Noticias
El agente de operadores de Openai me ayudó a moverme, pero yo también tuve que ayudarlo
Published
2 meses agoon

Operai me dio una semana para probar su nuevo agente de IA, operador, un sistema que puede hacer tareas de forma independiente por Internet.
El operador es lo más parecido que he visto en la visión de la industria tecnológica de los agentes de IA, sistemas que pueden automatizar las partes aburridas de la vida, liberándonos para hacer las cosas que realmente amamos. Sin embargo, a juzgar por mi experiencia con el agente de Operai, los sistemas de IA verdaderamente “autónomos” todavía están fuera de alcance.
Operai capacitó un nuevo modelo para el operador de energía, que combina la comprensión visual de GPT-4O con las capacidades de razonamiento de O1.
Ese modelo parece funcionar bien para tareas básicas; Vi los botones de hacer clic en el operador, navegar los menús en los sitios web y completar formularios. La IA ocasionalmente tuvo éxito en tomar acciones de forma independiente, y funciona mucho más rápido que los agentes basados en la web que he visto de Anthrope y Google.
Pero durante mi juicio, me encontré ayudando al agente de Openai más de lo que me gustaría. Se sentía como si estuviera entrenando al operador a través de cada problema, mientras que quería sacar ciertas tareas de mi plato por completo.
Con demasiada frecuencia durante mi prueba, tuve que responder varias preguntas, otorgar permisos, completar información personal y ayudar al agente cuando se atascó.
En términos del automóvil, el operador es como conducir un automóvil con control de crucero, ocasionalmente quitando el pie de los pedales y dejando que el automóvil conduzca en sí mismo, pero está lejos de ser automático en todo el mundo.
De hecho, Openai dice que las pausas frecuentes del operador son por diseño.
El operador de alimentación de IA, al igual que los chatbots de IA que impulsan como el chatgpt de OpenAi, no puede trabajar de manera confiable de forma independiente por largos períodos de tiempo, y es propenso al mismo tipo de alucinante. Debido a eso, Operai no quiere darle al sistema demasiada potencia de toma de decisiones o información confidencial del usuario. Tal vez esa sea una opción segura de OpenAI, pero reduce la practicidad del operador.
Dicho esto, el primer agente de Openai es una prueba de concepto impresionante, e interfaz, para una IA que puede usar el extremo frontal de cualquier sitio web. Pero para crear sistemas de IA verdaderamente independientes, las compañías tecnológicas necesitarán construir modelos de IA más confiables que no requieran tanta dirección.
Un poco también ‘manos’
Mi prueba de operador coincidió con la semana en que estaba mudando apartamentos, por lo que tuve ayuda del agente de OpenAI para mover la logística.
Le pedí al operador que me ayudara a comprar un nuevo permiso de estacionamiento. El agente de Operai me dijo: “Claro”, luego abrió una ventana a su navegador en la pantalla de mi PC.
Luego, el operador realizó una búsqueda de un permiso de estacionamiento de San Francisco en el navegador, me llevó al sitio web correcto de la ciudad e incluso a la página correcta.
El operador aún le permite usar el resto de su computadora mientras funciona, algo que no se puede decir para el Proyecto Mariner de Google. Esto se debe a que el agente de OpenAI no está realmente trabajando en la computadora, sino en la nube en alguna parte.
Para mi permiso de estacionamiento, tuve que otorgar permiso al operador para comenzar diferentes procesos demasiadas veces. También se detuvo para pedirme que completara formularios con información personal, como mi nombre, número de teléfono y dirección de correo electrónico. A veces, el operador también se perdió, obligándome a tomar el control del navegador y volver a poner al agente en el camino.
En otra prueba, le pedí al operador que me hiciera una reserva en un restaurante griego. Para su crédito, el operador me encontró un buen lugar en mi área con precios razonables. Pero tuve que responder más de media docena de preguntas durante todo el flujo.

Si tiene que intervenir seis o más veces solo para reservar una reserva a través de un agente de IA, ¿en qué momento es más fácil hacerlo usted mismo? Esa es una pregunta que me hice mucho mientras probaba al operador.
Agente como plataforma
En algunas de mis pruebas, me encontré con sitios web que bloquearon al operador por cualquier razón. Por ejemplo, intenté reservar a un electricista usando TaskRabbit, pero el agente de OpenAi me dijo que se encontró con un error y pregunté si podría usar un servicio alternativo. Expedia, Reddit y YouTube también impidieron que el agente de IA accediera a sus plataformas.
Sin embargo, otros servicios están adoptando al operador con los brazos abiertos. Instacart, Uber y eBay colaboraron con OpenAI para el lanzamiento del operador, lo que permite al agente navegar en sus sitios web en nombre de los humanos.
Estas empresas se están preparando para un futuro en el que un agente de IA facilita un subconjunto de interacciones del usuario.
“Los clientes están utilizando Instacart a través de una variedad de diferentes puntos de entrada”, dijo Daniel Danker, director de productos de Instacart, en una entrevista con TechCrunch. “Vemos al operador como, potencialmente, otro de esos puntos de entrada”.
Dejar que el agente de Openi use el sitio web de Instacart en nombre de una persona parece que separaría a Instacart de sus clientes. Sin embargo, Danker dice que Instacart quiere conocer a los clientes donde sea que estén.
“Realmente somos optimistas sobre nuestra creencia, similar a OpenAI, que los sistemas de agente tendrán un gran impacto en cómo los consumidores interactúan con las propiedades digitales”, dijo el director de IA de eBay, Nitzan Mekel-Bobrov, en una entrevista con TechCrunch.
Incluso si los agentes de IA aumentan en la popularidad, Mekel-Bobrov dice que espera que los usuarios siempre vengan al sitio web de Ebay, señalando que “los destinos en línea no van a ninguna parte”.
Problemas de confianza
Tuve algunos problemas de confianza al operador después de que alucinó varias veces, y casi me costó varios cientos de dólares.
Por ejemplo, le pedí al agente que me encontrara un estacionamiento cerca de mi nuevo apartamento. Terminó sugiriendo dos garajes que dijo que tomarían solo unos minutos caminar.

Además de estar fuera de mi rango de precios, los garajes estaban realmente lejos de mi apartamento. Uno estaba a 20 minutos a pie, y el otro estaba a 30 minutos a pie. Resulta que el operador había puesto en la dirección incorrecta.
Esta es exactamente la razón por la cual Operai no le da a su agente su número de tarjeta de crédito, contraseñas o acceso al correo electrónico. Si Operai no me dejara intervenir aquí, el operador habría desperdiciado cientos de dólares en un lugar de estacionamiento que no necesitaba.
Las alucinaciones como esta son un obstáculo clave para agentes autónomos realmente útiles, que pueden quitar las tareas molestas de su plato. Nadie confiará en los agentes si son propensos a cometer errores básicos, especialmente errores con consecuencias del mundo real.
Con el operador, OpenAi parece haber creado algunas herramientas impresionantes para permitir que AI Systems navegue por la web. Pero estas herramientas no equivalerán mucho hasta que la IA de la base sea hacer lo que los usuarios le pidan que haga. Hasta entonces, los humanos estarán atrapados ayudando a agentes, no al revés. Y eso derrota el punto.
You may like
Noticias
Google lanza Gemini 2.5 Pro, empujando los límites del razonamiento de IA
Published
10 minutos agoon
27 marzo, 2025
Géminis 2.5
Gemini 2.5 Pro es el último modelo de IA multimodal a gran escala de Google Deepmind, diseñado con capacidades incorporadas de “pensamiento” para manejar tareas complejas. Como el primer lanzamiento de la serie Gemini 2.5, el modelo Pro lidera muchos puntos de referencia de la industria mediante márgenes significativos y demuestra fuertes capacidades de razonamiento y codificación.
A diferencia de las generaciones anteriores de IA que simplemente predijeron texto basado en patrones, Gemini 2.5 Pro está diseñado para analizar la información profundamente, sacar conclusiones lógicas, incorporar un contexto matizado y tomar decisiones informadas antes de responder. Esta evolución en las posiciones de diseño Gemini 2.5 Pro como un modelo de propósito general altamente avanzado que es adecuado para aplicaciones empresariales que exigen precisión y adaptabilidad.
En el núcleo de las características avanzadas de Gemini 2.5 Pro hay un cambio fundamental en su diseño arquitectónico, avanzando hacia lo que Google se refiere como un “modelo de pensamiento”. Esto indica una ruptura de los modelos de IA tradicionales centrados principalmente en la predicción y la clasificación hacia un sistema que se involucra en la deliberación y el razonamiento internos antes de generar una respuesta. Este enfoque intencional conduce a un rendimiento y una precisión significativamente mejorados, especialmente cuando se abordan tareas complejas que requieren más que un mero reconocimiento de patrones.
El rendimiento mejorado de Gemini Pro 2.5 no se debe únicamente al aumento de la potencia computacional o el tamaño del modelo. Más bien, surge de una combinación sofisticada de un modelo base subyacente muy mejorado, aprovechando los avances en la arquitectura de la red neuronal, los conjuntos de datos de entrenamiento extensos y las metodologías refinadas posteriores a la capacitación. Estas técnicas posteriores a la capacitación, que con frecuencia implican el aprendizaje de refuerzo, son cruciales para ajustar el comportamiento del modelo, asegurando una mayor calidad y resultados más relevantes. Esta evolución arquitectónica permite que el modelo realice análisis de información más exhaustivos, lleguen a conclusiones más precisas y lógicas, comprenda mejor e incorpore matices contextuales y, en última instancia, tome decisiones más informadas y confiables, capacidad que son esenciales para aplicaciones comerciales estratégicas.
Más allá del razonamiento abstracto, Gemini 2.5 Pro ofrece un conjunto de capacidades avanzadas que son directamente relevantes para las necesidades empresariales. Lo más destacado es su mejora significativa en el dominio de la codificación. Los ingenieros de Google informan que el rendimiento de la codificación experimentó un salto considerable de Gemini 2.0 a 2.5, con más mejoras en el horizonte. El modelo 2.5 Pro se destaca en la generación y el código de refinación, capaz de crear un software complejo, como una aplicación web interactiva funcional, desde un aviso de alto nivel. En una demostración, el modelo desarrolló un juego completo de “corredor interminable” en HTML/JS a partir de un mensaje de una sola línea, ilustrando su capacidad para administrar las tareas de codificación a nivel de proyecto de forma autónoma. Gemini 2.5 Pro también se destaca en una sólida transformación y edición de código, por lo que es valioso para tareas como refactorizar el código heredado o la traducción del código entre idiomas. En un punto de referencia de ingeniería de software estandarizado (verificado por el banco SWE), el modelo logró una puntuación alta (63.8%) utilizando una configuración de agente autónomo, lo que indica su fuerza para abordar los desafíos de codificación complejos de varios pasos. Para las empresas, esto significa que la IA puede funcionar no solo como un asistente de conversación sino también como una ayuda de codificación capaz o incluso un agente de software semiautónomo.
Géminis 2.5 Pro
Como parte del ecosistema de Géminis más amplio, Google también ha introducido TXGEMMA, un conjunto de modelos abiertos dirigidos a desafíos especializados de la industria. TXGEMMA es una colección de modelos derivados de la Serie Ligera de Gemma (versiones de código abierto de Gemini Technology) y adaptado específicamente para el desarrollo terapéutico de fármacos y biotecnología. Estos modelos están capacitados para comprender y predecir las propiedades de posibles medicamentos y terapias génicas, lo que ayuda a los investigadores a identificar candidatos prometedores e incluso pronosticar resultados de ensayos clínicos.
En esencia, TXGEMMA toma las técnicas de modelado y razonamiento del lenguaje central de Géminis y las aplica al dominio farmacéutico, donde puede examinar la literatura biomédica, los datos químicos y los resultados del ensayo para ayudar en las decisiones de I + D. El modelo de TXGEMMA más grande (con 27 mil millones de parámetros) ha demostrado el rendimiento a la par o excediendo modelos especializados en muchas tareas de descubrimiento de fármacos, todo mientras se conserva las habilidades generales de razonamiento. Para los líderes empresariales en atención médica y ciencias de la vida, TXGEMMA muestra la adaptabilidad de la arquitectura de Géminis a dominios misioneros críticos: ilustra cómo la IA de vanguardia puede acelerar flujos de trabajo altamente específicos como el descubrimiento de fármacos que tradicionalmente llevan años e incurrir en costos masivos.
Gemini 2.5 Pro representa un paso adelante significativo en el diseño del modelo de IA, combinando la potencia bruta con capacidades de razonamiento refinado que abordan directamente las tareas complejas del mundo real. Su arquitectura, con multimodalidad nativa y una longitud de contexto sin precedentes, permite a las empresas traer una variedad más rica de datos para tener problemas, extrayendo ideas que los modelos anteriores podrían haberse perdido. El fuerte desempeño del modelo en los puntos de referencia de codificación y razonamiento brinda la confianza de que puede manejar aplicaciones exigentes, desde la automatización de partes de la ingeniería de software hasta dar sentido a las amplias bases de conocimiento corporativo. Con el soporte de Google para la integración empresarial a través de plataformas en la nube y la aparición de ramas específicas de dominio como TXGEMMA, el ecosistema Gemini 2.5 Pro está listo para proporcionar la inteligencia general y las habilidades especializadas que buscan las empresas modernas. Para las CXO que planea la estrategia de IA de su empresa, Gemini 2.5 Pro ofrece una vista previa de cómo se pueden implementar sistemas de IA de próxima generación para impulsar la innovación y la ventaja competitiva, todos centrados en un razonamiento más profundo, un contexto más amplio y resultados tangibles.
Noticias
Gemini 2.5 Pro está aquí, y cambia el juego AI (nuevamente)
Published
6 horas agoon
26 marzo, 2025
Google ha presentado Gemini 2.5 Pro, llamándolo “Modelo de IA más inteligente” hasta la fecha. Este último modelo de lenguaje grande, desarrollado por el equipo de Google Deepmind, se describe como un “modelo de pensamiento” diseñado para abordar problemas complejos razonando a través de pasos internamente antes de responder. Los primeros puntos de referencia respaldan la confianza de Google: Gemini 2.5 Pro (un primer lanzamiento experimental de la serie 2.5) debutan en el número 1 en la tabla de clasificación Lmarena de asistentes de IA por un margen significativo, y lidera muchas pruebas estándar para la codificación, las matemáticas y las tareas científicas.
Las nuevas capacidades y características clave en Gemini 2.5 Pro incluyen:
- Razonamiento de la cadena de pensamiento: A diferencia de los chatbots más sencillos, Gemini 2.5 Pro explícitamente “piensa” a través de un problema internamente. Esto lleva a respuestas más lógicas y precisas sobre consultas difíciles, desde rompecabezas lógicos difíciles hasta tareas de planificación complejas.
- Rendimiento de última generación: Google informa que 2.5 Pro supera los últimos modelos de OpenAI y Anthrope en muchos puntos de referencia. Por ejemplo, estableció nuevos máximos en las pruebas de razonamiento difíciles como el último examen de la humanidad (puntuando 18.8% frente a 14% para el modelo de OpenAI y 8.9% para Anthrope’s), y lidera en varios desafíos de matemáticas y ciencias sin necesidad de trucos costosos como la votación en conjunto.
- Habilidades de codificación avanzada: El modelo muestra un gran salto en la capacidad de codificación sobre su predecesor. Se destaca en la generación y edición del código para aplicaciones web e incluso scripts autónomos de “agente”. En el punto de referencia de codificación SWE-Bench, Gemini 2.5 Pro alcanzó una tasa de éxito del 63.8%, muy por delante de los resultados de OpenAi, aunque todavía un poco detrás del modelo especializado de “soneto” “soneto” de Anthrope (70.3%).
- Comprensión multimodal: Al igual que los modelos Gemini anteriores, 2.5 Pro es multimodal nativo: puede aceptar y razonar sobre texto, imágenes, audio, incluso videos e entrada de código en una conversación. Esta versatilidad significa que podría describir una imagen, depurar un programa y analizar una hoja de cálculo, todo dentro de una sola sesión.
- Ventana de contexto masivo: Quizás lo más impresionante, Gemini 2.5 Pro puede manejar hasta 1 millón de tokens de contexto (con una actualización de tokens de 2 millones en el horizonte). En términos prácticos, eso significa que puede ingerir cientos de páginas de textos o repositorios de código enteros a la vez sin perder el seguimiento de los detalles. Esta larga memoria supera enormemente lo que ofrecen la mayoría de los otros modelos de IA, permitiendo que Gemini mantenga una comprensión detallada de documentos o discusiones muy grandes.
Según Google, estos avances provienen de un modelo base significativamente mejorado combinado con técnicas mejoradas después de la capacitación. En particular, Google también retira la marca separada de “pensamiento flash” que utilizó para Gemini 2.0; Con 2.5, las capacidades de razonamiento ahora están incorporadas de forma predeterminada en todos los modelos futuros. Para los usuarios, eso significa que incluso las interacciones generales con Gemini se beneficiarán de este nivel más profundo de “pensar” debajo del capó.
Implicaciones para la automatización y diseño
Más allá del zumbido de los puntos de referencia y la competencia, la importancia real de Gemini 2.5 Pro puede estar en lo que permite para los usuarios finales e industrias. El fuerte desempeño del modelo en las tareas de codificación y razonamiento no se trata solo de resolver acertijos para alardear de los derechos: insinúa nuevas posibilidades para la automatización del lugar de trabajo, el desarrollo de software e incluso el diseño creativo.
Tome la codificación, por ejemplo. Con la capacidad de generar código de trabajo a partir de un mensaje simple, Gemini 2.5 Pro puede actuar como un multiplicador de proyecto para los desarrolladores. Un solo ingeniero podría potencialmente prototipos de una aplicación web o analizar una base de código completa con asistencia de IA que maneja gran parte del trabajo de gruñidos. En una demostración de Google, el modelo creó un videojuego básico desde cero dada solo una descripción de una oración. Esto sugiere un futuro en el que los no programadores describirán una idea y obtendrán una aplicación en ejecución en respuesta (“codificación de vibos”), bajando drásticamente la barrera para la creación de software.
Incluso para desarrolladores experimentados, tener una IA que pueda comprender y modificar repositorios de código grandes (gracias a ese contexto de 1 m) significa una depuración más rápida, revisiones de código y refactorización. Nos estamos moviendo hacia una era de programadores de pares de IA que pueden mantener el “Gran imagen” de un proyecto complejo en su cabeza, por lo que no tiene que recordarles el contexto con cada aviso.
Las habilidades de razonamiento avanzado de Gemini 2.5 también juegan en la automatización del trabajo de conocimiento. Los primeros usuarios han intentado alimentarse en largos contratos y pedirle al modelo que extraiga cláusulas clave o resume puntos, con resultados prometedores. Imagine automatizar partes de la revisión legal, la investigación de diligencia debida o el análisis financiero al dejar que la IA pase a través de cientos de páginas de documentos y retire lo que importa, tareas que actualmente comen innumerables horas humanas.
La habilidad multimodal de Gemini significa que incluso podría analizar una mezcla de textos, hojas de cálculo y diagramas juntos, dando un resumen coherente. Este tipo de IA podría convertirse en un asistente invaluable para profesionales en derecho, medicina, ingeniería o cualquier campo ahogamiento en datos y documentación.
Para los campos creativos y el diseño de productos, modelos como Gemini 2.5 Pro también abren posibilidades intrigantes. Pueden servir como socios de lluvia de ideas, por ejemplo, que generan conceptos de diseño o copia de marketing mientras razonan sobre los requisitos, o como prototipos rápidos que transforman una idea aproximada en un borrador tangible. El énfasis de Google en el comportamiento de la agente (la capacidad del modelo para usar herramientas y realizar planes de varios pasos de forma autónoma) sugerencias de que las versiones futuras podrían integrarse directamente con el software.
Uno podría imaginar una IA de diseño que no solo sugiere ideas, sino que también navega por el software de diseño o escribe código para implementar esas ideas, todas guiadas por instrucciones humanas de alto nivel. Tales capacidades difuminan la línea entre “Thinker” y “Doer” en el reino de AI, y Gemini 2.5 es un paso en esa dirección, una IA que puede conceptualizar soluciones y ejecutarlas en varios dominios.
Sin embargo, estos avances también plantean preguntas importantes. A medida que AI asume tareas más complejas, ¿cómo nos aseguramos de que comprenda los matices y los límites éticos (por ejemplo, al decidir qué cláusulas de contrato son sensibles o cómo equilibrar los aspectos creativos frente a los aspectos prácticos en el diseño)? Google y otros necesitarán construir barandillas robustas, y los usuarios necesitarán aprender nuevos conjuntos de habilidades, lo que solicita y supervisará la IA, a medida que estas herramientas se convierten en compañeros de trabajo.
No obstante, la trayectoria es clara: modelos como Gemini 2.5 Pro están empujando la IA más profundamente en roles que anteriormente requerían inteligencia humana y creatividad. Las implicaciones para la productividad y la innovación son enormes, y es probable que veamos efectos dominantes en cómo se construyen los productos y cómo se realiza el trabajo en muchas industrias.
Géminis 2.5 y el nuevo campo AI
Con Gemini 2.5 Pro, Google está apostando un reclamo a la vanguardia de la carrera de IA, y enviando un mensaje a sus rivales. Hace solo un par de años, la narración era que la IA de Google (piense en las primeras iteraciones de Bard) estaba rezagada detrás de Chatgpt de OpenAi y los movimientos agresivos de Microsoft. Ahora, al organizar el talento combinado de Google Research y DeepMind, la compañía ha entregado un modelo que puede competir legítimamente por el título del mejor asistente de IA en el planeta.
Esto es un buen augurio para el posicionamiento a largo plazo de Google. Los modelos de IA se consideran cada vez más como plataformas centrales (al igual que los sistemas operativos o los servicios en la nube), y tener un modelo de nivel superior le da a Google una mano fuerte para jugar en todo, desde ofertas de la nube empresarial (Google Cloud/Vertex AI) hasta servicios de consumo como búsqueda, aplicaciones de productividad y Android. A la larga, podemos esperar que la familia Gemini se integre en muchos productos de Google, potencialmente sobrealimentando el Asistente de Google, mejorando las aplicaciones de Google Workspace con características más inteligentes y mejorando la búsqueda con habilidades más conversacionales y conscientes del contexto.
El lanzamiento de Gemini 2.5 Pro también destaca cuán competitivo se ha vuelto el panorama de IA. Operai, antrópico y otros jugadores como Meta y Startups emergentes están iterando rápidamente en sus modelos. Cada salto de una empresa, ya sea una ventana de contexto más amplia, una nueva forma de integrar herramientas o una nueva técnica de seguridad, es respondida rápidamente por otros. El movimiento de Google para incrustar el razonamiento en todos sus modelos es estratégico, asegurando que no se quede atrás en la “inteligencia” de su IA. Mientras tanto, la estrategia de Anthrope de dar a los usuarios más control (como se ve con la profundidad de razonamiento ajustable de Claude 3.7) y los refinamientos continuos de OpenAI a GPT-4.X mantienen la presión sobre.
Para los usuarios finales y los desarrolladores, esta competencia es en gran medida positiva: significa mejores sistemas de IA que llegan más rápido y más opciones en el mercado. Estamos viendo un ecosistema de IA en el que ninguna empresa tiene el monopolio de la innovación, y esa dinámica empuja a cada uno a sobresalir, al igual que los primeros días de la computadora personal o las guerras de teléfonos inteligentes.
En este contexto, la versión de Gemini 2.5 Pro es más que una actualización de productos de Google: es una declaración de intención. Se indica que Google pretende no ser solo un seguidor rápido sino un líder en la nueva era de la IA. La compañía está aprovechando su infraestructura informática masiva (necesaria para entrenar modelos con más de 1 millones de contextos tokens) y vastas recursos de datos para superar los límites que pocos otros pueden. Al mismo tiempo, el enfoque de Google (implementando modelos experimentales para usuarios de confianza, integrando AI en su ecosistema cuidadosamente) muestra un deseo de equilibrar la ambición con la responsabilidad y la practicidad.
Como Koray Kavukcuoglu, CTO de Google Deepmind, lo expresó en el anuncio, el objetivo es hacer que la IA sea más útil y capaz al mejorarlo a un ritmo rápido.
Para los observadores de la industria, Gemini 2.5 Pro es un hito que marca qué tan lejos ha llegado la IA a principios de 2025, y un indicio de hacia dónde va. El bar de “estado del arte” sigue aumentando: hoy es razonamiento y destreza multimodal, mañana podría ser algo así como la resolución de problemas o la autonomía aún más general. El último modelo de Google muestra que la compañía no solo está en la carrera, sino que tiene la intención de dar forma a su resultado. Si Gemini 2.5 tiene algo que ver, la próxima generación de modelos de IA estará aún más integrada en nuestro trabajo y vidas, lo que nos lleva a volver a imaginar cómo usamos la inteligencia de la máquina.
Noticias
Usé IA para planificar mis comidas durante una semana, esta es mi opinión honesta.
Published
7 horas agoon
26 marzo, 2025
Como escritor, siempre he sido reclino de AI. ¿Robará mi trabajo? ¿Terminará tomando el mundo como esos robots en esa película de Will Smith? Dejando de lado mis dramáticas preocupaciones, me encontré increíblemente intrigado cuando recientemente encontré varias publicaciones en X (anteriormente Twitter) por personas que usaban ChatGPT para crear listas de compras y planificar sus comidas durante una semana. Cualquier cosa que haga que esta tarea semanal sea más fácil es algo que pueda respaldar, o al menos probar.
Entonces, como experimento, en lugar de llenar mi carrito de compras con los sospechosos habituales, utilicé ChatGPT para crear un plan de comidas de cinco días y mi lista de compras. Esto es lo que siguió:
El proceso
Para que Chatgpt se encargue de esta tarea para mí, escribí el siguiente comando: “Cree una lista de comestibles y recetas (desayuno, almuerzo, cena y bocadillos) para los lunes a viernes. El presupuesto es de $ 75. No incluya tomates, guisantes u avena. Las recetas deben ser bastante saludables y densas en nutrientes. ¡Gracias!”
Traté de ser lo más específico posible sin hacer demasiado. También quería desafiar a ChatGPT financieramente lanzando un presupuesto modesto. Y me aseguré de mantenerlo lindo y amable con un poco de gratitud al final (me niego a ser Yo, robot‘d). Al recibir mis resultados, había un ingrediente que sabía que quería salir. “Eso es genial, pero no tofu”, escribí al chatbot.
“¡Lo tengo! Ajustaré el plan y eliminaré el tofu, reemplazándolo con otras opciones de proteínas”, respondió ChatGPT, antes de compartir una lista de comestibles y un plan de comidas actualizados.
Y así, tenía una lista completa de comestibles y comidas de lunes a viernes. Aunque ChatGPT hizo todo el trabajo, me sentí productivo de alguna manera. Algo sobre las comidas planeadas para la semana realmente se quita una carga. Tenía esperanzas.
Las comidas
Aquí está el plan de comidas Chatgpt diseñado para mí, a continuación. Para ahorrarle mucha redundancia, he notado algunos, pero no todas, de las instrucciones que Chatgpt me dio en cuanto a la preparación. (La mayoría de estas comidas son bastante fáciles de hacer sin mucha dirección externa).
Lunes
Desayuno: Huevos revueltos con espinacas
Almuerzo: Ensalada de atún con aceite de oliva, pepinos y zanahorias
Cena: Pollo a la parrilla con batatas asadas y brócoli (Sazone el pollo con sal, pimienta y ajo en polvo, luego sea la parrilla o la sartén; las batatas de cubos y asanlos con aceite de oliva, sal y pimienta a 400 ° F durante 25 minutos; brócoli de vapor).
Bocadillo: Yogurt griego con bayas.
Martes
Desayuno: Yogurt griego con mantequilla de plátano y maní (Corte el plátano y agregue a un tazón de yogurt griego; rocíe con mantequilla de maní para proteínas agregadas).
Almuerzo: Vegetal salteado con pollo y arroz marrón (Corte el pollo y cocine en aceite de oliva hasta que se dore; Agregue verduras congeladas y saltee con salsa de soja; Servir con arroz integral).
Cena: Pechuga de pollo al horno con calabacín asado y batatas
Bocadillo: Zanahorias con mantequilla de maní
Miércoles
Desayuno: Huevos revueltos con pimiento rojo y espinacas
Almuerzo: Envoltura de pollo y verduras con pan de trigo integral (Corte el pollo a la parrilla y coloque en una envoltura con espinacas y pepino. Rocíe con aceite de oliva y enrolle.)
Cena: Salteado de pollo con brócoli y arroz marrón
Bocadillo: Yogurt griego con llovizna de miel
Jueves
Desayuno: Tostada de mantequilla de plátano y maní
Almuerzo: Ensalada de atún en tostada de trigo entero (Mezcle el atún enlatado con pepino picado y aceite de oliva; extienda la mezcla sobre pan de trigo integral tostado).
Cena: Pollo horneado con verduras asadas
Bocadillo: Zanahorias con salsa de yogurt griega
Viernes
Desayuno: Veggie Scramble con huevos
Almuerzo: Tazón de pollo y arroz (Cocine el pollo y córtelo; sirva con arroz integral y brócoli al vapor; rocíe con salsa de soja).
Cena: Pollo salteado con verduras mixtas y batata
Bocadillo: Yogurt griego con un puñado de bayas congeladas.
Al revisar las diversas comidas que se proporcionan Chatgpt, desearía que incluya “Hacerlo sabroso” en mi solicitud inicial. Tengo que admitir que mis papilas gustativas estaban bastante aburridas el miércoles. No tengo nada contra el pollo, pero ahora sufro un caso importante de fatiga avícola.
Las compras de comestibles
Chatgpt me dio esta lista para hacer mis comidas, junto con su precio para cada artículo:
Desglose del presupuesto:
- Huevos: $ 2.50
- Pechuga de pollo (1 lb): $ 6.00
- TUMA CONDIVADO: $ 1.00
- Frijoles negros (1 lata): $ 1.00
- Yogurt griego (32 oz): $ 4.00
- Espinacas (1 grupo): $ 1.50
- Brócoli (1 cabeza): $ 2.00
- Batatas (2): $ 3.00
- Calabacín (2): $ 1.50
- Pepino (1): $ 1.00
- Zanahorias (1 lb): $ 1.50
- Pimiento rojo (1): $ 1.00
- Verduras mixtas congeladas: $ 2.00
- Bananas (2): $ 1.00
- Manzanas (2): $ 1.50
- Bayas congeladas: $ 3.00
- Pan de trigo integral: $ 2.00
- Arroz marrón: $ 2.00
- Pasta de trigo integral: $ 1.50
- Queso cheddar: $ 2.50
- Leche: $ 1.50
- Mantequilla de maní: $ 2.00
- Aceite de oliva, salsa de soja, sal, pimienta, ajo en polvo, cebolla en polvo: ~ $ 6.00
Total: ~ $ 74.50
También incluyó este mensaje agradable en buena medida: “Esto debería estar dentro de su presupuesto mientras mantiene las comidas saludables y equilibradas. ¡Disfruta!”
Primero: el presupuesto. Ya tenía aceite de oliva, salsa de soja y los condimentos disponibles, por lo que no necesitaba comprarlos. Afortunadamente, tenía todos esos ingredientes porque no hay forma de que cuestan solo $ 6 juntos. ¡El aceite de oliva solo es más que eso! (Me pregunté si ChatGPT estaba calculando ese precio según la cantidad que usaría.
Compré más de una sola libra de pollo, no seguro si se trataba de un error de chatgpt, pero dada la cantidad de comidas que llamaban al pollo, me quedé con mi paquete habitual, que está más cerca de una libra y media. Para hacer mis compras, utilicé Instacart, que tiende a ser más caro que ir en persona, pero obtuve dentro de aproximadamente $ 10 de ese presupuesto de $ 75. ¡No está mal, chatgpt!
(Notaré que estaba cocinando para mí, pero con la cantidad de artículos comprados, habría habido mucha comida para uno, tal vez incluso otras dos personas).
Ahora, aquí es donde las cosas se ponen raras. Después de comprar los comestibles, comparé las comidas con la lista de comestibles, y algo importante se destacó. Varios de los artículos enumerados en la lista de compras no se usaron en las comidas. Sé que ChatGPT es plenamente consciente del costo de los comestibles, así que por qué me haría comprar cinco artículos (¡sí, cinco!) Que no necesitaba está más allá de mí. En caso de que se lo pregunte, esos cinco artículos eran una lata de frijoles negros, pasta de trigo integral, queso, manzanas y leche. Sinceramente, todavía estoy rascándome la cabeza sobre este.

Dejando a un lado la lista de compras, estaba emocionado de probar algunas recetas nuevas (y saludables). Y me complace decir que encontré algunos favoritos nuevos gracias a este pequeño experimento. Entre mis recetas favoritas estaban el yogur griego con plátanos y mantequilla de maní (también agregué una llovizna de miel) y salteado de verduras con pollo y arroz integral.
Pero, hubo casos en los que se sentía absolutamente como si las comidas fueran planificadas por un robot. Por ejemplo, una envoltura de sándwich hecha “usando pan de trigo integral” me pareció un poco extraño. ¿Cómo “enrollar” una rebanada de pan? Y las bayas frescas habrían sido una mejor compra que las bayas congeladas, dado que las estaba usando como una cobertura de yogurt.
El veredicto
El fiasco de la lista de comestibles me apagó, pero avanzé. Y tal vez debería haber presionado ese carrito de comestibles virtual muy, muy lejos porque, en última instancia, esta es una técnica sin la que puedo prescindir. Además de un puñado de favoritos, las comidas sugeridas eran decepcionantes. La conveniencia de todo simplemente no valió la pena para mí. Estoy seguro de que obtendría mejores resultados con un presupuesto más grande y solicitudes más específicas, pero prefiero trabajar con una persona humana real en un plan de comidas que se adapte a mí individualmente.
¡Ahora, por favor envíeme todas sus recetas favoritas de pollo y sin atún!
Danielle Harling es una escritora independiente con sede en Atlanta con un amor por los espacios diseñados con colores, cócteles artesanales y compras en línea (generalmente para tacones de diseñador que rompen el presupuesto). Su trabajo anterior ha aparecido en Fodor’s, Forbes, Mydomaine, Architectural Digest y más.
Related posts






































































































































































































































Trending
-
Startups10 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos11 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Tutoriales11 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Startups9 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Recursos11 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Startups11 meses ago
Deepgram: Revolucionando el Reconocimiento de Voz con IA
-
Recursos10 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Noticias8 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo