Connect with us

Noticias

Comparé ChatGPT Search y Google, y Google debería estar preocupado

Published

on

Saluda a la búsqueda web ChatGPT.

Crédito: OpenAI


Durante décadas, cada vez que necesitabas saber algo, lo buscabas en Google. ¿A qué hora es el Super Bowl? ¿Cómo se arregla un grifo que gotea? ¿Cuál es la diferencia entre el iPhone 16 y el iPhone 15? ¿Cómo estará el tiempo mañana? ¿Quién es María Callas?

Además de su objetivo original de indexar la web, Google ha evolucionado para poder extraer información de ella y ofrecérsela sin que usted tenga que visitar un sitio web. Pruebe una búsqueda en Google hoy y, para algunas de las preguntas anteriores, verá la respuesta en la parte superior de los resultados; no necesitará ningún clic adicional.

Ahora, los modelos generativos de IA como ChatGPT prometen hacer ese trabajo de manera más rápida, más integral y más útil que lo que hace Google, incluso cuando Google ha agregado respuestas de IA a sus propias páginas como respuesta. Caso en cuestión: OpenAI acaba de lanzar la búsqueda web ChatGPT para suscriptores Plus, y los usuarios gratuitos recibirán la actualización pronto.

Entonces, ¿pronto todos usaremos ChatGPT en lugar de buscar en Google cuando necesitemos saber algo? Enfrenté al líder actual en búsqueda web con este recién llegado, comparándolos en una variedad de áreas clave para ver qué tipo de resultados obtendría, y si fuera Google, me preocuparía lo bueno que ya es su rival en inteligencia artificial. es.

Noticias, deportes, clima.

ChatGPT obtiene buenos resultados en resultados y partidos deportivos.
Crédito: hacker

A menudo utilizamos una búsqueda en la web para saber qué está sucediendo en el momento o en el futuro cercano, así que pregunté a ambos motores de búsqueda cuándo se llevaría a cabo el próximo partido de mi equipo de fútbol (y usé su apodo para hacerlo más difícil). La máxima puntuación en todos los ámbitos, ya que Google y ChatGPT me dieron la hora y la fecha correctas, e incluso me dijeron en qué canal de televisión se transmitirá.

¿Qué pasa con el clima? Nuevamente, bastante nivelado, con ambos motores de búsqueda arrojando el pronóstico de una semana, aunque las imágenes que utilizó Google fueron un poco más útiles. Puedes especificar diferentes ubicaciones y diferentes horas, y tanto Google como ChatGPT conocían mi ubicación actual (supongo que a través de mi dirección IP).

búsqueda de google

Google también puede ofrecer mucha información deportiva.
Crédito: hacker

Luego pregunté sobre el Juego del calamar 2 tráiler que cayó recientemente. La búsqueda de Google tiene la ventaja de una pestaña de Noticias, por supuesto, mientras que la búsqueda de ChatGPT aún está en sus primeras etapas, por lo que tuve que especificar “noticias” en mi consulta sobre esta última. ChatGPT me brindó información útil sobre la próxima temporada, pero Google fue mejor a la hora de mostrar titulares de noticias reales y encontrar el avance.

OpenAI dice que ha firmado asociaciones con ciertos proveedores de noticias, deportes y clima y, en términos generales, la búsqueda ChatGPT ya hace un buen trabajo aquí. Sin embargo, Google todavía tiene la ventaja: tiene sus ganchos más profundamente en la web, cubre una gama más amplia de fuentes y presenta más información en sus resultados.

Consejos y guías

Búsqueda web ChatGPT

ChatGPT le dirá con confianza cómo hacer algo.
Crédito: hacker

Luego probé los motores de búsqueda para obtener instrucciones para algunas tareas simples: restablecer un iPhone, hacer una tortilla y limpiar una ducha. Como era de esperar, Google fue mejor a la hora de mostrar enlaces web de buena calidad para la tarea, mientras que ChatGPT fue mejor a la hora de escribir los pasos en sí, con enlaces a las fuentes (hay un debate sobre cuál es mejor para los editores y escritores humanos que proporcionan el contenido, pero lo guardaremos para otro día).

Por lo que pude ver, las instrucciones de ChatGPT eran lo suficientemente confiables y todas provenían de sitios confiables. Mientras tanto, Google eligió bien sus enlaces y, para algunas solicitudes de búsqueda, también mostraba sus respuestas generales de IA. Para la pregunta sobre el iPhone, tanto Google como ChatGPT resumieron las instrucciones oficiales de Apple utilizando IA y vincularon a la página de Apple.

búsqueda de google

Google todavía prefiere enlaces a muchas guías y consejos.
Crédito: hacker

En esta etapa, Google gana cuando se trata de mostrar contenido adicional más allá de los enlaces web, incluidos videos de YouTube y publicaciones de redes sociales, aunque ChatGPT ocasionalmente también mostrará un enlace de YouTube, si lo considera necesario. En los casos en que ambas herramientas de búsqueda mostraban instrucciones generadas por IA, ChatGPT generalmente tenía las más detalladas y útiles, aunque a menudo no hay mucho que diferenciar entre ellas.

Por supuesto, sólo puedo raspar la superficie cuando se trata de este tipo de búsquedas, y los resultados (y su calidad) variarán dependiendo de lo que quieras hacer. La opción de búsqueda que prefieras puede depender de si deseas un enlace directo a un sitio web en el que puedas confiar para obtener consejos (para eso, Google sigue siendo tu mejor opción), o si deseas un resumen generado por IA de lo que debes hacer ( que es donde realmente sobresale ChatGPT).

Búsqueda web ChatGPT

ChatGPT tiene algunas capacidades de mapas y lugares.
Crédito: hacker

Como ya mencioné, Google tiene la ventaja en cuanto a qué tan profundo puede llegar en la web y cuántas herramientas adicionales puede utilizar. Si busca una cámara web específica o una máquina de café que desea comprar, por ejemplo, Google es mucho mejor al incluir una larga lista de opciones de compra (incluido contenido patrocinado) junto con sus resultados de búsqueda.

ChatGPT ofrece algunos enlaces de compra en sus respuestas, pero no hay tantos y se incluyen en el texto en lugar de mostrarse por separado. Tampoco tiene la pestaña Compras de Google, que le permite limitar las selecciones según el precio, buscar marcas y características específicas y consultar las opiniones de los usuarios.

búsqueda de google

La búsqueda de Google puede obtener ayuda de Google Maps.
Crédito: hacker

Encontrar un lugar adonde ir

Lo mismo ocurre con los lugares: ChatGPT puede intentarlo con búsquedas como “cafetería cercana” y me dio algunas respuestas decentes cuando le pregunté, pero no está al nivel de Google en este momento. Para bien o para mal, Google sabe mucho más sobre mí y eso puede ayudarme a la hora de reconocer el tipo de lugares que me gustan y dónde he estado antes.

La búsqueda de Google puede vincularse perfectamente a Google Maps, lo que ayuda a la hora de buscar reseñas u obtener direcciones a algún lugar. La búsqueda ChatGPT proporciona enlaces a sitios como TripAdvisor para obtener reseñas y, de hecho, abre Google Maps si desea direcciones a algún lugar. Si bien me impresionó la cantidad de información de mapas y compras a la que ChatGPT ya tiene acceso, seguiré usando Google para estas búsquedas en el futuro previsible.

La interfaz de búsqueda

Búsqueda web ChatGPT

Las respuestas de ChatGPT son limpias y claras.
Crédito: hacker

En general, Google se mantiene a la cabeza cuando se trata de encontrar información en la web, lo cual no es ninguna sorpresa: existe desde finales de los años 90 y ha tenido mucho tiempo para perfeccionar su oficio. Sin embargo, donde ChatGPT impresiona es en lo limpia y sencilla que es su interfaz, y cuando te acostumbras a los resultados de búsqueda de Google llenos de anuncios y trucos de SEO, es un cambio bastante refrescante.

Por supuesto, la búsqueda web ChatGPT apenas está comenzando. OpenAI puede darse el lujo de implementar una interfaz elegante y fácil de usar ahora y pensar en ganar dinero y publicar anuncios más adelante. Pero en términos de cómo se ve y funciona en este momento, me sorprendió gratamente lo bien que destila todo el ruido de la web, presentando respuestas sin ningún problema ni desorden.

búsqueda de google

Google puede tener dificultades con búsquedas y preguntas complejas.
Crédito: hacker

El veredicto final: ChatGPT es sorprendentemente bueno

Para búsquedas complejas y multifacéticas, ChatGPT puede superar a Google. Cuando pregunté “¿qué disco de REM tuvo la producción más problemática?” ChatGPT me dio la respuesta correcta (Fábulas de la Reconstrucción) y las razones, mientras que Google me envió a páginas que hablaban de manera más general sobre el peor registro REM. ChatGPT también facilita la realización de preguntas de seguimiento.

También me gusta la forma en que ChatGPT presenta sus fuentes: los enlaces están ahí si los necesita, pero se muestran sutilmente y ayudan a protegerse contra las alucinaciones (que, seamos honestos, siguen siendo un problema). Si bien no voy a dejar de buscar en Google en el corto plazo, definitivamente usaré ChatGPT regularmente para ciertos tipos de consultas, y no hay duda de que el robot de inteligencia artificial tiene el potencial de transformar la forma en que encontramos información en línea, un cambio que Google ya está haciendo. tratando de prepararse rápidamente con sus propias ofertas de IA.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Google lanza Gemini 2.5 Pro, empujando los límites del razonamiento de IA

Published

on

Gemini 2.5 Pro es el último modelo de IA multimodal a gran escala de Google Deepmind, diseñado con capacidades incorporadas de “pensamiento” para manejar tareas complejas. Como el primer lanzamiento de la serie Gemini 2.5, el modelo Pro lidera muchos puntos de referencia de la industria mediante márgenes significativos y demuestra fuertes capacidades de razonamiento y codificación.

A diferencia de las generaciones anteriores de IA que simplemente predijeron texto basado en patrones, Gemini 2.5 Pro está diseñado para analizar la información profundamente, sacar conclusiones lógicas, incorporar un contexto matizado y tomar decisiones informadas antes de responder. Esta evolución en las posiciones de diseño Gemini 2.5 Pro como un modelo de propósito general altamente avanzado que es adecuado para aplicaciones empresariales que exigen precisión y adaptabilidad.

En el núcleo de las características avanzadas de Gemini 2.5 Pro hay un cambio fundamental en su diseño arquitectónico, avanzando hacia lo que Google se refiere como un “modelo de pensamiento”. Esto indica una ruptura de los modelos de IA tradicionales centrados principalmente en la predicción y la clasificación hacia un sistema que se involucra en la deliberación y el razonamiento internos antes de generar una respuesta. Este enfoque intencional conduce a un rendimiento y una precisión significativamente mejorados, especialmente cuando se abordan tareas complejas que requieren más que un mero reconocimiento de patrones.

El rendimiento mejorado de Gemini Pro 2.5 no se debe únicamente al aumento de la potencia computacional o el tamaño del modelo. Más bien, surge de una combinación sofisticada de un modelo base subyacente muy mejorado, aprovechando los avances en la arquitectura de la red neuronal, los conjuntos de datos de entrenamiento extensos y las metodologías refinadas posteriores a la capacitación. Estas técnicas posteriores a la capacitación, que con frecuencia implican el aprendizaje de refuerzo, son cruciales para ajustar el comportamiento del modelo, asegurando una mayor calidad y resultados más relevantes. Esta evolución arquitectónica permite que el modelo realice análisis de información más exhaustivos, lleguen a conclusiones más precisas y lógicas, comprenda mejor e incorpore matices contextuales y, en última instancia, tome decisiones más informadas y confiables, capacidad que son esenciales para aplicaciones comerciales estratégicas.

Más allá del razonamiento abstracto, Gemini 2.5 Pro ofrece un conjunto de capacidades avanzadas que son directamente relevantes para las necesidades empresariales. Lo más destacado es su mejora significativa en el dominio de la codificación. Los ingenieros de Google informan que el rendimiento de la codificación experimentó un salto considerable de Gemini 2.0 a 2.5, con más mejoras en el horizonte. El modelo 2.5 Pro se destaca en la generación y el código de refinación, capaz de crear un software complejo, como una aplicación web interactiva funcional, desde un aviso de alto nivel. En una demostración, el modelo desarrolló un juego completo de “corredor interminable” en HTML/JS a partir de un mensaje de una sola línea, ilustrando su capacidad para administrar las tareas de codificación a nivel de proyecto de forma autónoma. Gemini 2.5 Pro también se destaca en una sólida transformación y edición de código, por lo que es valioso para tareas como refactorizar el código heredado o la traducción del código entre idiomas. En un punto de referencia de ingeniería de software estandarizado (verificado por el banco SWE), el modelo logró una puntuación alta (63.8%) utilizando una configuración de agente autónomo, lo que indica su fuerza para abordar los desafíos de codificación complejos de varios pasos. Para las empresas, esto significa que la IA puede funcionar no solo como un asistente de conversación sino también como una ayuda de codificación capaz o incluso un agente de software semiautónomo.

Como parte del ecosistema de Géminis más amplio, Google también ha introducido TXGEMMA, un conjunto de modelos abiertos dirigidos a desafíos especializados de la industria. TXGEMMA es una colección de modelos derivados de la Serie Ligera de Gemma (versiones de código abierto de Gemini Technology) y adaptado específicamente para el desarrollo terapéutico de fármacos y biotecnología. Estos modelos están capacitados para comprender y predecir las propiedades de posibles medicamentos y terapias génicas, lo que ayuda a los investigadores a identificar candidatos prometedores e incluso pronosticar resultados de ensayos clínicos.

En esencia, TXGEMMA toma las técnicas de modelado y razonamiento del lenguaje central de Géminis y las aplica al dominio farmacéutico, donde puede examinar la literatura biomédica, los datos químicos y los resultados del ensayo para ayudar en las decisiones de I + D. El modelo de TXGEMMA más grande (con 27 mil millones de parámetros) ha demostrado el rendimiento a la par o excediendo modelos especializados en muchas tareas de descubrimiento de fármacos, todo mientras se conserva las habilidades generales de razonamiento. Para los líderes empresariales en atención médica y ciencias de la vida, TXGEMMA muestra la adaptabilidad de la arquitectura de Géminis a dominios misioneros críticos: ilustra cómo la IA de vanguardia puede acelerar flujos de trabajo altamente específicos como el descubrimiento de fármacos que tradicionalmente llevan años e incurrir en costos masivos.

Gemini 2.5 Pro representa un paso adelante significativo en el diseño del modelo de IA, combinando la potencia bruta con capacidades de razonamiento refinado que abordan directamente las tareas complejas del mundo real. Su arquitectura, con multimodalidad nativa y una longitud de contexto sin precedentes, permite a las empresas traer una variedad más rica de datos para tener problemas, extrayendo ideas que los modelos anteriores podrían haberse perdido. El fuerte desempeño del modelo en los puntos de referencia de codificación y razonamiento brinda la confianza de que puede manejar aplicaciones exigentes, desde la automatización de partes de la ingeniería de software hasta dar sentido a las amplias bases de conocimiento corporativo. Con el soporte de Google para la integración empresarial a través de plataformas en la nube y la aparición de ramas específicas de dominio como TXGEMMA, el ecosistema Gemini 2.5 Pro está listo para proporcionar la inteligencia general y las habilidades especializadas que buscan las empresas modernas. Para las CXO que planea la estrategia de IA de su empresa, Gemini 2.5 Pro ofrece una vista previa de cómo se pueden implementar sistemas de IA de próxima generación para impulsar la innovación y la ventaja competitiva, todos centrados en un razonamiento más profundo, un contexto más amplio y resultados tangibles.

Continue Reading

Noticias

Gemini 2.5 Pro está aquí, y cambia el juego AI (nuevamente)

Published

on

Google ha presentado Gemini 2.5 Pro, llamándolo “Modelo de IA más inteligente” hasta la fecha. Este último modelo de lenguaje grande, desarrollado por el equipo de Google Deepmind, se describe como un “modelo de pensamiento” diseñado para abordar problemas complejos razonando a través de pasos internamente antes de responder. Los primeros puntos de referencia respaldan la confianza de Google: Gemini 2.5 Pro (un primer lanzamiento experimental de la serie 2.5) debutan en el número 1 en la tabla de clasificación Lmarena de asistentes de IA por un margen significativo, y lidera muchas pruebas estándar para la codificación, las matemáticas y las tareas científicas.

Las nuevas capacidades y características clave en Gemini 2.5 Pro incluyen:

  • Razonamiento de la cadena de pensamiento: A diferencia de los chatbots más sencillos, Gemini 2.5 Pro explícitamente “piensa” a través de un problema internamente. Esto lleva a respuestas más lógicas y precisas sobre consultas difíciles, desde rompecabezas lógicos difíciles hasta tareas de planificación complejas.
  • Rendimiento de última generación: Google informa que 2.5 Pro supera los últimos modelos de OpenAI y Anthrope en muchos puntos de referencia. Por ejemplo, estableció nuevos máximos en las pruebas de razonamiento difíciles como el último examen de la humanidad (puntuando 18.8% frente a 14% para el modelo de OpenAI y 8.9% para Anthrope’s), y lidera en varios desafíos de matemáticas y ciencias sin necesidad de trucos costosos como la votación en conjunto.
  • Habilidades de codificación avanzada: El modelo muestra un gran salto en la capacidad de codificación sobre su predecesor. Se destaca en la generación y edición del código para aplicaciones web e incluso scripts autónomos de “agente”. En el punto de referencia de codificación SWE-Bench, Gemini 2.5 Pro alcanzó una tasa de éxito del 63.8%, muy por delante de los resultados de OpenAi, aunque todavía un poco detrás del modelo especializado de “soneto” “soneto” de Anthrope (70.3%).
  • Comprensión multimodal: Al igual que los modelos Gemini anteriores, 2.5 Pro es multimodal nativo: puede aceptar y razonar sobre texto, imágenes, audio, incluso videos e entrada de código en una conversación. Esta versatilidad significa que podría describir una imagen, depurar un programa y analizar una hoja de cálculo, todo dentro de una sola sesión.
  • Ventana de contexto masivo: Quizás lo más impresionante, Gemini 2.5 Pro puede manejar hasta 1 millón de tokens de contexto (con una actualización de tokens de 2 millones en el horizonte). En términos prácticos, eso significa que puede ingerir cientos de páginas de textos o repositorios de código enteros a la vez sin perder el seguimiento de los detalles. Esta larga memoria supera enormemente lo que ofrecen la mayoría de los otros modelos de IA, permitiendo que Gemini mantenga una comprensión detallada de documentos o discusiones muy grandes.

Según Google, estos avances provienen de un modelo base significativamente mejorado combinado con técnicas mejoradas después de la capacitación. En particular, Google también retira la marca separada de “pensamiento flash” que utilizó para Gemini 2.0; Con 2.5, las capacidades de razonamiento ahora están incorporadas de forma predeterminada en todos los modelos futuros. Para los usuarios, eso significa que incluso las interacciones generales con Gemini se beneficiarán de este nivel más profundo de “pensar” debajo del capó.

Implicaciones para la automatización y diseño

Más allá del zumbido de los puntos de referencia y la competencia, la importancia real de Gemini 2.5 Pro puede estar en lo que permite para los usuarios finales e industrias. El fuerte desempeño del modelo en las tareas de codificación y razonamiento no se trata solo de resolver acertijos para alardear de los derechos: insinúa nuevas posibilidades para la automatización del lugar de trabajo, el desarrollo de software e incluso el diseño creativo.

Tome la codificación, por ejemplo. Con la capacidad de generar código de trabajo a partir de un mensaje simple, Gemini 2.5 Pro puede actuar como un multiplicador de proyecto para los desarrolladores. Un solo ingeniero podría potencialmente prototipos de una aplicación web o analizar una base de código completa con asistencia de IA que maneja gran parte del trabajo de gruñidos. En una demostración de Google, el modelo creó un videojuego básico desde cero dada solo una descripción de una oración. Esto sugiere un futuro en el que los no programadores describirán una idea y obtendrán una aplicación en ejecución en respuesta (“codificación de vibos”), bajando drásticamente la barrera para la creación de software.

Incluso para desarrolladores experimentados, tener una IA que pueda comprender y modificar repositorios de código grandes (gracias a ese contexto de 1 m) significa una depuración más rápida, revisiones de código y refactorización. Nos estamos moviendo hacia una era de programadores de pares de IA que pueden mantener el “Gran imagen” de un proyecto complejo en su cabeza, por lo que no tiene que recordarles el contexto con cada aviso.

Las habilidades de razonamiento avanzado de Gemini 2.5 también juegan en la automatización del trabajo de conocimiento. Los primeros usuarios han intentado alimentarse en largos contratos y pedirle al modelo que extraiga cláusulas clave o resume puntos, con resultados prometedores. Imagine automatizar partes de la revisión legal, la investigación de diligencia debida o el análisis financiero al dejar que la IA pase a través de cientos de páginas de documentos y retire lo que importa, tareas que actualmente comen innumerables horas humanas.

La habilidad multimodal de Gemini significa que incluso podría analizar una mezcla de textos, hojas de cálculo y diagramas juntos, dando un resumen coherente. Este tipo de IA podría convertirse en un asistente invaluable para profesionales en derecho, medicina, ingeniería o cualquier campo ahogamiento en datos y documentación.

Para los campos creativos y el diseño de productos, modelos como Gemini 2.5 Pro también abren posibilidades intrigantes. Pueden servir como socios de lluvia de ideas, por ejemplo, que generan conceptos de diseño o copia de marketing mientras razonan sobre los requisitos, o como prototipos rápidos que transforman una idea aproximada en un borrador tangible. El énfasis de Google en el comportamiento de la agente (la capacidad del modelo para usar herramientas y realizar planes de varios pasos de forma autónoma) sugerencias de que las versiones futuras podrían integrarse directamente con el software.

Uno podría imaginar una IA de diseño que no solo sugiere ideas, sino que también navega por el software de diseño o escribe código para implementar esas ideas, todas guiadas por instrucciones humanas de alto nivel. Tales capacidades difuminan la línea entre “Thinker” y “Doer” en el reino de AI, y Gemini 2.5 es un paso en esa dirección, una IA que puede conceptualizar soluciones y ejecutarlas en varios dominios.

Sin embargo, estos avances también plantean preguntas importantes. A medida que AI asume tareas más complejas, ¿cómo nos aseguramos de que comprenda los matices y los límites éticos (por ejemplo, al decidir qué cláusulas de contrato son sensibles o cómo equilibrar los aspectos creativos frente a los aspectos prácticos en el diseño)? Google y otros necesitarán construir barandillas robustas, y los usuarios necesitarán aprender nuevos conjuntos de habilidades, lo que solicita y supervisará la IA, a medida que estas herramientas se convierten en compañeros de trabajo.

No obstante, la trayectoria es clara: modelos como Gemini 2.5 Pro están empujando la IA más profundamente en roles que anteriormente requerían inteligencia humana y creatividad. Las implicaciones para la productividad y la innovación son enormes, y es probable que veamos efectos dominantes en cómo se construyen los productos y cómo se realiza el trabajo en muchas industrias.

Géminis 2.5 y el nuevo campo AI

Con Gemini 2.5 Pro, Google está apostando un reclamo a la vanguardia de la carrera de IA, y enviando un mensaje a sus rivales. Hace solo un par de años, la narración era que la IA de Google (piense en las primeras iteraciones de Bard) estaba rezagada detrás de Chatgpt de OpenAi y los movimientos agresivos de Microsoft. Ahora, al organizar el talento combinado de Google Research y DeepMind, la compañía ha entregado un modelo que puede competir legítimamente por el título del mejor asistente de IA en el planeta.

Esto es un buen augurio para el posicionamiento a largo plazo de Google. Los modelos de IA se consideran cada vez más como plataformas centrales (al igual que los sistemas operativos o los servicios en la nube), y tener un modelo de nivel superior le da a Google una mano fuerte para jugar en todo, desde ofertas de la nube empresarial (Google Cloud/Vertex AI) hasta servicios de consumo como búsqueda, aplicaciones de productividad y Android. A la larga, podemos esperar que la familia Gemini se integre en muchos productos de Google, potencialmente sobrealimentando el Asistente de Google, mejorando las aplicaciones de Google Workspace con características más inteligentes y mejorando la búsqueda con habilidades más conversacionales y conscientes del contexto.

El lanzamiento de Gemini 2.5 Pro también destaca cuán competitivo se ha vuelto el panorama de IA. Operai, antrópico y otros jugadores como Meta y Startups emergentes están iterando rápidamente en sus modelos. Cada salto de una empresa, ya sea una ventana de contexto más amplia, una nueva forma de integrar herramientas o una nueva técnica de seguridad, es respondida rápidamente por otros. El movimiento de Google para incrustar el razonamiento en todos sus modelos es estratégico, asegurando que no se quede atrás en la “inteligencia” de su IA. Mientras tanto, la estrategia de Anthrope de dar a los usuarios más control (como se ve con la profundidad de razonamiento ajustable de Claude 3.7) y los refinamientos continuos de OpenAI a GPT-4.X mantienen la presión sobre.

Para los usuarios finales y los desarrolladores, esta competencia es en gran medida positiva: significa mejores sistemas de IA que llegan más rápido y más opciones en el mercado. Estamos viendo un ecosistema de IA en el que ninguna empresa tiene el monopolio de la innovación, y esa dinámica empuja a cada uno a sobresalir, al igual que los primeros días de la computadora personal o las guerras de teléfonos inteligentes.

En este contexto, la versión de Gemini 2.5 Pro es más que una actualización de productos de Google: es una declaración de intención. Se indica que Google pretende no ser solo un seguidor rápido sino un líder en la nueva era de la IA. La compañía está aprovechando su infraestructura informática masiva (necesaria para entrenar modelos con más de 1 millones de contextos tokens) y vastas recursos de datos para superar los límites que pocos otros pueden. Al mismo tiempo, el enfoque de Google (implementando modelos experimentales para usuarios de confianza, integrando AI en su ecosistema cuidadosamente) muestra un deseo de equilibrar la ambición con la responsabilidad y la practicidad.

Como Koray Kavukcuoglu, CTO de Google Deepmind, lo expresó en el anuncio, el objetivo es hacer que la IA sea más útil y capaz al mejorarlo a un ritmo rápido.

Para los observadores de la industria, Gemini 2.5 Pro es un hito que marca qué tan lejos ha llegado la IA a principios de 2025, y un indicio de hacia dónde va. El bar de “estado del arte” sigue aumentando: hoy es razonamiento y destreza multimodal, mañana podría ser algo así como la resolución de problemas o la autonomía aún más general. El último modelo de Google muestra que la compañía no solo está en la carrera, sino que tiene la intención de dar forma a su resultado. Si Gemini 2.5 tiene algo que ver, la próxima generación de modelos de IA estará aún más integrada en nuestro trabajo y vidas, lo que nos lleva a volver a imaginar cómo usamos la inteligencia de la máquina.

Continue Reading

Noticias

Usé IA para planificar mis comidas durante una semana, esta es mi opinión honesta.

Published

on

Como escritor, siempre he sido reclino de AI. ¿Robará mi trabajo? ¿Terminará tomando el mundo como esos robots en esa película de Will Smith? Dejando de lado mis dramáticas preocupaciones, me encontré increíblemente intrigado cuando recientemente encontré varias publicaciones en X (anteriormente Twitter) por personas que usaban ChatGPT para crear listas de compras y planificar sus comidas durante una semana. Cualquier cosa que haga que esta tarea semanal sea más fácil es algo que pueda respaldar, o al menos probar.

Entonces, como experimento, en lugar de llenar mi carrito de compras con los sospechosos habituales, utilicé ChatGPT para crear un plan de comidas de cinco días y mi lista de compras. Esto es lo que siguió:

El proceso

Para que Chatgpt se encargue de esta tarea para mí, escribí el siguiente comando: “Cree una lista de comestibles y recetas (desayuno, almuerzo, cena y bocadillos) para los lunes a viernes. El presupuesto es de $ 75. No incluya tomates, guisantes u avena. Las recetas deben ser bastante saludables y densas en nutrientes. ¡Gracias!”

Traté de ser lo más específico posible sin hacer demasiado. También quería desafiar a ChatGPT financieramente lanzando un presupuesto modesto. Y me aseguré de mantenerlo lindo y amable con un poco de gratitud al final (me niego a ser Yo, robot‘d). Al recibir mis resultados, había un ingrediente que sabía que quería salir. “Eso es genial, pero no tofu”, escribí al chatbot.

“¡Lo tengo! Ajustaré el plan y eliminaré el tofu, reemplazándolo con otras opciones de proteínas”, respondió ChatGPT, antes de compartir una lista de comestibles y un plan de comidas actualizados.

Y así, tenía una lista completa de comestibles y comidas de lunes a viernes. Aunque ChatGPT hizo todo el trabajo, me sentí productivo de alguna manera. Algo sobre las comidas planeadas para la semana realmente se quita una carga. Tenía esperanzas.

Las comidas

Aquí está el plan de comidas Chatgpt diseñado para mí, a continuación. Para ahorrarle mucha redundancia, he notado algunos, pero no todas, de las instrucciones que Chatgpt me dio en cuanto a la preparación. (La mayoría de estas comidas son bastante fáciles de hacer sin mucha dirección externa).

Lunes

Desayuno: Huevos revueltos con espinacas
Almuerzo
: Ensalada de atún con aceite de oliva, pepinos y zanahorias
Cena: Pollo a la parrilla con batatas asadas y brócoli (Sazone el pollo con sal, pimienta y ajo en polvo, luego sea la parrilla o la sartén; las batatas de cubos y asanlos con aceite de oliva, sal y pimienta a 400 ° F durante 25 minutos; brócoli de vapor).
Bocadillo: Yogurt griego con bayas.

Martes

Desayuno: Yogurt griego con mantequilla de plátano y maní (Corte el plátano y agregue a un tazón de yogurt griego; rocíe con mantequilla de maní para proteínas agregadas).
Almuerzo: Vegetal salteado con pollo y arroz marrón (Corte el pollo y cocine en aceite de oliva hasta que se dore; Agregue verduras congeladas y saltee con salsa de soja; Servir con arroz integral).
Cena: Pechuga de pollo al horno con calabacín asado y batatas
Bocadillo:
Zanahorias con mantequilla de maní

Miércoles

Desayuno: Huevos revueltos con pimiento rojo y espinacas
Almuerzo:
Envoltura de pollo y verduras con pan de trigo integral (Corte el pollo a la parrilla y coloque en una envoltura con espinacas y pepino. Rocíe con aceite de oliva y enrolle.)
Cena:
Salteado de pollo con brócoli y arroz marrón
Bocadillo:
Yogurt griego con llovizna de miel

Jueves

Desayuno: Tostada de mantequilla de plátano y maní
Almuerzo:
Ensalada de atún en tostada de trigo entero (Mezcle el atún enlatado con pepino picado y aceite de oliva; extienda la mezcla sobre pan de trigo integral tostado).
Cena: Pollo horneado con verduras asadas
Bocadillo: Zanahorias con salsa de yogurt griega

Viernes

Desayuno: Veggie Scramble con huevos
Almuerzo:
Tazón de pollo y arroz (Cocine el pollo y córtelo; sirva con arroz integral y brócoli al vapor; rocíe con salsa de soja).
Cena:
Pollo salteado con verduras mixtas y batata
Bocadillo:
Yogurt griego con un puñado de bayas congeladas.

Al revisar las diversas comidas que se proporcionan Chatgpt, desearía que incluya “Hacerlo sabroso” en mi solicitud inicial. Tengo que admitir que mis papilas gustativas estaban bastante aburridas el miércoles. No tengo nada contra el pollo, pero ahora sufro un caso importante de fatiga avícola.

Pinterest

Danielle Harling

Las compras de comestibles

Chatgpt me dio esta lista para hacer mis comidas, junto con su precio para cada artículo:

Desglose del presupuesto:

  • Huevos: $ 2.50
  • Pechuga de pollo (1 lb): $ 6.00
  • TUMA CONDIVADO: $ 1.00
  • Frijoles negros (1 lata): $ 1.00
  • Yogurt griego (32 oz): $ 4.00
  • Espinacas (1 grupo): $ 1.50
  • Brócoli (1 cabeza): $ 2.00
  • Batatas (2): $ 3.00
  • Calabacín (2): $ 1.50
  • Pepino (1): $ 1.00
  • Zanahorias (1 lb): $ 1.50
  • Pimiento rojo (1): $ 1.00
  • Verduras mixtas congeladas: $ 2.00
  • Bananas (2): $ 1.00
  • Manzanas (2): $ 1.50
  • Bayas congeladas: $ 3.00
  • Pan de trigo integral: $ 2.00
  • Arroz marrón: $ 2.00
  • Pasta de trigo integral: $ 1.50
  • Queso cheddar: $ 2.50
  • Leche: $ 1.50
  • Mantequilla de maní: $ 2.00
  • Aceite de oliva, salsa de soja, sal, pimienta, ajo en polvo, cebolla en polvo: ~ $ 6.00

Total: ~ $ 74.50

También incluyó este mensaje agradable en buena medida: “Esto debería estar dentro de su presupuesto mientras mantiene las comidas saludables y equilibradas. ¡Disfruta!”

Primero: el presupuesto. Ya tenía aceite de oliva, salsa de soja y los condimentos disponibles, por lo que no necesitaba comprarlos. Afortunadamente, tenía todos esos ingredientes porque no hay forma de que cuestan solo $ 6 juntos. ¡El aceite de oliva solo es más que eso! (Me pregunté si ChatGPT estaba calculando ese precio según la cantidad que usaría.

Compré más de una sola libra de pollo, no seguro si se trataba de un error de chatgpt, pero dada la cantidad de comidas que llamaban al pollo, me quedé con mi paquete habitual, que está más cerca de una libra y media. Para hacer mis compras, utilicé Instacart, que tiende a ser más caro que ir en persona, pero obtuve dentro de aproximadamente $ 10 de ese presupuesto de $ 75. ¡No está mal, chatgpt!

(Notaré que estaba cocinando para mí, pero con la cantidad de artículos comprados, habría habido mucha comida para uno, tal vez incluso otras dos personas).

Ahora, aquí es donde las cosas se ponen raras. Después de comprar los comestibles, comparé las comidas con la lista de comestibles, y algo importante se destacó. Varios de los artículos enumerados en la lista de compras no se usaron en las comidas. Sé que ChatGPT es plenamente consciente del costo de los comestibles, así que por qué me haría comprar cinco artículos (¡sí, cinco!) Que no necesitaba está más allá de mí. En caso de que se lo pregunte, esos cinco artículos eran una lata de frijoles negros, pasta de trigo integral, queso, manzanas y leche. Sinceramente, todavía estoy rascándome la cabeza sobre este.

plan de comidas chatgptPinterest

Danielle Harling

Dejando a un lado la lista de compras, estaba emocionado de probar algunas recetas nuevas (y saludables). Y me complace decir que encontré algunos favoritos nuevos gracias a este pequeño experimento. Entre mis recetas favoritas estaban el yogur griego con plátanos y mantequilla de maní (también agregué una llovizna de miel) y salteado de verduras con pollo y arroz integral.

Pero, hubo casos en los que se sentía absolutamente como si las comidas fueran planificadas por un robot. Por ejemplo, una envoltura de sándwich hecha “usando pan de trigo integral” me pareció un poco extraño. ¿Cómo “enrollar” una rebanada de pan? Y las bayas frescas habrían sido una mejor compra que las bayas congeladas, dado que las estaba usando como una cobertura de yogurt.

El veredicto

El fiasco de la lista de comestibles me apagó, pero avanzé. Y tal vez debería haber presionado ese carrito de comestibles virtual muy, muy lejos porque, en última instancia, esta es una técnica sin la que puedo prescindir. Además de un puñado de favoritos, las comidas sugeridas eran decepcionantes. La conveniencia de todo simplemente no valió la pena para mí. Estoy seguro de que obtendría mejores resultados con un presupuesto más grande y solicitudes más específicas, pero prefiero trabajar con una persona humana real en un plan de comidas que se adapte a mí individualmente.

¡Ahora, por favor envíeme todas sus recetas favoritas de pollo y sin atún!

Marca de letras

Danielle Harling es una escritora independiente con sede en Atlanta con un amor por los espacios diseñados con colores, cócteles artesanales y compras en línea (generalmente para tacones de diseñador que rompen el presupuesto). Su trabajo anterior ha aparecido en Fodor’s, Forbes, Mydomaine, Architectural Digest y más.

Continue Reading

Trending