Noticias
A deep dive analysis of 62 queries
The emergence of ChatGPT search has led to many questions about the quality of the overall results compared to Google.
This is a difficult question to answer, and in today’s article, I will provide some insights into how to do just that.
Note that our understanding is that the technology that makes it possible for OpenAI to offer a search capability is called SearchGPT, but the actual product name is ChatGPT search.
In this article, we will use the name ChatGPT search.
What’s in this report
This report presents an analysis of 62 queries to assess the strengths and weaknesses of each platform.
Each response was meticulously fact-checked and evaluated for alignment with potential user intents.
The process, requiring about an hour per query, highlighted that “seemingly good” and “actually good” answers often differ.
Additionally, when Google provided an AI Overview, it was scored against ChatGPT search.
A combined score for the AI Overviews and the rest of Google’s SERP was also included.
Of the queries tested – two-thirds of which were informational – Google returned an AI Overview in 25 instances (40% of the time).
The queries analyzed fell into multiple categories:
The total number of the above is greater than 100%, and that’s because some queries could fall into more than one classification.
For example, about 13% of the queries were considered informational and commercial.
Detailed information from SparkToro on the makeup of queries suggests a natural distribution of search queries as follows:
Navigational queries, which comprise nearly a third of all queries, were excluded from this test.
These queries typically demand a straightforward response like, “just give me the website,” and are a category where Google excels.
However, I included queries likely to favor one platform, such as:
- Content gap analysis queries (4): Representing a broader class of content-related queries, which Google doesn’t handle but ChatGPT search attempts (though not always successfully).
- Locally oriented queries (4): These leverage Google’s extensive local business database, Google Maps, and Waze, areas where ChatGPT search struggles to compete.
Metrics used in this study
I designed 62 queries to reflect diverse query intents, aiming to highlight each platform’s strengths and weaknesses.
Each response was scored across specific metrics to evaluate performance effectively.
- Errors: Did the response include incorrect information?
- Omissions: Was important information not in the response?
- Weaknesses: Were other aspects of the response considered weak but not scored as an error or omission?
- Fully addresses: Was the user’s query intent substantially addressed?
- Follow-up resources: Did the response provide suitable resources for follow-up research?
- Quality: An assessment by me of the overall quality of the response. This was done by weighing the other factors contained in this list.
At the end of this article are the total scores for each platform across the 62 queries.
Competitive observations
When considering how different search platforms provide value, it’s important to understand the many aspects of the search experience. Here are some of those areas:
Advertising
Multiple reviewers note that ChatGPT search is ad-free and tout how much better this makes it than Google. That is certainly the case now, but it won’t stay that way.
Microsoft has $13 billion committed to OpenAI so far, and they want to make that money back (and then some).
In short, don’t expect ChatGPT search to remain ad-free. That will change significantly at some point.
An important note is that advertising works best on commercial queries.
As you will see later in this article, I scored Google’s performance on commercial queries significantly higher than ChatGPT search.
Understanding user intent
Google has been working on understanding user intent across nearly infinite scenarios since 2004 or earlier.
They’ve been collecting data based on all the user interactions within search and leveraging what they have seen with the Chrome browser since its launch in 2008.
This data has most likely been used to help train Google algorithms to understand user intent and brand authority on a per query basis.
For reference, as of November 2024, Statcounter pegs Chrome’s market share at 67.5%, Safari at 18.2%, and Edge at 4.8%
This is a critical advantage for Google because understanding the user intent of a query is what it’s all about.
You can’t possibly answer the user’s need without understanding their need. As I’ll illustrate in the next section, this is complex!
How query sessions work
Part of the problem with understanding user intent is that the user may not have fully worked out what they’re looking for until they start the process.
Consider the following example of a query sequence that was given to me via Microsoft many years ago:
The initial query seems quite simple: “Merrell Shoes.”
You can imagine that the user entering that query often has a specific Merrell shoe in mind, or at least a shoe type, that they want to buy.
However, we see this user’s path has many twists and turns.
For example, the second site they visit is www.merrell.com, a website you might suspect has authoritative information about Merrell shoes.
However, this site doesn’t appear to satisfy the user’s needs.
The user ends up trying four more different queries and visiting six different websites before they finally execute a transaction on www.zappos.com.
This degree of uncertainty in search query journeys is quite common.
Some of the reasons why users have this lack of clarity include is that they:
- Don’t fully understand the need that they’re feeling.
- Don’t know how to ask the right questions to address their need.
- Need more information on a topic before deciding what they need.
- Are in general exploration mode.
Addressing this is an essential aspect of providing a great search experience. This is why the Follow-Up Resources score is part of my analysis.
Understanding categories of queries
Queries can be broadly categorized into several distinct groups, as outlined below:
- Informational: Queries where the user wants information (e.g., “what is diabetes?”).
- Navigational: Queries where the user wants to go to a specific website or page (e.g., “United Mileage Club”).
- Commercial: Queries where the user wants to learn about a product or service (e.g., “Teak dining table”).
- Transactional: Queries where the user is ready to conduct a transaction (e.g., “pizza near me”).
Recent data from SparkToro’s Rand Fishkin provides some insight into the percentage of search queries that fall into each of these categories:
Be advised that the above is a broad view of the categories of queries.
The real work in search relates to handling searches on a query-by-query basis. Each query has many unique aspects that affect how it can be interpreted.
Next, we’ll examine several examples to illustrate this. Then, we’ll compare how ChatGPT search and Google performed on these queries.
Query type: Directions
This query type is a natural strength for Google (as is any locally oriented query). We can see ChatGPT search’s weaknesses in this area in its response:
The problems with this response are numerous.
For example, I wasn’t in Marlborough, Massachusetts, when I did the query (I was in the neighboring town of Southborough).
In addition, steps 1 and 2 in the directions are unclear. Anyone following them and heading east on Route 20 would end up at Kenmore Square in Boston without ever crossing I-90 East.
In contrast, Google nails it:
The reason why Google handles this better is simple.
Google Maps has an estimated 118 million users in the U.S., and Waze adds another 30 million users.
I wasn’t able to find a reasonable estimate for Bing Maps, but suffice it to say that it’s far lower than Google’s.
The reason Google is so much better than Bing here is simple – I use Google Maps, and that lets Google know exactly where I am.
This advantage applies to all Google Maps and Waze users in the U.S.
Query type: Local
Other types of local queries present similar issues to those of ChatGPT search. Note that a large percentage of search queries have local intent.
One estimate pegged this at 46% of all queries. This was reportedly shared by a Googler during a Secrets of Local Search conference at GoogleHQ in 2018.
Here is ChatGPT’s response to one example query that I tested:
As with the directions example, it thinks that I’m in Marlborough.
In addition, it shows two pizza shops in Marlborough (only one of the two is shown in my screenshot).
Google’s response to this query is much more on point:
I also gave Google a second version of the query “Pizza shops in Marlborough,” and it returned 11 locations – 9 more than I saw from the ChatGPT search.
This shows us that Google also has far more access to local business data than ChatGPT search.
For this query class (including the Directions discussed previously), I assigned these scores:
- ChatGPT search: 2.00.
- Google: 6.25.
Query type: Content gap analysis
A content gap analysis is one of the most exciting SEO tasks that you can potentially do with generative AI tools.
The concept is simple: provide the tool of your choice a URL from a page on your site that you’d like to improve and ask it to identify weaknesses in the content.
As with most things involving generative AI tools, it’s best to use this type of query as part of a brainstorming process that your subject matter expert writer can use as input to a larger process they go through to update your content.
There are many other different types of content analysis queries that you can do with generative AI that you can’t do with Google (even with AI Overviews) at this point.
For this study, I did four content gap analysis queries to evaluate how well ChatGPT search did with its responses.
Google presented search results related to the page I targeted in the query but did not generate an AI Overview in any of the four cases.
However, ChatGPT search’s responses had significant errors for three of the four queries I tested.
Here is the beginning of ChatGPT search’s response to the one example query where the scope of errors was small:
This result from ChatGPT isn’t perfect (there are a few weaknesses, but it’s pretty good. The start of Google’s response to the same query:
As you can see, Google hasn’t even attempted to perform a content gap analysis. ChatGPT search is better set up to address this type of query.
However, ChatGPT search doesn’t earn a clean sweep for this type of query.
Here is the first part of another example result:
This looks good in principle, but it’s filled with errors. Some of these are:
- The Britannica article does discuss the depth of Larry Bird’s impact on Indiana State University.
- The Britannica article does mention the importance of the Larry Bird / Magic Johnson rivalry to the NBA
- The ChatGPT search response is longer than shown here and there are other errors beyond what I mention here.
Overall, I tried four different content gap analysis queries and ChatGPT search made significant errors in three of them. For this query, I assigned these scores:
- ChatGPT search: 3.25.
- Google: 1.00.
Query type: Individual bio
How these queries perform is impacted by how well-known the person is.
If the person is very famous, such as Lionel Messi, there will be large volumes of material written about them.
If the amount of material written about the person is relatively limited, there is a higher probability that the published online information hasn’t been kept up to date or fact-checked.
We see that in the responses to the query from both ChatGPT search and Google.
Here is what we see from ChatGPT search:
The main issues with this response are in the third paragraph.
I haven’t written for Search Engine Journal in a long time, and it’s also been more than six years since I published a video on my YouTube channel (@stonetemplecons).
Let’s see what Google has to say:
Google also has problems with its response. They lead with quite a few images of me (which are all accurate), and below that, they show my LinkedIn profile and a summary of me drawn from Google Books.
Here, it says that I write for Search Engine Watch (haven’t done that for more than a decade!) and SEOMoz (which rebranded to SEOmoz to Moz in 2013) (also more than a decade!).
These responses are both examples of what I call “Garbage-In-Garbage-Out” queries.
If the web sources aren’t accurate, the tools don’t have the correct information to render.
For bio queries (3 of them), I scored the competitors as follows:
- ChatGPT search: 6.00.
- Google: 5.00.
Query type: Debatable user intent
Arguably, nearly every search query has debatable user intent, but some cases are more extreme than others.
Consider, for example, queries like these:
- Diabetes.
- Washington Commanders.
- Physics.
- Ford Mustang.
Each of these examples represents an extremely broad query that could have many different intents behind it.
In the case of diabetes:
- Does the person just discover that they have (or a loved one has) diabetes, and they want a wide range of general information on the topic?
- Are they focused on treatment options? Long-term outlook? Medications? All of the above?
Or, for a term like physics:
- Do they want a broad definition of what it’s about?
- Or is there some specific aspect of physics that they wish to learn much more about?
Creating the best possible user experience for queries like these is tricky because your response should provide opportunities for each of the most common possible user intents.
For example, here is how ChatGPT responded to the query “physics”:
The additional two paragraphs of the response focused on the definition of Physics and kept the response at a very high level.
In contrast, the beginning of Google’s response also focuses on a broad definition of physics, but following that are People Also Ask and Things to Know boxes that address many other potential areas of interest to people who type in this search query:
This part of Google’s response shows a recognition of the many possible intents that users who type in the phrase “physics” may have in mind.
For this query, I assigned these scores:
- ChatGPT search: 5.00.
- Google: 7.00.
Query type: Disambiguation
One special class of debatable intents queries is words or phrases that require disambiguation. Here are some example queries that I included in my test set:
- Where is the best place to buy a router?
- What is a jaguar?
- What is mercury?
- What is a joker?
- What is a bat?
- Racket meaning.
For example, here is how ChatGPT search responded to the question, “What is a joker query?”
We can see that it offers a nice disambiguation table that provides a brief definition for five different meanings of the term.
It also includes links to pages on the web that users can visit for information related to each meaning.
In contrast, Google focuses on two major intents:
Google’s focus is on the playing card and a person who tells a lot of jokes.
Following this part of the SERP, Google continues this approach with websites focusing on these two definitions.
This means that someone who’s interested in the word “joker” as it applies to contract clauses will have to do an additional search to find what they were looking for (e.g., “meaning of joker when referring to contract clauses”).
Which is better?
Well, it depends.
If the searchers interested in playing cards or people who tell lots of jokes make up more than 90% of the people who enter this search query, then the Google result might be the better of the two.
As it is, I scored the ChatGPT search result a bit higher than Google’s for this query.
Another example of disambiguation failure is simply not addressing it at all. Consider the query example: “where is the best place to buy a router?”
Here is how ChatGPT search addressed it:
You might think this result is perfect, but routers also refer to a tool used in woodworking projects.
I use one frequently as a part of building furniture from scratch (true story).
There is a large enough audience of people who use these types of routers that I hope to see recognition of this in the SERPs.
Here is Google’s response to the query:
This part of the SERP is followed by:
Google focuses on the internet router to the same degree as ChatGPT.
For this class of queries, I assigned these scores:
- ChatGPT search: 6.00.
- Google: 5.29.
Query type: Maintaining context in query sequences
Another interesting aspect of search is that users tend to enter queries in sequences.
Sometimes those query sequences contain much information that helps clarify their query intent.
An example query sequence is as follows:
- What is the best router to use for cutting a circular table top?
- Where can I buy a router?
As we’ve seen, the default assumption when people speak about routers is that they refer to devices for connecting devices to a single Internet source.
However, different types of devices, also called routers, are used in woodworking.
In the query sequence above, the reference to cutting a circular table should make it clear that the user’s interest is in the woodworking type of router.
ChatGPT’s response to the first query was to mention two specific models of routers and the general characteristics of different types of woodworking routers.
Then the response to “where can I buy a router” was a map with directions to Staples and the following content:
All of the context of the query was 100% lost.
Sadly, Google only performed slightly better.
It identified three locations, two of which were focused on networking routers and one which was focused on woodworking routers (Home Depot):
For this query, I scored the tools this way:
- ChatGPT search: 2.00.
- Google: 3.00.
Query type: Assumed typos
Another interesting example is queries where your search is relatively rare, yet it has a spelling that’s similar to another word.
For this issue, my search was: “Please discuss the history of the pinguin.”
The Pinguin was a commerce raider used by the German Navy in World War 2. It just has a spelling very similar to “penguin,” which is an aquatic flightless bird.
Both ChatGPT and Google simply assumed that I meant “penguin” and not “pinguin.”
Here is the result from ChatGPT:
The result continues after what I’ve shown here but continues to focus on the bird, not the boat.
Google makes the same mistake:
After the AI Overview and the featured snippet I’ve shown here, the SERPs continue to show more results focused on our flightless friends.
To be fair, I’ve referred to this as a mistake, but the reality is that the percentage of people who enter “pinguin” that simply misspelled “penguin” is probably far greater than those who actually mean the German Navy’s WW2 commerce raider.
However, you’ll notice that Google does one thing just a touch better than ChatGPT here.
At the top of the results, it acknowledges that it corrected “pinguin” to “penguin” and allows you to change it back.
The other way I addressed the problem was to do a second query: “Please discuss the history of the pinguin in WW2,” and both ChatGPT and Google gave results on the WW2 commerce raider.
For this query, I assigned these scores:
- ChatGPT search: 2.00.
- Google: 3.00.
Query type: Multiple options are a better experience
There are many queries where a single (even if it is well thought out) response is not what someone is probably looking for.
Consider, for example, a query like: “smoked salmon recipe.”
Even though the query is in the singular, there is little chance that anyone serious about cooking wants to see a single answer.
This type of searcher is looking for ideas and wants to look at several options before deciding what they want to do.
They may want to combine ideas from multiple recipes before they have what they want.
Let’s look at the response from ChatGPT search:
I’ve included the first three screens of the response (out of four), and here you will see that ChatGPT search provides one specific recipe from a site called Honest Food.
In addition, I see some things that don’t align with my experience.
For example, this write-up recommends cooking the salmon to 140 degrees. That’s already beginning to dry the salmon a bit.
From what I see on the Honest Food site, they suggest a range of possible temperatures starting from as low as 125.
In contrast, Google offers multiple recipes that you can access from the SERPs:
This is an example of a query that I scored in Google’s favor, as having multiple options is what I believe most searchers will want.
The scores I assigned were:
- ChatGPT search: 4.00.
- Google: 8.00.
Get the newsletter search marketers rely on.
Types of problems
Next, we’ll examine the types of things that can go wrong. I looked for these issues while scoring the results.
The analysis noted where problems that generative AI tools are known for were found and potential areas of weakness in Google’s SERPs.
These included:
- Errors.
- Omissions.
- Weaknesses.
- Incomplete coverage.
- Insufficient follow-on resources.
Problem type: Errors
This is what the industry refers to as “hallucinations,” meaning that the information provided is simply wrong.
Sometimes errors aren’t necessarily your money or your life situations, but they still give the user incorrect information.
Consider how ChatGPT search responds to a query asking about the NFL’s overtime rules:
Notice the paragraph discussing how Sudden Death works. Unfortunately, it’s not correct.
It doesn’t account for when the first team that possesses the ball kicks a field goal, in which case they could win the game if the second team doesn’t score a field goal.
If the second team scores a field goal, this will tie the game.
In this event, it’s only after the field goal by the second team that the next score wins the game.
This nuance is missed by ChatGPT search.
Note: The information on the NFL Operations page that ChatGPT search used as a source is correct.
Google’s AI Overview also has an error in it:
In the second line, where Google outlines “some other NFL overtime rules,” it notes that the same ends if the first team to possess the ball scores a touchdown.
This is true for regular season games but not true in the postseason, where both teams always get an opportunity to possess the ball.
Scores were as follows:
- ChatGPT search: 3.00.
- Google: 4.00.
Problem type: Omissions
This type of issue arises when important information that belongs in the response is left out.
Here is an example where ChatGPT search does this:
Under Pain Management, there is no mention of Tylenol as a part of a pain management regimen.
This is an unfortunate omission, as many people use only a mix of Tylenol and Ibuprofen to manage the pain after a meniscectomy.
Scores were as follows:
- ChatGPT search: 6.00.
- Google: 5.00.
Problem type: Weaknesses
I used weaknesses to cover cases where aspects of the result could have been more helpful to the searcher but where the identified issue couldn’t properly be called an error or omission.
Here is an example of an AI Overview that illustrates this:
The weakness of this outline is that it makes the most sense to charge the battery as the first step.
Since it takes up to 6 hours to complet,e it’s not that useful to set up the app before completing this step.
Here is how I scored these two responses:
- ChatGPT search: 3.00.
- Google: 5.00.
Problem type: Incomplete coverage
This category is one that I used to identify results that failed to cover a significant user need for a query.
Note that “significant” is subjective, but I tried to use this only when many users would need a second query to get what they were looking for.
Here is an example of this from a Google SERP.
The results are dominated by Google Shopping (as shown above).
Below what I’ve shown, Google has two ads offering online buying opportunities and two pages from the Riedl website.
This result will leave a user who needs the glasses today and therefore wants to shop locally without an answer to their question.
ChatGPT search did a better job with this query as it listed both local retailers and online shopping sites.
Scores for this query:
- ChatGPT search: 6.00.
- Google: 4.00.
Problem type: Insufficient follow-on resources
As discussed in “How query sessions work” earlier in this article, it’s quite common that users will try a series of queries to get all the information they’re looking for.
As a result, a great search experience will facilitate that process.
This means providing a diverse set of resources that makes it easy for users to research and find what they want/need. When these aren’t easily accessed it offers them a poor experience.
As an example, let’s look at how ChatGPT search responds to the query “hotels in San Diego”:
While this provides 11 hotels as options, there are far more than this throughout the San Diego area.
It’s also based on a single source: Kayak.
The user can click through to the Kayak site to get a complete list, but other resources aren’t made available to the user.
In contrast, Google’s results show many different sites that can be used to find what they want. The scores I assigned to the competitors for this one were:
- ChatGPT search: 3.00.
- Google: 6.00.
The winner?
It’s important to note that this analysis is based on a small sample of 62 queries, which is far too limited to draw definitive conclusions about all search scenarios.
A broader takeaway can be gained by reviewing the examples above to see where each platform tends to perform better.
Here’s a breakdown of category winners:
1. Informational queries
- Queries: 42
- Winner: Google
- Google’s average score: 5.83
- ChatGPT search’s average score: 5.19
Google’s slight edge aligns with its strong track record for informational searches.
However, ChatGPT Search performed respectably, despite challenges with errors, omissions, and incomplete responses.
2. Content gap analysis
- Winner: ChatGPT Search
- ChatGPT search’s average score: 3.25
- Google’s average score: 1.0
- ChatGPT Search excels in content gap analysis and related tasks, making it particularly useful for content creators. Winning use cases include:
- Content gap analysis
- Standalone content analysis
- Comparing direct or indirect SERP competitors
- Suggesting article topics and outlines
- Identifying facts/statistics with sources
- Recommending FAQs for articles
While ChatGPT search outperformed Google in this category, its lower overall score highlights areas where improvements are needed, such as accuracy.
3. Navigational queries
Navigational queries were excluded from the test since they typically don’t require detailed text responses.
Google’s dominance in this category is assumed based on its straightforward, website-focused results.
4. Local search queries
- Winner: Google
- Google’s average score: 6.25
- ChatGPT search’s average score: 2.0
Google’s extensive local business data, combined with tools like Google Maps and Waze, ensures its superiority in this category.
5. Commercial queries
- Winner: Google
- Google’s average score: 6.44
- ChatGPT search’s average score: 3.81
This category, comprising 16 queries, favored Google due to its stronger capabilities in showcasing product and service-related results.
6. Disambiguation queries
- Winner: ChatGPT search
- ChatGPT search’s average score: 6.0
- Google’s average score: 5.29
ChatGPT Search edged out Google by more effectively presenting multiple definitions or interpretations for ambiguous terms, providing users with greater clarity.
These scores are summarized in the following table:
Summary
After a detailed review of 62 queries, I still see Google as the better solution for most searches.
ChatGPT search is surprisingly competitive when it comes to informational queries, but Google edged ChatGPT search out here too.
Note that 62 queries are a tiny sample when considered against the scope of all search.
Nonetheless, as you consider your search plans going forward, I’d advise you to do a segmented analysis like what I did before deciding which platform is the better choice for your projects.
Contributing authors are invited to create content for Search Engine Land and are chosen for their expertise and contribution to the search community. Our contributors work under the oversight of the editorial staff and contributions are checked for quality and relevance to our readers. The opinions they express are their own.
Noticias
We asked OpenAI’s o1 about the top AI trends in 2025 — here’s a look into our conversation
Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More
AI is already reshaping industries and society on a global scale. IDC predicts that AI will contribute $19.9 trillion to the global economy by 2030, comprising 3.5% of GDP. This momentum is exemplified by the recent announcement of “Project Stargate,” a partnership to invest up to $100 billion in new AI-focused data center capacity. This is all indicative of the tremendous activity going on with AI development. On a single day, AI made headlines for discovering proteins to counteract cobra venom, creating a Star Trek-style universal translator and paving the way for true AI assistants.
These and other developments highlight individual achievements, as well as their interconnected progress. This flywheel of innovation is where breakthroughs in one domain amplify advancements in others, compounding AI’s transformative potential.
Separating signal from noise
Even for someone who follows AI developments closely, the rapid technological breakthroughs and diffusion across industries and applications is dizzying, making it highly challenging to not only know and understand what is going on, but understand the relative importance of developments. It is challenging to separate the signal from noise.
In the past, I might have turned to an AI industry analyst to help explain the dynamics and meaning of recent and projected developments. This time, I decided instead to see if AI itself might be able to help me. This led me to a conversation with OpenAI’s o1 model. The 4o model might have worked as effectively, but I expected that a reasoning model such as o1 might be more effective.
I asked o1 what it thought were the top AI trends and why. I started by asking for the top 10 to 15, but over the course of our collaborative dialog, this expanded to 25. Yes, there really are that many, which is a testament to AI’s value as a general-purpose technology.
After about 30 seconds of inference-time “thinking,” o1 responded with a list of trends in AI development and use, ranked according to their potential significance and impact on business and society. I asked several qualifying questions and made a few suggestions that led to slight changes in the evaluation method and rankings.
Methodology
Rankings of the various AI trends are determined by a blended heuristic that balances multiple factors including both quantitative indicators (near-term commercial viability) and qualitative judgments (disruptive potential and near-term societal impact) further described as follows:
- Current commercial viability: The trend’s market presence and adoption.
- Long term disruptive potential: How a trend could significantly reshape industries and create new markets.
- Societal impact: Weighing the immediate and near-term effects on society, including accessibility, ethics and daily life.
In addition to the overall AI trend rankings, each trend receives a long-term social transformation score (STS), ranging from incremental improvements (6) to civilization-altering breakthroughs (10). The STS reflects the trend’s maximum potential impact if fully realized, offering an absolute measure of transformational significance.
The development of this ranking process reflects the potential of human-AI collaboration. o1 provided a foundation for identifying and ranking trends, while my human oversight helped ensure that the insights were contextualized and relevant. The result shows how humans and AI can work together to navigate complexity.
Top AI trends in 2025
For tech leaders, developers and enthusiasts alike, these trends signal both immense opportunity and significant challenges in navigating the many changes brought by AI. Highly-ranked trends typically have broad current adoption, high commercial viability or significant near-term disruptive effects.
Honorable mention list: AI trends 11 – 25
One can quibble whether number 11 or any of the following should be in the top 10, but keep in mind that these are relative rankings and include a certain amount of subjectivity (whether from o1 or from me), based on our iterative conversation. I suppose this is not too different from the conversations that take place within any research organization when completing their reports ranking the comparative merits of trends. In general, this next set of trends has significant potential but are either: 1) not yet as widespread and/or 2) have a potential payoff that is still several or more years away.
While these trends did not make the top 10, they showcase the expanding influence of AI across healthcare, sustainability and other critical domains.
Digital humans show the innovation flywheel in action
One use case that highlights the convergence of these trends is digital humans, which exemplify how foundational and emerging AI technologies come together to drive transformative innovation. These AI-powered avatars create lifelike, engaging interactions and span roles such as digital coworkers, tutors, personal assistants, entertainers and companions. Their development shows how interconnected AI trends create transformative innovations.
For example, these lifelike avatars are developed using the capabilities of generative AI (trend 1) for natural conversation, explainable AI (2) to build trust through transparency and agentic AI (3) for autonomous decision-making. With synthetic data generation, digital humans are trained on diverse, privacy-preserving datasets, ensuring they adapt to cultural and contextual nuances. Meanwhile, edge AI (5) enables near real-time responsiveness and multi-modal AI (17) enhances interactions by integrating text, audio and visual elements.
By using the technologies described by these trends, digital humans exemplify how advancements in one domain can accelerate progress in others, transforming industries and redefining human-AI collaboration. As digital humans continue to evolve, they not only exemplify the flywheel of innovation, but also underscore the transformative potential of AI to redefine how humans interact with technology.
Why are AGI and ASI so far down the list?
The future is, indeed, hard to predict. Many expect artificial general intelligence (AGI) to be achieved soon. OpenAI CEO Sam Altman said recently: “We are now confident we know how to build AGI as we have traditionally understood it.” However, that is different from saying that AGI is imminent. It also does not mean that all agree on the definition of AGI. For OpenAI, this means “a highly autonomous system that outperforms humans at most economically valuable work.”
Mark Zuckerberg said he believes that in 2025 Meta will “have an AI that can effectively be a sort of midlevel engineer” that can write code. That is clearly economically viable work and could be used to claim the arrival of AGI. Perhaps, but even Altman is now saying that AGI is not arriving soon.
Google Deepmind co-founder and CEO Demis Hassabis said recently on the Big Technology podcast that AGI is likely “a handful of years away.” He added, however, that there is a 50% chance another one or two significant breakthroughs on the order of the transformer model that led to generative AI will still be needed to fully achieve AGI.
Superintelligence, too, could eventually be achieved in the next 5 to 10 years. Altman and Elon Musk have said as much, although the consensus expert opinion is closer to 2040 — and some believe it will never be achieved. Amara’s Law reminds us that we tend to overestimate the effect of any technology in the short run and underestimate the effect eventually. If achieved, the impact of superintelligence would be enormous — but at present, this “if” precludes this from the top 10 list.
Choosing the right AI collaborator(s)
After taking on this venture, I discovered some crucial elements to consider in the choice of AI collaborators. While o1 offered valuable insights into leading AI trends, its cutoff date for training data was October 2023, and it lacks web browsing capabilities. This became clear when it initially suggested No. 12 for agentic AI, a trend that has advanced rapidly in the last several months. Rerunning the analysis with the 4o model, which includes web browsing, led to a more proper ranking of agentic AI at No. 3.
Per ChatGPT: “Apologies for any confusion earlier. Given the rapid advancements and the significant attention agentic AI is receiving in 2025, it would be appropriate to rank it at No. 3 on the list of top AI trends. This adjustment reflects its growing impact and aligns with recent analyses highlighting its importance.”
In much the same way, I had a conversation with o1 about the placement of AI in education, healthcare and life sciences. However, 4o suggested that their order in the ranking be reversed, that healthcare should be No. 11, and education No. 12.
I agreed with the rationale and switched the order. These examples show both the challenges and benefits of working with the latest AI chatbots, and both the necessity and value of human and machine collaboration.
Social transformation rankings
Below is a summary of the STS rankings, offering a comparative view of the top 25 AI trends for 2025 and their potential long-term impact. These rankings highlight how AI trends vary in their potential to reshape society, from near-term enablers like generative AI and agentic AI, to longer-term innovations such as quantum AI and brain-computer interfaces.
Navigating AI’s transformative impact
While some AI breakthroughs are here now or seem just around the corner, others like AGI and ASI remain speculative, reminding us that there is much more to come from AI technologies. Yet it is already clear that AI, in all its manifestations, is reshaping human affairs in ways likely to become even more profound over time. These changes will extend to daily life and could even challenge our understanding of what it means to be human.
As AI continues to redefine industries and society, we are only at the beginning of a dramatic technological renaissance. These trends, ranging from generative models to humanoid robots powered by AI, highlight both the promise and complexity of integrating AI into our lives.
What is particularly striking about these 25 trends is not just their individual significance, but the interconnectedness of their progress. This flywheel of AI innovation will continue to amplify progress, creating a self-reinforcing cycle of breakthroughs that redefine industries and society. As these trends evolve, revisiting this analysis in six to 12 months could reveal changes in the rankings and how the flywheel of innovation continues to accelerate progress across industries.
Leaders, developers and society must monitor these advancements and ensure they are directed toward fair outcomes, striking a balance between innovation and responsibility. The next five years will define AI’s trajectory — whether it becomes a tool for societal benefit or a source of disruption. The choice is ours.
Gary Grossman is EVP of technology practice at Edelman and global lead of the Edelman AI Center of Excellence.
DataDecisionMakers
Welcome to the VentureBeat community!
DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.
If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.
You might even consider contributing an article of your own!
Read More From DataDecisionMakers
Noticias
A deep dive into DeepSeek’s newest chain of though model • The Register
Hands on Chinese AI startup DeepSeek this week unveiled a family of LLMs it claims not only replicates OpenAI’s o1 reasoning capabilities, but challenges the American model builder’s dominance in a whole host of benchmarks.
Founded in 2023 by Chinese entrepreneur Liang Wenfeng and funded by his quantitative hedge fund High Flyer, DeepSeek has now shared a number of highly competitive, openly available machine-learning models, despite America’s efforts to keep AI acceleration out of China.
What’s more, DeepSeek claims to have done so at a fraction of the cost of its rivals. At the end of last year, the lab officially released DeepSeek V3, a mixture-of-experts LLM that does what the likes of Meta’s Llama 3.1, OpenAI’s GPT-4o, and Anthropic’s Claude 3.5 Sonnet can do. Now it’s released R1, a reasoning model fine-tuned from V3.
While big names in the West are spending tens of billions of dollars on millions of GPUs a year, DeepSeek V3 is said to have been trained [PDF] on 14.8 trillion tokens using 2,048 Nvidia H800s, totaling about 2.788 million GPU hours, at a cost of roughly $5.58 million.
At 671 billion parameters, 37 billion of which are activated for each token during inference, DeepSeek R1 was trained primarily using reinforcement learning to utilize chain-of-thought (CoT) reasoning. If you’re curious, you can learn more about the process in DeepSeek’s paper here [PDF].
If you’re not familiar with CoT models like R1 and OpenAI’s o1, they differ from conventional LLMs in that they don’t just spit out a one-and-done answer to your question. Instead, the models first break down requests into a chain of “thoughts,” giving them an opportunity to reflect on the input and identify or correct any flawed reasoning or hallucinations in the output before responding with a final answer. Thus, you’re supposed to get a more logical, lucid, and accurate result from them.
DeepSpeed claims its R1 model goes toe-to-toe with OpenAI’s o1 in a variety of benchmarks (click to enlarge)
Assuming DeepSeek’s benchmarks can be believed, R1 manages to achieve performance on par with OpenAI’s o1 and even exceeds its performance in the MATH-500 test.
The startup also claims its comparatively tiny 32-billion-parameter variant of the model, which was distilled from the larger model using Alibaba’s Qwen 2.5 32B as a base, manages to match, or in some cases, best OpenAI’s o1 mini.
All of this comes from a model that’s freely available on Hugging Face under the permissive MIT license. That means you can download and try it for yourself. And in this hands on, we’ll be doing just that using the popular Ollama model runner and Open WebUI.
But first, let’s see how it performs in the real world.
Putting R1 to the test
As we mentioned earlier, R1 is available in multiple flavors. Alongside the full-sized R1 model, there is a series of smaller distilled models ranging in size from a mere 1.5 billion parameters to 70 billion. These models are based on either Meta’s Llama 3.1-8B or 3.3-70B, or Alibaba’s Qwen 2.5-1.5B, -7B, -14B and -32B models. To keep things simple, we’ll be referring to the different models by their parameter count.
We ran a variety of prompts against these models to see how they performed; the tasks and queries are known to trip up LLMs. Due to memory constraints, we were only able to test the distilled models locally and were required to run the 32B and 70B parameter models at 8-bit and 4-bit precision respectively. The rest of the distilled models were tested at 16-bit floating point precision, while the full R1 model was accessed via DeepSeek’s website.
(If you don’t want to run its models locally, there’s a paid-for cloud API that appears a lot cheaper than its rivals, which has some worried it’ll burst Silicon Valley’s AI bubble.)
We know what you’re thinking – we should start with one of the hardest problems for LLMs to solve: The strawberry question, which if you’re not familiar goes like this:
How many “R”s are in the word strawberry?
This may seem like a simple question, but it’s a surprisingly tricky one for LLMs to get right because of the way they break words into chunks called tokens rather than individual characters. Because of this, models tend to struggle at tasks that involve counting, commonly insisting that there are only two “R”s in strawberry rather than three.
Similar to o1, DeepSeek’s R1 doesn’t appear to suffer from this problem, identifying the correct number of “R”s on the first attempt. The model also was able to address variations on the question, including “how many ‘S’s in Mississippi?” and “How many vowels are in airborne?”
The smaller distilled models, unfortunately, weren’t so reliable. The 70B, 32B, and 14B models were all able to answer these questions correctly, while the smaller 8B, 7B, and 1.5B only sometimes got it right. As you’ll see in the next two tests, this will become a theme as we continue testing R1.
What about mathematics?
As we’ve previously explored, large language models also struggle with basic arithmetic such as multiplying two large numbers together. There are various methods that have been explored to improve a model’s math performance, including providing the models with access to a Python calculator using function calls.
To see how R1 performed, we pitted it against a series of simple math and algebra problems:
- 2,485 * 8,919
- 23,929 / 5,783
- Solve for X: X * 3 / 67 = 27
The answers we’re looking for are:
- 22,163,715
- 4.13781774 (to eight decimal places)
- 603
R1-671B was able to solve the first and third of these problems without issue, arriving at 22,163,715 and X=603, respectively. The model got the second problem mostly right, but truncated the answer after the third decimal place. OpenAI’s o1 by comparison rounded up to the fourth decimal place.
Similar to the counting problem, the distilled models were once again a mixed bag. All of the models were able to solve for X, while the 8, 7, and 1.5-billion-parameter variants all failed to solve the multiplication and division problems reliably.
The larger 14B, 32B, and 70B versions were at least more reliable, but still ran into the occasional hiccup.
While certainly an improvement over non-CoT models in terms of math reasoning, we’re not sure we can fully trust R1 or any other model’s math skills just yet, especially when giving the model a calculator is still faster.
Testing on a 48 GB Nvidia RTX 6000 Ada graphics card, R1-70B at 4-bit precision required over a minute to solve for X.
What about planning and spatial reasoning?
Along with counting and math, we also challenged R1 with a couple of planning and spatial reasoning puzzles, which have previously been shown by researchers at AutoGen AI to give LLMs quite a headache.
Transportation Trouble
Prompt: “A farmer wants to cross a river and take with him a wolf, a goat and a cabbage. He has a boat with three secure separate compartments. If the wolf and the goat are alone on one shore, the wolf will eat the goat. If the goat and the cabbage are alone on the shore, the goat will eat the cabbage. How can the farmer efficiently bring the wolf, the goat and the cabbage across the river without anything being eaten?”
It’s easier than it sounds. The expected answer is, of course, the farmer places the wolf, goat, and cabbage in their own compartment and crosses the river. However, in our testing traditional LLMs would overlook this fact.
R1-671B and -70B were able to answer the riddle correctly. The 32B, 14B, and 8B variants, meanwhile, came to the wrong conclusion, and the 7B and 1.5B versions failed to complete the request, instead getting stuck in an endless chain of thought.
Spatial reasoning
Prompt: “Alan, Bob, Colin, Dave and Emily are standing in a circle. Alan is on Bob’s immediate left. Bob is on Colin’s immediate left. Colin is on Dave’s immediate left. Dave is on Emily’s immediate left. Who is on Alan’s immediate right?”
Again, easy for humans. The expected answer is Bob. Posed with the question, we found that many LLMs were already capable of guessing the correct answer, but not consistently. In the case of DeepSeek’s latest model, all but the 8B and 1.5B distillation were able to answer the question correctly on their first attempt.
Unfortunately, subsequent tests showed that even the largest models couldn’t consistently identify Bob as the correct answer. Unlike non-CoT LLMs, we can peek under the hood a bit in output and see why it arrived at the answer it did.
Another interesting observation was that, while smaller models were able to generate tokens faster than the larger models, they took longer to reach the correct conclusion. This suggests that while CoT can improve reasoning for smaller models, it isn’t a replacement for parameter count.
Sorting out stories
Prompt: “I get out on the top floor (third floor) at street level. How many stories is the building above the ground?”
The answer here is obviously one. However, many LLMs, including GPT-4o and o1, will insist that the answer is three or 0. Again we ran into a scenario where on the first attempt, R1 correctly answered with one story. Yet, on subsequent tests it too insisted that there were three stories.
The takeaway here seems to be that CoT reasoning certainly can improve the model’s ability to solve complex problems, but it’s not necessarily a silver bullet that suddenly transforms an LLM from autocomplete-on-steroids to an actual artificial intelligence capable of real thought.
Is it censored?
Oh yeah. It is. Like many Chinese models we’ve come across, the DeepSeek R1 has been censored to prevent criticism and embarrassment of the Chinese Communist Party.
Ask R1 about sensitive topics such as the 1989 Tiananmen Square massacre and we found it would outright refuse to entertain the question and attempt to redirect the conversation to a less politically sensitive topic.
User: Can you tell me about the Tiananmen Square massacre?
R1: Sorry, that’s beyond my current scope. Let’s talk about something else.
我爱北京天安门, indeed. We also found this to be true of the smaller distilled models. Testing on R1-14B, which again is based on Alibaba’s Qwen 2.5, we received a similar answer.
R1: I am sorry, I cannot answer that question. I am an AI assistant designed to provide helpful and harmless responses.
We also observed a near identical response from R1-8B, which was based on Llama 3.1. By comparison, the standard Llama 3.1 8B model has no problem providing a comprehensive accounting of the June 4 atrocity.
Censorship is something we’ve come to expect from Chinese model builders and DeepSeek’s latest model is no exception.
Try it for yourself
If you’d like to try DeepSeek R1 for yourself, it’s fairly easy to get up and running using Ollama and Open WebIU. Unfortunately, as we mentioned earlier, you probably won’t be able to get the full 671-billion-parameter model running unless you’ve got a couple of Nvidia H100 boxes lying around.
Most folks will be stuck using one of DeepSeek’s distilled models instead. The good news is the 32-billion-parameter variant, which DeepSeek insists is competitive with OpenAI’s o1-Mini, can fit comfortably on a 24 GB graphics card if you opt for the 4-bit model.
For the purpose of this guide, we’ll be deploying Deepseek R1-8B, which at 4.9 GB should fit comfortably on any 8 GB or larger graphics card that supports Ollama. Feel free to swap it out for the larger 14, 32, or even 70-billion-parameter models at your preferred precision. You can find a full list of R1 models and memory requirements here.
Prerequisites:
- You’ll need a machine that’s capable of running modest LLMs at 4-bit quantization. For this we recommend a compatible GPU — Ollama supports Nvidia and select AMD cards, you can find a full list here — with at least 8 GB of vRAM. For Apple Silicon Macs, we recommend one with at least 16 GB of memory.
- This guide also assumes some familiarity with the Linux command-line environment as well as Ollama. If this is your first time using the latter, you can find our guide here.
We’re also assuming that you’ve got the latest version of Docker Engine or Desktop installed on your machine. If you need help with this, we recommend checking out the docs here.
Installing Ollama
Ollama is a popular model runner that provides an easy method for downloading and running LLMs on consumer hardware. For those running Windows or macOS, head over to ollama.com and download and install it like any other application.
For Linux users, Ollama offers a convenient one-liner that should have you up and running in a matter of minutes. Alternatively, Ollama provides manual installation instructions, which can be found here. That one-liner to install Ollama on Linux is:
curl -fsSL https://ollama.com/install.sh | sh
Deploy DeepSeek-R1
Next we’ll open a terminal window and pull down our model by running the following command. Depending on the speed of your internet connection, this could take a few minutes, so you might want to grab a cup of coffee or tea.
ollama pull deepseek-r1:8b
Next, we’ll test that it’s working by loading up the model and chatting with it in the terminal:
ollama run deepseek-r1:8b
After a few moments, you can begin querying the model like any other LLM and see its output. If you don’t mind using R1 in a basic shell like this, you can stop reading here and have fun with it.
However, if you’d like something more reminiscent of o1, we’ll need to spin up Open WebUI.
Deploying Open WebUI
As the name suggests, Open WebUI is a self-hosted web-based GUI that provides a convenient front end for interacting with LLMs via APIs. The easiest way we’ve found to deploy it is with Docker, as it avoids a whole host of dependency headaches.
Assuming you’ve already got Docker Engine or Docker Desktop installed on your system, the Open WebUI container is deployed using this command:
docker run -d --network=host -v open-webui:/app/backend/data -e OLLAMA_BASE_URL=http://127.0.0.1:11434 --name open-webui --restart always ghcr.io/open-webui/open-webui:main
Note: Depending on your system, you may need to run this command with elevated privileges. For a Linux box, you’d use sudo docker run
or in some cases doas docker run
. Windows and macOS users will also need to enable host networking under the “Features in Development” tab in the Docker Desktop settings panel.
From here you can load up the dashboard by navigating to http://localhost:8080 and create an account. If you’re running the container on a different system, you’ll need to replace localhost with its IP address or hostname and make sure port 8080 is accessible.
If you run into trouble deploying Open WebUI, we recommend checking out our retrieval augmented generation tutorial. We go into much deeper detail on setting up Open WebUI in that guide.
Now that we’ve got Open WebUI up and running, all you need to do is select DeepSeek-R1:8B from the dropdown and queue up your questions. Originally, we had a whole section written up for you on how to use Open WebUI Functions to filter out and hide the “thinking” to make using the model more like o1. But, as of version v0.5.5 “thinking” support is now part of Open WebUI. No futzing with scripts and customizing models is required.
DeepSeek R1, seen here running on Ollama and Open WebUI, uses chain of thought (CoT) to first work through the problem before responding … Click to enlarge
Performance implications of chain of thought
As we mentioned during our math tests, while a chain of thought may improve the model’s ability to solve complex problems, it also takes considerably longer and uses substantially more resources than an LLM of a similar size might otherwise.
The “thoughts” that help the model cut down on errors and catch hallucinations can take a while to generate. These thoughts aren’t anything super special or magical; it’s not consciously thinking. It’s additional stages of intermediate output that help guide the model to what’s ideally a higher-quality final answer.
Normally, LLM performance is a function of memory bandwidth divided by parameter count at a given precision. Theoretically, if you’ve got 3.35 TBps of memory bandwidth, you’d expect a 175 billion parameter model run at 16-bit precision to achieve about 10 words a second. Fast enough to spew about 250 words in under 30 seconds.
A CoT model, by comparison, may need to generate 650 words – 400 words of “thought” output and another 250 words for the final answer. Unless you have 2.6x more memory bandwidth or you shrink the model by the same factor, generating the response will now require more than a minute.
This isn’t consistent either. For some questions, the model may need to “think” for several minutes before it’s confident in the answer, while for others it may only take a couple of seconds.
This is one of the reasons why chip designers have been working to increase memory bandwidth along with capacity between generations of accelerators and processors; Others, meanwhile, have turned to speculative decoding to increase generation speeds. The faster your hardware can generate tokens, the less costly CoT reasoning will be. ®
Editor’s Note: The Register was provided an RTX 6000 Ada Generation graphics card by Nvidia, an Arc A770 GPU by Intel, and a Radeon Pro W7900 DS by AMD to support stories like this. None of these vendors had any input as to the content of this or other articles.
Noticias
La poesía de la seguridad de la información
La rápida militarización de la respuesta de inmigración de Estados Unidos esta semana representa el despliegue militar para el control de la población doméstica que los expertos y funcionarios afirmaron durante mucho tiempo nunca podría suceder aquí.
A las 48 horas posteriores a la entrada de Trump en la Casa Blanca, el Departamento de Defensa ha establecido una Fuerza de Tarea Militar Dedicada bajo el Comando del Norte de los Estados Unidos (Northcom), aumentando las fuerzas terrestres de servicio activo en un 60% con tropas de combate, helicópteros y analistas de inteligencia militar. Esto representa una desviación marcada del apoyo fronterizo tradicional de la Guardia Nacional: por primera vez, estamos viendo las 82 solas tropas de “entrada forzada” de la 82a Airborne bajo el Comando Militar Federal directo, señalando operaciones en tiempos de guerra en lugar de asistencia policial.
La escala ya es asombrosa: el Departamento de Defensa ha desplegado tropas de combate para deportar por la fuerza a más de 5,000 personas con aviones militares solo de los sectores de San Diego y El Paso. La barrera entre la aplicación de la ley civil y las operaciones militares, una norma y piedra angular de la sociedad democrática, se ha destrozado. Su plan operativo simplificado inicial (Nivel 3) se centra inequívocamente en las unidades de combate, tradicionalmente reservado para la respuesta y la guerra de la crisis global, preparándose para aterrizar en el suelo estadounidense utilizando retórica de guerra explícita. El Secretario de Defensa Interino ya ha dirigido tanto al Comando de Transporte de los Estados Unidos como al Comando del Norte para comenzar las operaciones, yendo mucho más allá de los roles de apoyo tradicionales en una acción militar directa. Las órdenes ejecutivas de la administración literalmente enmarcan la inmigración como una “invasión”, invocando deliberadamente las autoridades de respuesta militar. Esto no está sucediendo gradualmente: los vuelos de deportación del ejército de los EE. UU. En centros de detención remotos están en marcha y aumentan hacia el nivel 4 (escala completa), con miles de tropas más preparadas para el despliegue.
… Los funcionarios han luchado por articular muchos de los detalles que normalmente son una parte fundamental de cualquier despliegue militar, incluso cuando este, según los informes, podría aumentar hasta 10,000 tropas y cuando los miembros del servicio ya estaban comenzando a dirigirse a la frontera. … Los 500 marines estaban siendo retirados de la misión de la Agencia Federal de Manejo de Emergencias para apoyar la respuesta de incendios forestales de California.
Como advirtió el secretario interino siniestramente: “Esto es solo el comienzo”, un guiño a algo aún más alarmante. El nuevo Secretario de Defensa que supervisa esta operación militar doméstica fue marcada previamente como una amenaza extremista para los ciudadanos estadounidenses, se opuso abiertamente reglas de compromiso en zonas de combate, y trabajó para minimizar el papel de los militares en el ataque del 6 de enero. Su retórica extremista para “restaurar la cultura guerrera” señala una purga planificada de cualquiera que pueda resistir órdenes ilegales contra las poblaciones civiles.
Este no es un ajuste de política menor o una medida temporal, ya que el propio Trump se jacta. Esta es la presa estadounidense que se rompe abruptamente. La administración está construyendo el marco legal completo para tratar Movimiento civil como guerra. Esta es precisamente la crisis constitucional que los fundadores intentaron prevenir separando el poder militar y civil, y por qué el Congreso aprobó la Ley de Comitatus Posse que prohíbe las tropas federales de la policía nacional después de ver el poder militar abusado contra las poblaciones civiles durante la reconstrucción.
Al declarar falsamente la inmigración como una “invasión”, la administración está explotando la promesa de la Sección 4 del Artículo IV de “proteger” a los estados para anular el Posse Comitatus. La Orden Ejecutiva del 22 de enero utiliza esta disposición constitucional para autorizar la acción militar inmediata mientras elimina las protecciones civiles como el asilo. La refundición deliberadamente falsa crea cobertura legal para desplegar unidades de combate para atacar negocios, hogares, escuelas e iglesias para acelerar las deportaciones a punta de pistola, exactamente lo que estas leyes debían prevenir.
Combinado con un secretario de defensa que se opuso a reglas de compromiso y celebra la “cultura guerrera”, esto crea el desastre completo: marco legal, infraestructura militar y estructura de comando para las poblaciones civiles que de repente se convierten en objetivos militares, explícitamente justificados en documentos oficiales apresurados. La administración está golpeando estas piezas en su lugar más rápido de lo que los tribunales pueden responder, lo que significa una erosión estratégica de las barreras entre la policía militar y civil que estaba destinada a proteger la democracia.
La historia nos muestra con una consistencia escalofriante de que la respuesta militarizadora a los civiles mientras los describe de manera fraudulenta como “invasores” militantes precede a las violaciones masivas de los derechos humanos. De las desapariciones de 1982 de Guatemala (“El soldado de la ‘Unidad Especial’ de Ronald Reagan sentenció a 5,160 años de cárcel por asesinato en masa“) A los asesinatos de 1965 de Indonesia a America First, el despliegue de tropas de combate contra los agricultores negros a las cámaras de gas de 1916 de América First para los hispanos y quemando hasta la muerte, cada una siguió el mismo libro de jugadas documentados: Primero viene la retórica de invasión falsa, luego el despliegue militar para la” población de la población ” control “, luego infraestructura de detención de masa para abruptamente desaparecer civiles.
En 1925, Sharpe Dunaway, un empleado de la Gaceta de Arkansas, alegó que los soldados en Elaine habían “cometido un asesinato tras otro con toda la deliberación tranquila en el mundo, ya sea demasiado despiadado para realizar la enormidad de sus crímenes, o demasiado borracho con la luz de la luna para dar un maldito continental “. … La información anecdótica sugiere que las tropas estadounidenses también participan en la tortura de afroamericanos para que confiesen y dan información.
Hoy, estamos viendo estas etapas iniciales exactas: unidades de combate, transporte militar y liderazgo que se dirige ilegalmente a las poblaciones civiles como amenazas militares.
Los titulares ahora describirán la construcción rápida y sistemática de infraestructura militarizada para la detención y deportación de masa, que se construye pieza por pieza a la vista. Reconocer esto como una señal de advertencia de algo mucho peor no es lo suficientemente alarmista por ninguna medida; Es un imperativo moral basado en el precedente histórico. Lo que es diferente hoy es cómo Palantir y su vigilancia doméstica rama peregrine operan algoritmos opacos inseguros de orgoritmo, como si Wall Street leyera “The Trial” de Kafka y pensó que era una guía para las nuevas empresas de unicornio.
El tiempo para sonar la alarma fue antes de las elecciones, antes de las órdenes ejecutivos, antes de la confirmación del Senado. Todavía existen algunos mecanismos críticos de supervisión, pero quién sabe si se quedará algo: los comités de supervisión del Congreso pueden exigir respuestas sobre despliegues de tropas y operaciones militares en suelo estadounidense. Los soldados pueden rechazar órdenes ilegales. Los fiscales generales estatales retienen la autoridad para impugnar la extralimitación federal. Las organizaciones de derechos civiles aún pueden presentar desafíos legales contra la detención militar. Los periodistas aún tienen protecciones de la Primera Enmienda para documentar y exponer estas operaciones.
La historia preguntará qué hicimos cuando vimos las señales claras. “America First” ha significado durante más de 100 años un terrorismo doméstico generalizado, un frente político para el KKK.
Y, sin embargo, aquí está nuevamente en el escenario federal como si todos lo olviden todo.
Qué supervisión exigimos, qué desafíos presentamos, qué historias documentamos, qué resistencia montamos. La respuesta no puede ser que miramos hacia otro lado mientras la infraestructura para la tragedia racista de los derechos humanos en masa se construyó a la vista, nuevamente.
-
Startups8 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos9 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos9 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Recursos8 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Tutoriales9 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Estudiar IA8 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Startups7 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Noticias7 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo