk of bias, discrimination and hallucinations.

Like ChatGPT, Claude can create content, answer questions, and even be accessed to create custom bots, thanks to Anthropic’s APIs. However, it can’t search the web, and it’s not fully “multimodal”. For instance, although Claude can analyze images, it can’t create them, like ChatGPT can with DALL-E 3. The current models available for Claude are:

  • Claude Haiku: The cheapest, fastest, and most lightweight model of Claude, Haiku is available to Claude Pro and Team subscribers via the iOS app and Claude.AI. For developers, Haiku costs $0.25 per million input tokens, and $1.25 per million output tokens.
  • Claude Sonnet: The best combination model for speed and efficiency, Sonnet is available to both paying Claude users, and developers. The API costs $15 per million output tokens, and $3 per million input tokens.
  • Claude Opus: The most advanced and costly model, Opus is available to Pro, Team, and Enterprise users, as well as developers. For API users, Opus costs $75 per million output tokens and $15 per million input tokens.

Claude AI Pricing

I mentioned some of the pricing details for developers using Claude APIs above, but you can find the full list of costs on Anthropic’s website here. If you just want to access the Claude AI chatbot, there’s a free plan for beginners, with limited access to Claude models on the web, iOS and Android.

Paid plans start at $18 per month, per user for the “Pro” plan, which includes early access to new features, projects for organizing chats and documents, and Claude 3.5 Sonnet and Opus models. You also get better usage limits than you would on the free plan.

For business users, there’s Claude Team for $25 per user per month, with central billing and administration, as well as collaboration features. Alternatively, you can choose the custom-priced Enterprise plan for SSO, domain capture, role-based access, SCIM, data source integrations, and audit logs.

Introducing ChatGPT: Definition and Models

As you’ll see throughout this Claude vs ChatGPT comparison, there are a lot of similarities between the two bots. Both offer access to APIs, and come with multiple models to choose from. ChatGPT is a little more versatile, however. The bot, created by OpenAI was first released in 2022, and has since evolved to feature numerous models, such as:

  • GPT-4: The most advanced model available for ChatGPT before the release of GPT-4o. This model is available on all plans (including the free plan). It also supports multimodal capabilities, with the ability to generate images and respond to voice.
  • GPT-4o and GPT-4o Mini: The current “flagship models” for ChatGPT, GPT-4o and 4o-Mini are fast, cost effective, and multimodal. They can understand uploaded files, and generate images. Plus, users can create custom GPTs with these models.
  • The o1 models: The o1 models (GPT o1, o1-mini, and o1 Pro) are the latest models created by OpenAI at the time of writing. They’re specially designed for advanced reasoning capabilities – but can’t browse the web, and are slower than the GPT-4o models.

Compared to Claude, the ChatGPT models are more flexible, with the ability to browse the internet, create different types of content (like images), and advanced API options.

ChatGPT Pricing

API pricing for OpenAI’s ChatGPT models vary by model, however it’s worth noting that you do only pay for what you use, and can get discounts if you use the Batch API. For those who just want to access ChatGPT (without any specific developer features), there are various plans available.

The free plan includes access to GPT-4o mini, standard voice model, limited access to GPT-4o, and limited file upload capabilities. You can use custom GPTs, but you won’t be able to create them. Paid plans start at $20 per month for ChatGPT Plus, with extended messaging and upload limits, advanced voice model, limited access to o1 and o1-mini models, and custom GPT creation.

For businesses, OpenAI offers the Team plan ($25 or $30 per user, per month), with more advanced features, and an admin console for workspace management. There’s also a custom Enterprise plan with high-speed access to the top models, expanded context windows, admin controls, analytics, and domain verification. Plus, OpenAI recently introduced a new plan, ChatGPT Pro, for $200 per month, per user, with advanced access to the o1 models.

Claude vs ChatGPT: Performance Results

The most common way to compare models like Claude vs ChatGPT, is to use “standardized” tests. Most AI leaders share insights into the performance of their models on specific tests, like the MMLU text, which evaluates undergrade-level knowledge, or HumanEval, for coding.

The trouble is that not every AI leader uses the same tests. Even when they do embrace the same “benchmarks”, the results really only offer a limited insight into what these models can do. For instance, Anthropic published a head-to-head comparison of its Sonnet 3.5 model against other models like Llama and GPT-4o, but it really only delivers a snapshot oversight.

Many AI and machine learning experts say that this kind of testing really overstates the progress of LLMs. As new models are released, they can sometimes be trained on their own evaluation data – which means they get better at performing on standardized tests, but not better “overall”.

For a better “hands-on” understanding of how these models compare, I did my own tests, but here’s a quick run-down of the options side by side to get us started.

Comparison Claude ChatGPT
Creator Anthropic OpenAI
Models Claude Sonnet, Haiku, and Opus GPT 4, GPT-4o, GPT 4o-Mini, o1, o1-mini, and o1 Pro
Context window Up to 1 million for some use cases 128,000 tokens
Unique features Advanced safety features, and slightly cheaper pricing Image generation, audio understanding, advanced reasoning (o1 models), and internet access (some models)
Pricing Variable API pricing, free plan, and paid plans starting at $18 per month, per user. Variable API pricing, free plan, and paid plans starting at $20 per month, per user.
File upload Yes Yes
Integrations Yes Yes

Claude vs ChatGPT: Privacy, Safety and Security

As AI governance and security become more of a concern for business users, it’s becoming increasingly important for companies to consider how “safe” the models they access are.

As I mentioned above, one thing that really makes Claude stand out, is Anthropic’s approach to constitutional AI. The company pioneered the approach to training its models with foundational principles and rules that align with human values.

That doesn’t necessarily mean Claude AI will always be safer than ChatGPT, but the model does refuse to answer potentially “harmful” prompts more often. Additionally, it’s worth noting Anthropic doesn’t automatically train its models with user interactions – unless they opt in.

Alternatively, OpenAI does train its models on user interactions, unless you specifically “opt out”, or you’re using a paid business-level plan, like ChatGPT Team or Enterprise. Both companies do implement safety measures and guardrails into their models, but ChatGPT has been a little less transparent about the guardrails it uses.

Notably though, the new o1 models were trained with a new methodology that makes it more effective at mitigating “jailbreak” attempts. For instance, the o1 models scored 84 out of 100 compared to GPT-4o’s score of 22 on an advanced jailbreak test.

Claude vs ChatGPT: Creativity and Content Creation

While there are plenty of use cases for generative AI tools like Claude and ChatGPT these days – one of the most common ways to use these tools is for content creation. Both AI bots excel in this area – but in different ways. For instance, ChatGPT is the better option for diverse content creation.

Unlike Claude, ChatGPT can browse the web to source all kinds of information for up-to-date articles, reports, and other types of content. Because it can check the web for ideas, it’s also a little better at “brainstorming”, ideas for solutions to different problems.

Plus, ChatGPT can generate images, but you can only create images on a paid plan, whereas other alternatives, such as Google Gemini, allow free users to generate visual content too.

Claude AI, on the other hand, excels at “written” output in certain ways. When I asked both tools to write an introduction to an article about LLMs, ChatGPT came up with pretty generic-sounding, flowery content. We’re all tired of seeing the same phrases as “in today’s fast-moving world,” etc.

Claude created slightly more “original” sounding content. It was also very good at assessing the documents and content I uploaded. ChatGPT can do that too, but I often find the bot gets confused when it’s given too much information to review at once.

Claude is better at proof-reading too. When I asked both Claude and ChatGPT to “fix” a passage of content with obvious factual errors and misspellings, Claude identified them all. ChatGPT, on the other hand, still checked the content well, but it seemed to try and “rewrite” everything in a new tone of voice, which was something I didn’t ask it to do.

Unfortunately, since Claude can’t access the internet, it can’t “fact-check” any very recent information from the web.

Image and Content Processing Capabilities

Although Claude has fewer “multimodal” capabilities than ChatGPT – both tools can process “uploaded” content. However, there are limitations on how much information you can upload, based on the plan you choose.

I found both tools to be reasonably effective at analyzing photos, but they can only gather so much information from an image. For instance, both tools seem to struggle with “counting” the number of objects in a photo, or distinguishing the difference between similar objects (like apples and oranges).

ChatGPT is definitely better at summarizing larger documents. Although Claude can process up to 200k tokens from a document (compared to 128k for ChatGPT), GPT-4o was better at understanding the text given to it than Claude in my test.

ChatGPT does a great job of converting large pieces of text into simple summaries with clear “key points”. Claude can summarize text quite well, but it sometimes makes mistakes, like failing to count the number of times a specific word or phrase was used in a document.

Overall, I do think there are better tools out their for content summarization than both Claude and ChatGPT, however. You can find an insight into some of my top recommendations for AI summary tools (like Notta, and Hypotenuse) here.

Complex Reasoning: ChatGPT Comes Out on Top

For complex reasoning tasks (particularly those linked to math and science), ChatGPT is definitely the better tool. That’s particularly true now that we have access to the o1 models, that are specifically designed to use “chain of thought” processes to think deeper about complex tasks.

Claude isn’t really designed to think carefully about tasks, although it does respond well to questions about physics equations. ChatGPT, however, can dive a lot more deeply into questions about science, math, and finance, and deliver a lot more intuitive responses.

For instance, when I asked ChatGPT to reason through a physics problem for me, it took longer to generate a response (with the o1 model). However, it also broke the answer down into clear steps, that felt a lot easier to follow. ChatGPT also answered math questions faster with the GPT-4o model than Claude. Sometimes, Claude didn’t even bother to give a direct answer when I asked it to solve a math equation – it just told me how to figure out the answer for myself.

Both solutions do struggle a little bit with things like sentiment analysis, and solving ethical problems, however. With the o1 models, ChatGPT can provide deep insights into ethical problems (like the trolley problem), and even understand the sentiment within a conversation. Claude can understand sentiment reasonably well, but I found it delivered pretty generic responses to ethical questions.

Of course, that could have something to do with Anthropic introducing such strict guardrails to ensure that the “responses” Claude gives aren’t harmful. These guardrails could prevent the bot from generating responses that might be perceived in a certain way.

Claude vs ChatGPT: Coding Performance

I don’t know much about coding, so it was hard to fully evaluate Claude vs ChatGPT in this area. However, ChatGPT does have a great reputation for producing high-quality code. The GPT-4o model, in particular, is excellent at creating and debugging code quickly.

Additionally, the o1 models achieved brilliant results on various coding “benchmarking” tests. For instance, the o1 model achieved an 89th percentile score in a Codeforces contest. What might make Claude a little better for some coding tasks, is its unique “Artifacts” feature.

The Artifacts feature brings up a preview window for users as they write code – so you can actually see what your code will do as it works. For instance, you could use Artifacts to create characters for a video game and see how they might interact.

Since you can see the results of your code immediately, you can easily ask Claude to make changes to graphics, and specific elements. With ChatGPT, you need a lot more specific programming knowledge to really make the most of the bot’s coding capabilities.

Customization: Integrations and GPTs

One thing that makes ChatGPT a slightly more powerful option than Claude for some businesses, is the ability to create custom GPTs, and leverage a wide range of integrations. Although Claude can integrate with some apps, and enables users to create their own bot experiences through APIs, ChatGPT makes it much easier to build unique experiences with custom GPTs.

You can create your own GPTs with natural language, and add them to the GPT marketplace, where other people can access them. Anthropic doesn’t have a “GPT” equivalent, although there is a prompt library available with “optimized prompts” you can use for certain tasks, like enhancing Python code.

Neither company offers companies the ability to create “full” autonomous agents yet. However, you can create custom agents with similar functionality to ChatGPT through Microsoft Copilot Studio. Anthropic also has a solution for creating AI agents with “function calling” capabilities.

However, there are a lot of better options for autonomous agent creation available right now – such as Google’s Vertex AI system with access to Gemini 2.0, and Amazon Bedrock Studio.

Claude vs ChatGPT: Which is Better Value for Money?

Both Claude and ChatGPT have free plans for people who want to just experiment with the bot (in a limited way), without paying anything. If you’re happy to sign up for a premium plan, Claude’s paid plans are slightly cheaper – starting at $18 per month per user.

However, I do think that ChatGPT offers better value for money overall. First of all, the free plan gives you a lot more for nothing, with access to limited multimodal capabilities, advanced models, and a bot that can actually browse the internet.

Secondly, the paid plans, though slightly more expensive, allow you to do a lot more with your AI, such as creating custom GPTs, or generating images. Those are things you can’t really do on any Claude AI paid plan – no matter how much you spend.

Claude vs ChatGPT: Which is Best?

Overall, Claude and ChatGPT have a lot in common. They’re both powerful AI solutions, ideal for a wide range of tasks, ranging from text analysis, to brainstorming, and even coding.

Claude is probably the better choice if you’re concerned about AI safety, and want a little more “creativity” when you’re creating new content (Even if you can’t create images). It’s also a slightly more user-friendly solution for coding tasks, thanks to the Artifacts feature. Plus, it does feature some handy collaboration capabilities, with things like “Projects” for teams.

ChatGPT, on the other hand, is the better “jack of all trades” AI tool. It can generate text, and images, summarize content more effectively, and even deal with advanced reasoning tasks using the o1 models. Plus, it can browse the web, understand audio input, and be customized with unique GPTs, integrations, and plugins.

For most users, ChatGPT will be the better option overall. However, it’s worth remembering that both of these tools are constantly evolving. Make sure you keep an eye on our latest news stories about both Claude, and ChatGPT – you never know when one might overtake the other.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

6 características de chatgpt potentes que cada médico debe conocer sobre

Published

on


ChatGPT se ha convertido en un nombre familiar en el campo de la medicina, y los médicos lo usan para todo, desde respuestas rápidas hasta redactar notas de los pacientes. Pero aquí está la captura: la mayoría de los usuarios solo están rascando la superficie de lo que esta IA puede hacer. Muchas de sus mejores características permanecen subutilizadas, dejando valiosas herramientas que ahorran tiempo sin explotar.

AI no reemplazará a los médicos pronto, pero poder Haz tu vida significativamente más fácil. Si confía en ChatGPT solo por lo básico, es posible que se esté perdiendo su potencial real.

Aquí hay seis potentes características de ChatGPT que pueden optimizar su flujo de trabajo y ayudarlo a recuperar su tiempo.


Nota: Si bien estas son sugerencias generales, es importante realizar una investigación exhaustiva y la debida diligencia al seleccionar herramientas de IA. No respaldamos ni promocionamos ninguna herramienta de IA específica mencionada aquí..

1. Puedes crear tu propio GPT

Los GPT personalizados le permiten ajustar el chatgpt para alinearse mejor con su práctica médica específica, especialidad y flujo de trabajo. En lugar de obtener respuestas genéricas de IA, puede capacitar a ChatGPT para comprender su campo, seguir sus protocolos e incluso ayudar con tareas específicas como redactar instrucciones del paciente o resumir las pautas médicas. También puede personalizar su tono, ya sea que desee que sea clínico, preciso o cálido y amigable con el paciente.

Este es un cambio de juego porque permite una mayor personalización y eficiencia. No tendrá que seguir repitiéndose o ajustando respuestas genéricas generadas por IA. Ya sea que trabaje en un campo médico de nicho, necesita apoyo con el trabajo administrativo o desea automatizar la educación del paciente, un GPT personalizado puede ahorrar tiempo y garantizar la coherencia en cómo se entrega la información.

Para obtener una guía paso a paso sobre la construcción de su propio GPT, consulte este tutorial integral

Cómo usarlo:

  • Abra chatgpt y vaya a Explorar GPTS.
  • Hacer clic Crear y siga las indicaciones de configuración.
  • Defina el comportamiento de la IA con instrucciones como, “Actúa como cardiólogo especializado en el manejo de la hipertensión”.
  • Cargue cualquier material de referencia relevante (por ejemplo, protocolos de tratamiento, pautas de mejores prácticas).
  • Pruebe y modifique la configuración para garantizar un rendimiento óptimo.

Descargo de responsabilidad: el contenido médico generado por IA debe ser revisado por un profesional calificado antes de su uso en la toma de decisiones clínicas.

2. Puede programar tareas con chatgpt

Chatgpt’s Tareas La función le permite programar recordatorios y automatizar acciones, esencialmente lo convierte en su asistente personal de IA. Ya sea que recuerde hacer un seguimiento con un paciente, establecer recordatorios para revisiones de medicamentos o incluso redactar informes semanales por adelantado, esta característica asegura que no tenga que confiar únicamente en su memoria o notas adhesivas.

Para los médicos que hacen malabares con la atención al paciente, la investigación y el trabajo administrativo, tener un asistente de IA proactivo puede ser un salvavidas. En lugar de configurar manualmente recordatorios o usar múltiples aplicaciones, ChatGPT puede manejarlo todo en un solo lugar. Es perfecto para garantizar que los seguimientos críticos y las acciones sensibles al tiempo no pasen a través de las grietas. Para ver cómo esta característica puede simplificar su vida, lea más aquí.

Cómo usarlo:

  • Asegúrese de estar suscrito a ChatGPT Plus, Team o Pro (ya que la función está en beta).
  • Navegar al Tareas Sección en Chatgpt.
  • Configurar tareas con detalles como “Recuérdame verificar la recarga de medicamentos del Sr. Smith todos los viernes a las 2 pm”.
  • Revise y ajuste sus tareas según sea necesario en el Tareas sección.

Nota: Como esta característica todavía está en beta, su funcionalidad puede evolucionar con el tiempo.

3. Puede cargar archivos y analizar datos

Atrás quedaron los días de examinar manualmente a través de trabajos de investigación, informes de laboratorio o hojas de cálculo de datos del paciente. ChatGPT le permite cargar archivos, ya sea PDF, CSV o sábanas de Excel, y analizar rápidamente su contenido. Puede resumir estudios complejos, extraer puntos clave de informes largos e incluso detectar tendencias en los resultados de laboratorio a lo largo del tiempo.

Esta característica es un gran ahorro de tiempo para los médicos que necesitan procesar grandes cantidades de información rápidamente. En lugar de pasar horas leyendo documentos densos, puede obtener resúmenes concisos y ideas procesables en minutos. Ya sea que esté revisando el historial del paciente, realizando investigaciones o analizando los datos del hospital, ChatGPT lo tiene cubierto.

Cómo usarlo:

  • Haga clic en el 📎 Adjunto ícono en chatgpt.
  • Cargue su archivo (por ejemplo, una hoja de cálculo con tendencias de BP del paciente).
  • Instruya chatgpt en el análisis deseado (por ejemplo, “Resume los hallazgos clave de este estudio en lenguaje sencillo”.).
  • Revise el resultado, incluidos resúmenes, cuadros o información específica de datos.

Descargo de responsabilidad: el análisis de datos de ChatGPT no debe reemplazar el juicio profesional o los requisitos de cumplimiento reglamentario.

4. Puedes realizar investigaciones profundas

Encontrar información médica confiable puede llevar mucho tiempo, pero Chatgpt’s Investigación profunda La función le permite navegar de forma autónoma fuentes de confianza y compilar informes estructurados. ¿Necesita una revisión de la literatura sobre los últimos tratamientos de hipertensión? ChatGPT puede recopilar información de múltiples fuentes y resumir los hallazgos clave en minutos.

Para los médicos que necesitan información basada en evidencia pero que no tienen tiempo para cavar en PubMed durante horas, esta característica es invaluable. Ya sea que se esté preparando para una presentación, escriba un trabajo de investigación o busque las últimas pautas clínicas, ChatGPT hace el trabajo pesado por usted.

Cómo usarlo:

  • Abra chatgpt y habilitar Investigación profunda (Disponible para usuarios de Pro).
  • Ingrese una solicitud como, “Genere una revisión de la literatura sobre los últimos avances en el tratamiento de diabetes tipo 2”.
  • Permita 5-30 minutos para que ChatGPT compile un informe estructurado.
  • Revise las citas y verifique los resultados antes de la aplicación clínica.

Descargo de responsabilidad: siempre una investigación generada por la IA de verificación cruzada con fuentes revisadas por pares antes de aplicarlo en la práctica.

5. Puede redactar y editar documentos de forma larga

Escribir informes largos, trabajos de investigación o pautas médicas puede ser desalentador, pero Chatgpt’s Lienzo La función proporciona un espacio de trabajo de edición interactivo. Está diseñado para redactar y refinar documentos de forma larga, lo que lo convierte en una excelente herramienta para profesionales médicos que necesitan producir informes o publicaciones detalladas.

En lugar de saltar entre varios procesadores de palabras, puede trabajar directamente dentro de ChatGPT, iterando el contenido con sugerencias con IA. Ya sea que esté redactando documentos de política, resúmenes de investigación o incluso materiales de educación del paciente, esta característica ayuda a mantener todo organizado y simplificado.

Cómo usarlo:

  • Abra chatgpt y seleccione Modo de lienzo.
  • Inicie un nuevo documento e ingrese su borrador.
  • Use las herramientas de edición de ChatGPT para refinar secciones, mejorar la claridad y garantizar la legibilidad.
  • Guarde o exporte la versión final para su envío o revisión.

6. Puedes usar características de voz e imagen

CHATGPT-4O ahora admite el análisis de entrada de voz y imagen, lo que hace que las interacciones sean más dinámicas y accesibles. Puede dictar notas con manos libres, subir imágenes para el reconocimiento de texto e interactuar con ChatGPT de manera más natural, ya sea que esté en movimiento o en una clínica ocupada.

Para los médicos, esto significa una documentación más fácil, un procesamiento de material de referencia más rápido y una mejor accesibilidad. Imagine dictar notas del paciente mientras conduce a casa o escanean notas escritas a mano para una transcripción instantánea; estas pequeñas eficiencias pueden sumar a un ahorro significativo de tiempo.

Para obtener un tutorial detallado sobre la creación de imágenes usando CHATGPT, explore esta guía.

Cómo usarlo:

  • Activar modo de voz en Chatgpt para interacciones manos libres.
  • Cargue imágenes (como notas de pacientes escritas a mano) para el reconocimiento de texto.
  • Solicite a ChatGPT la transcripción u organización de la información clave.

Descargo de responsabilidad: el análisis de IA basado en imágenes no es un sustituto de la interpretación radiológica o patológica por profesionales capacitados.


Suscríbase para recibir los 7 pasos que puede seguir para lograr la libertad financiera

Si la libertad financiera es su objetivo, no hay mejor momento para comenzar que ahora.

Desbloquee los pasos procesables que puede tomar todos los días para ajustar sus objetivos, descubrir sus intereses y evitar errores costosos en su viaje de libertad financiera.


Conclusión

Si bien ninguna herramienta única puede eliminar las demandas del día de un médico, pueden sumar pequeñas ganancias de eficiencia. Ya sea automatización de recordatorios, resumiendo la investigación o la redacción de informes, estas características de ChatGPT pueden ayudar a optimizar las tareas y reducir la sobrecarga cognitiva.

Al incorporar la IA en su flujo de trabajo, no solo está ahorrando tiempo, sino que también está creando más ancho de banda para una atención significativa al paciente y un crecimiento profesional. Por cierto, si alguna vez ha tenido problemas para obtener los mejores resultados de la IA, esta hoja de trucos ChatGPT es una excelente manera de nivelar sus habilidades. Asegúrese de revisarlo.

¿Qué característica estás más emocionado de probar? ¡Hágamelo saber!

Suscríbete a nuestro boletín Para más IA y tecnología. También obtendrás acceso a nuestro página de recursos de IA gratisrepleto de herramientas de IA y tutoriales para ayudarlo a tener más en la vida fuera de la medicina. ¡Haz que suceda!

Descargo de responsabilidad: la información proporcionada aquí se basa en los datos públicos disponibles y puede no ser completamente precisa o actualizada. Se recomienda contactar a las respectivas empresas/individuos para obtener información detallada sobre características, precios y disponibilidad.

Si quieres más contenido como este, asegúrate de que Suscríbete a nuestro boletín Para obtener actualizaciones sobre las últimas tendencias para AI, tecnología y mucho más.

Peter Kim, MD es el fundador de Ingresos pasivos MDel creador de Academia de Bienes Raíces Passivey ofrece educación semanal a través de su podcast del lunes, el podcast MD Passive Income MD. Únase a nuestra comunidad en el Grupo de Facebook de Passive Income Doc Facebook.

Lectura adicional

Continue Reading

Noticias

¿Qué es Mistral AI? Todo para saber sobre el competidor de Operai

Published

on

Mistral AI, la compañía francesa detrás del asistente de IA LE Chat y varios modelos fundamentales, es considerada oficialmente como una de las nuevas empresas tecnológicas más prometedoras de Francia y posiblemente es la única compañía europea que podría competir con OpenAI. Pero en comparación con su valoración de $ 6 mil millones, su participación en el mercado global sigue siendo relativamente baja.

Sin embargo, el reciente lanzamiento de su asistente de chat en las tiendas de aplicaciones móviles se encontró con algunas exageraciones, particularmente en su país de origen. “Vaya y descargue le chat, que está hecho por Mistral, en lugar de chatgpt por OpenAi, o algo más”, dijo el presidente francés Emmanuel Macron en una entrevista televisiva antes de la Cumbre de Acción de AI en París.

Si bien esta ola de atención puede ser alentadora, Mistral AI todavía enfrenta desafíos para competir con personas como OpenAI, y al hacerlo mientras mantiene al día con su autodefinición como “el laboratorio de IA independiente más verde e líder del mundo”.

¿Qué es Mistral AI?

Mistral AI ha recaudado cantidades significativas de fondos desde su creación en 2023 con la ambición de “poner a la IA fronteriza en manos de todos”. Si bien este no es un jab directo en OpenAI, el eslogan está destinado a resaltar la defensa de la compañía para la apertura en la IA.

Su alternativa a ChatGPT, Asistente de chat LE Chat, ahora también está disponible en iOS y Android. Alcanzó 1 millón de descargas en las dos semanas posteriores a su lanzamiento móvil, incluso obtuvo el primer lugar de Francia para descargas gratuitas en la tienda de aplicaciones iOS.

Esto viene además del conjunto de modelos de Mistral AI, que incluye:

En marzo de 2025, la compañía introdujo Mistral OCR, una API de reconocimiento de carácter óptico (OCR) que puede convertir cualquier PDF en un archivo de texto para facilitar que los modelos de IA ingieran.

¿Quiénes son los fundadores de Mistral AI?

Los tres fundadores de Mistral AI comparten una experiencia en investigación de IA en las principales empresas de tecnología estadounidense con operaciones significativas en París. El CEO Arthur Mensch solía trabajar en DeepMind de Google, mientras que el CTO Timothée Lacroix y el director científico Guillaume Lample son ex empleados de Meta.

Los asesores cofundadores también incluyen a Jean-Charles Samuelian-Werve (también miembro de la junta) y Charles Gorintin de la startup de seguros de salud Alan, así como el ex ministro digital Cédric O, que causó controversia debido a su papel anterior.

¿Son los modelos de AI de Mistral de código abierto?

No todos ellos. Mistral AI diferencia a sus modelos principales, cuyos pesos no están disponibles para fines comerciales, de sus modelos gratuitos, para los cuales proporciona acceso de peso bajo la licencia Apache 2.0.

Los modelos gratuitos incluyen modelos de investigación como Mistral Nemo, que se construyó en colaboración con NVIDIA que la startup abierta en julio de 2024.

¿Cómo gana dinero Mistral AI?

Si bien muchas de las ofertas de Mistral AI son gratuitas o ahora tienen niveles gratuitos, Mistral AI planea generar algunos ingresos de los niveles pagados de Le Chat. Introducido en febrero de 2025, el plan Pro Chat tiene un precio de $ 14.99 al mes.

En el lado puramente B2B, Mistral AI monetiza sus modelos principales a través de API con precios basados ​​en el uso. Las empresas también pueden licenciar estos modelos, y la compañía probablemente también genera una participación significativa de sus ingresos de sus asociaciones estratégicas, algunas de las cuales destacó durante la Cumbre de AI de París.

En general, sin embargo, los ingresos de Mistral AI todavía se encuentran en el rango de ocho dígitos, según múltiples fuentes.

¿Qué asociaciones ha cerrado Mistral Ai?

En 2024, Mistral AI entró en un acuerdo con Microsoft que incluía una asociación estratégica para distribuir sus modelos de IA a través de la plataforma Azure de Microsoft y una inversión de € 15 millones. La Autoridad de Competencia y Mercados del Reino Unido (CMA) concluyó rápidamente que el acuerdo no calificó para la investigación debido a su pequeño tamaño. Sin embargo, también provocó algunas críticas en la UE.

En enero de 2025, Mistral AI firmó un acuerdo con la agencia de prensa Agence France-Presse (AFP) para dejar que el chat consulte todo el archivo de texto de la AFP que data de 1983.

Mistral AI también aseguró asociaciones estratégicas con el ejército y la agencia de empleo de Francia, la startup de tecnología de defensa alemana Helsing, IBM, Orange y Stellantis.

¿Cuánta financiación ha recaudado Mistral AI hasta la fecha?

A partir de febrero de 2025, Mistral AI recaudó alrededor de € 1 mil millones en capital hasta la fecha, aproximadamente $ 1.04 mil millones al tipo de cambio actual. Esto incluye algunos financiamiento de la deuda, así como varias rondas de financiamiento de capital planteadas en una sucesión cercana.

En junio de 2023, y antes de que lanzara sus primeros modelos, Mistral AI recaudó una ronda récord de $ 112 millones de semillas dirigida por Lightspeed Venture Partners. Las fuentes en ese momento dijeron que la ronda de semillas, la más grande de Europa, valoraba la startup de entonces un mes de $ 260 millones.

Otros inversores en esta ronda de semillas incluyeron BPifrance, Eric Schmidt, Exor Ventures, First Minute Capital, Headline, Jcdecaux Holding, La Famiglia, Localglobe, Motier Ventures, Rodolphe Saadé, Sofina y Xavier Niel.

Solo seis meses después, cerró una serie A de € 385 millones ($ 415 millones en ese momento), a una valoración reportada de $ 2 mil millones. La ronda fue dirigida por Andreessen Horowitz (A16Z), con la participación de la velocidad de la luz de los patrocinadores existentes, así como BNP Paribas, CMA-CGM, Convicción, Elad Gil, Catalyst General y Salesforce.

La inversión convertible de $ 16.3 millones que Microsoft hizo en la IA Mistral como parte de su asociación anunciada en febrero de 2024 se presentó como una extensión de la Serie A, lo que implica una valoración sin cambios.

En junio de 2024, Mistral AI luego recaudó 600 millones de euros en una combinación de capital y deuda (alrededor de $ 640 millones al tipo de cambio en ese momento). La ronda de larga data fue dirigida por Catalyst General con una valoración de $ 6 mil millones, con inversores notables, incluidos Cisco, IBM, Nvidia, Samsung Venture Investment Corporation y otros.

¿Cómo podría ser una salida de IA distral?

Mistral está “no a la venta”, dijo Mensch en enero de 2025 en el Foro Económico Mundial en Davos. “Por supuesto, [an IPO is] el plan “.

Esto tiene sentido, dado cuánto ha recaudado la startup hasta ahora: incluso una venta grande puede no proporcionar múltiplos lo suficientemente altos para sus inversores, sin mencionar las preocupaciones de soberanía dependiendo del adquirente.

Sin embargo, la única forma de definitivamente aplastar rumores de adquisición persistentes es escalar sus ingresos a niveles que incluso podrían justificar remotamente su valoración de casi $ 6 mil millones. De cualquier manera, estad atentos.

Esta historia se publicó originalmente el 28 de febrero de 2025 y se actualizará regularmente..

Continue Reading

Noticias

Comparing Google Veo 2 And OpenAI Sora in 2025

Published

on

It’s impossible to scroll through social media or attend any technology conference without encountering the dramatic shift happening in video production. Text-to-video AI has arrived, and the titans of tech are racing to bring their versions to market. At the forefront of this revolution are two powerhouse tools–OpenAI’s Sora (released in the UK and EU just this Friday) and Google’s Veo 2—each representing vastly different visions for the future of digital content creation. The implications for industries from fashion to gaming, advertising to independent filmmaking are profound and immediate.

Sora vs Veo 2: Two Visions for AI-Generated Video

Since both tools are relatively new to the market, certainly with UK and EU audiences, I spoke to three different expert users who have had early access to these tools for a number of months to tell me about their experiences with them and to compare and contrast their relative merits and features. My key takeaway is that the battle between Sora and Veo 2 isn’t just about technical specs—it’s a clash of philosophies. One aims to replicate reality, the other to transcend it. These tools represent a pivotal moment where the barriers between imagination and execution are dissolving at an unprecedented rate.

The contrast between Sora and Veo 2 represents more than just competing products—it embodies divergent philosophies about what matters most in creative tools. OpenAI has prioritized user interface and control, while Google has focused on output quality and physics simulation.

“Sora has a huge advantage, because they put a lot of work into the interface and the user interface,” explains David Sheldrick, founder at PS Productions and Sheldrick.ai, who is an early tester of both platforms. “Veo 2, even though the rendering output quality is obviously incredible…Sora itself, when you go on the website, feels way more like a real, sort of refined product.”

This distinction becomes immediately apparent to users encountering both platforms. Sora offers a comprehensive suite of creator-friendly features—timelines, keyframing, and editing capabilities that feel familiar to anyone with video production experience. It prioritizes creative control and workflow integration over raw technical performance.

Leo Kadieff, Gen AI Lead Artist at Wolf Games, a studio pioneering AI-driven gaming experiences, has also had early access to both platforms and describes Veo 2 as “phenomenal, with web access, and API access which enables much more experimental stuff. It’s really the number one tool”. His enthusiasm for Veo 2’s capabilities stems from its exceptional output quality and physics modeling, even if the interface isn’t as polished as Sora’s.

This reflects a key question for creative tools: is it better to provide a familiar, robust interface or to focus on generating the highest quality outputs possible? The answer, as is often the case with emerging technologies, depends entirely on what you’re trying to create.

Technical Strengths: Physics, Consistency and Hallucinations

The real-world performance of these tools reveals their distinct technical approaches. Sora impresses with its cinematic quality and extended duration capabilities, while Veo 2 excels at physics simulation and consistency.

“The image quality is pretty damn good,” notes Sheldrick about Veo 2, while adding that “Sora already has nailed photo realism. It’s got this image fidelity, which is super, super high.” Both platforms are clearly pushing the boundaries of what’s possible, but they handle technical challenges differently.

One particularly revealing area is how each platform deals with the “hallucinations” inherent to AI generation—those moments when the physics or continuity breaks down in unexpected ways.

Kadieff explains the difference vividly: “When Veo 2 hallucinates, it just clips to kind of like a similar set that it has in its memory, but you might lose, like, consistency, or you might get a whole different, weird angle. So, for example, if you make a drone shot flying over a location, and it’s like 10 seconds, it will do five seconds perfectly, and then it’s going to clip to some rainforest”.

Bilawal Sidhu, a creative technologist and AI/VFX creator on YouTube and other platforms, with over a decade of experience, doesn’t mince words about Sora’s limitations: “the physics are completely borked, like, absolutely horrendous”. He explains that while Sora offers longer duration videos (10-15 seconds), its physical simulation often falls short, particularly with human movement and interactions.

Speaking on his YouTube channel, Sidhu declares, “Nothing comes close to what Google Deep Mind has dropped… Veo 2 now speaks cinematographer. You can ask for a low angle tracking shot 18 mm lens and put a bunch of detail in there and it will understand what you mean. You just ask it with terms you already know… I feel like Sora doesn’t really follow your instructions. Sora definitely does pretty well at times, but in general it tends to be really bad at physics.”

Behind every AI video generator lies mountains of training data that shapes what each tool excels at creating. Hypothesising why the physics outputs of Veo 2 are superior in the video outputs, he states, “Google owns YouTube, and so even if you pull out a bunch of the copyrighted stuff, that still leaves a massive corpus compared to what anyone else has to train on.”

The battle for training data supremacy extends beyond quantity to quality and diversity. OpenAI has remained relatively secretive about Sora’s full training dataset, raising questions about potential biases and limitations.

For commercial applications where physical accuracy is non-negotiable, this distinction matters enormously. Video quality and physical realism are essential for products that need to be represented accurately, highlighting why industries with strict visual requirements might lean toward Veo 2 despite its more limited interface.

Sora vs Veo 2: Prompt Control and Generation Quality

By coming out first, Sora had a first-mover advantage of sorts, but it also set the bar for other models to work towards—and then transcend. Sidhu was very impressed when he first saw the outputs: “watching the first Sora video, the underwater diver discovering like a crashed spaceship underwater, if you remember that video, that blew my mind, because I feel like Sora showed us that you could cross this chasm of quality with video content that we just hadn’t seen.”

Explaining more of the positives for Sora, Sidhu adds, “Sora is very powerful. Their user experience is far better than their actual quality. They’ve got this like storyboard editor view, where you can basically lay out prompts on a timeline—you can outline, hey, I want a character to enter, the scene from the left, walk down and sit down on this table over here, and then at this point in time, I want somebody else to walk up and suddenly get their attention.”

The ability to translate text prompts into intended visuals varies significantly between platforms. Veo 2 appears to be winning the battle for prompt adherence—the ability to faithfully translate textual descriptions into corresponding visuals.

“Veo 2 is very good at prompt adherence, you can give very long prompts, and it’ll kind of condition the generation to encapsulate all the things that you asked for,” Sidhu explains, expressing genuine surprise at Veo 2’s capabilities. “Like Runway and Luma, and pretty much anything that you’ve used out there, the hit rate is very bad… for Veo 2, it is by far the best. It’s like, kind of insane, how good it is”.

This predictability and control fundamentally changes the user experience. Rather than treating AI video generation as a slot machine where creators must roll repeatedly hoping for a usable result, Veo 2 provides more consistent, controlled outputs—particularly valuable for commercial applications with specific requirements.

Consistency extends beyond single clips as well. Sidhu notes that “the four clips you get [as an output from Veo 2], you put in a text prompts, as long as you want them to be, and with a very detailed text prompt, you get very close to character consistency too”, allowing for multi-clip productions featuring the same characters and settings without dramatic variations.

Kadieff is also a huge fan of Veo 2’s generation quality: “”Veo 2 has generally been trained on very good, cinematic content. So almost like all the shots you do with it feel super cinematic, and the animation quality is phenomenal.”

Beyond this, the resolution quality of Veo 2’s outputs is also a cause for celebration, as Sidhu states, “this model can natively output 4K. If you used any other video generation tool, Sora, Luma, whatever it is, you end up exporting your clips into some other upscaling tool whether that’s Krea or Topaz, what have you — this model can do 4K natively, that’s amazing.”

Industry Applications: From Fashion to Gaming

Different industries are discovering unique applications for these tools, with their specific requirements guiding platform selection. Fashion brands prize consistency and physical accuracy, while gaming and entertainment often value creative flexibility and surrealism.

“What I’m really excited about is not just the ability, indies are going to be able to rival the outputs of studios, but studios are going to set whole new standards,” says Sidhu. “But then also, these tools are changing the nature of content itself, like we’re moving into this era of just-in-time disposable content.”

For fashion and retail, the ability to quickly generate variations of a single concept represents enormous value. Creating multiple versions of product videos tailored to different markets is now possible without the expense of multiple production shoots.

Meanwhile, gaming and entertainment applications embrace different capabilities. Kadieff describes how AI is transforming creative approaches: “The intersection of art, games and films, is not just about games and films anymore – it’s about hybrid experiences”. This represents a fundamental shift in how interactive media can be conceived and produced.

Sheldrick predicts significant industry adoption this year: “I think this is the year that AI video and AI imagery in general will kind of break into the advertising market and a bit more into commercial space.” He warns that “the companies that have got on board with it, will start to reap the rewards, and the companies that have neglected to take this seriously, will suffer in this year.”

The Human-AI Collaboration Model

Despite these tools’ remarkable capabilities, the most successful implementations combine AI generation with human creativity and oversight. The emerging workflow models suggest letting AI handle repetitive elements while humans focus on the aspects requiring artistic judgment.

As these platforms continue to develop, creative teams are adapting how they work, with new hybrid roles emerging at the intersection of traditional creativity and technical AI expertise.

The learning curve remains steep, but the productivity gains can be substantial once teams develop effective workflows. Kadieff notes how transformative these tools have been: “when I saw transformer-based art, like three, four years ago, I mean, it changed my life. I knew instantly that this is the biggest media transformation of my lifetime”.

Looking Forward: AI Video in 2026 and Beyond

As these platforms continue evolving at breakneck speed, our experts envision transformative developments over the next few years. Specialized models tailored to specific industries, greater customization capabilities, and integration with spatial computing all feature prominently in their predictions.

With Sidhu’s earlier visions of independent creators rivalling the outputs of studios, this democratization of high-quality content creation tools doesn’t mean the end of major studios, but rather a raising of the bar across the entire creative landscape.

Sheldrick remains enthusiastic about the competitive landscape driving innovation: “I’m just most excited to watch these massive, sort of frontier labs just going at it. I’ve enjoyed watching this sort of AI arms race for years now, and it hasn’t got old. It’s still super exciting.”

David Sheldrick has used OpenAI’s Sora tool to create fashion videos

Perhaps the most transformative potential lies in how these tools will reshape our understanding of content itself. As Sidhu explains, “I think content authoring will look almost like a world model, one of the characteristics or attributes of it is like, here’s a scene graph, here are the three scenes that I have. Here are the characters that are within it. Here are the props. Here’s the time of day”. This structured approach would allow content to be personalized and localized at unprecedented scales.

The Democratization of Visual Storytelling

As we look toward the future of AI-generated video, it’s clear that neither Sora nor Veo 2 represents a definitive solution for all creative needs. The choice depends on specific requirements, risk tolerance, and creative objectives.

What’s undeniable is the democratizing effect these tools are having on visual storytelling. “Now we’re coming to a place where everybody, anybody with an incredible imagination, whether they’re in India, China, Pakistan or South Africa, or anywhere else, and access to these tools can tell incredible stories,” Kadieff observes.

Sidhu agrees, noting that “YouTube creators are punching way above their weight class already. And so I think that trend is going to continue, where we’ll see like the Netflix’s of the world look a lot more like YouTube, where more content is going to get greenlit”.

These tools are enabling a new generation of creators to produce content that would have been prohibitively expensive just a few years ago. The traditional barriers to high-quality video production are falling rapidly.

As AI video tools like Sora and Veo 2 continue to evolve and become increasingly accessible, we stand at the beginning of a fundamental shift in how visual stories are told, who gets to tell them, and how they reach their audiences. The tools may be artificial, but the imagination they unlock is profoundly human.

Continue Reading

Trending