Noticias
Gemini 2.0 Flash marca el inicio de una nueva era de IA multimodal en tiempo real
Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder en la industria. Más información
El lanzamiento de Gemini 2.0 Flash por parte de Google esta semana, que ofrece a los usuarios una forma de interactuar en vivo con videos de su entorno, ha preparado el escenario para lo que podría ser un cambio fundamental en la forma en que las empresas y los consumidores interactúan con la tecnología.
Este lanzamiento, junto con los anuncios de OpenAI, Microsoft y otros, es parte del salto transformador que se está produciendo en el área tecnológica llamada “IA multimodal”. La tecnología le permite tomar videos (o audio o imágenes) que ingresan a su computadora o teléfono y hacer preguntas al respecto.
También señala una intensificación de la carrera competitiva entre Google y sus principales rivales (OpenAI y Microsoft) por el dominio de las capacidades de IA. Pero lo más importante es que parece que está definiendo la próxima era de la informática interactiva y agente.
Este momento de la IA me parece un “momento iPhone”, y con esto me refiero a 2007-2008, cuando Apple lanzó un iPhone que, a través de una conexión a Internet y una elegante interfaz de usuario, transformó la vida cotidiana al ofrecer a las personas una potente ordenador en el bolsillo.
Si bien ChatGPT de OpenAI puede haber iniciado este último momento de IA con su poderoso chatbot con apariencia humana en noviembre de 2022, el lanzamiento de Google aquí a fines de 2024 parece una gran continuación de ese momento, en un momento en el que muchos observadores estaban preocupados. una posible desaceleración en las mejoras de la tecnología de IA.
Gemini 2.0 Flash: el catalizador de la revolución multimodal de la IA
Gemini 2.0 Flash de Google ofrece una funcionalidad innovadora que permite la interacción en tiempo real con vídeo capturado a través de un teléfono inteligente. A diferencia de demostraciones realizadas anteriormente (por ejemplo, el Proyecto Astra de Google en mayo), esta tecnología ahora está disponible para los usuarios cotidianos a través del AI Studio de Google.
Te animo a que lo pruebes tú mismo. Lo usé para ver e interactuar con mi entorno, que para mí esta mañana era mi cocina y mi comedor. Puede ver al instante cómo esto ofrece avances para la educación y otros casos de uso. Puedes ver por qué el creador de contenidos Jerrod Lew reaccionó en X ayer con asombro cuando usó Gemini 2.0 Realtime para editar un video en Adobe Premier Pro. “Esto es absolutamente una locura”, dijo, después de que Google lo guiara en cuestión de segundos sobre cómo agregar un efecto de desenfoque básico a pesar de que era un usuario novato.
Sam Witteveen, un destacado desarrollador de inteligencia artificial y cofundador de Red Dragon AI, recibió acceso temprano para probar Gemini 2.0 Flash, y destacó que la velocidad de Gemini Flash (es dos veces más rápida que el buque insignia de Google hasta ahora, Gemini 1.5 Pro) y Los precios “increíblemente baratos” lo convierten no solo en un escaparate para que los desarrolladores prueben nuevos productos, sino también en una herramienta práctica para las empresas que gestionan presupuestos de IA. (Para ser claros, Google aún no ha anunciado el precio de Gemini 2.0 Flash. Es una vista previa gratuita. Pero Witteveen basa sus suposiciones en el precedente establecido por la serie Gemini 1.5 de Google).
Para los desarrolladores, la Live API de estas funciones multimodales en vivo ofrece un potencial significativo, porque permiten una integración perfecta en las aplicaciones. Esa API también está disponible para su uso; Hay una aplicación de demostración disponible. Aquí está la publicación del blog de Google para desarrolladores.
El programador Simon Willison llamó a la API de streaming el siguiente nivel: “Esto parece sacado directamente de la ciencia ficción: poder tener una conversación de audio con un LLM capacitado sobre cosas que puede ‘ver’ a través de su cámara es una de esas ‘en las que vivimos’. los momentos del futuro”. Observó cómo se le pide a la API que habilite un modo de ejecución de código, que permite a los modelos escribir código Python, ejecutarlo y considerar el resultado como parte de su respuesta, todo parte de un futuro agente.
La tecnología es claramente un presagio de nuevos ecosistemas de aplicaciones y expectativas de los usuarios. Imagine poder analizar video en vivo durante una presentación, sugerir ediciones o solucionar problemas en tiempo real.
Sí, la tecnología es interesante para los consumidores, pero es importante que los usuarios y líderes empresariales también la comprendan. Las nuevas funciones son la base de una forma completamente nueva de trabajar e interactuar con la tecnología, lo que sugiere futuras ganancias de productividad y flujos de trabajo creativos.
El panorama competitivo: una carrera para definir el futuro
El Gemini 2.0 Flash de Google del miércoles llega en medio de una avalancha de lanzamientos tanto de Google como de sus principales competidores, que se apresuran a lanzar sus últimas tecnologías para finales de año. Todos prometen ofrecer capacidades multimodales listas para el consumidor: interacción de video en vivo, generación de imágenes y síntesis de voz, pero algunas de ellas no están completamente preparadas o ni siquiera completamente disponibles.
Una de las razones de la prisa es que algunas de estas empresas bonifican a sus empleados para que entreguen productos clave antes de fin de año. Otra es el derecho a presumir cuando lanzan nuevas funciones primero. Pueden conseguir una mayor tracción entre los usuarios si son los primeros, como lo demostró OpenAI en 2022, cuando su ChatGPT se convirtió en el producto de consumo de más rápido crecimiento de la historia. Aunque Google tenía una tecnología similar, no estaba preparado para un lanzamiento público y se quedó desprevenido. Desde entonces, los observadores han criticado duramente a Google por ser demasiado lento.
Esto es lo que otras empresas han anunciado en los últimos días, todas ellas contribuyendo a introducir esta nueva era de IA multimodal.
- Modo de voz avanzado de OpenAI con visión: Lanzado ayer pero aún en implementación, ofrece funciones como análisis de video en tiempo real y uso compartido de pantalla. Si bien son prometedores, los problemas de acceso temprano tienen un impacto inmediato limitado. Por ejemplo, todavía no pude acceder a él aunque soy suscriptor Plus.
- La visión del copiloto de Microsoft: La semana pasada, Microsoft lanzó una tecnología similar en versión preliminar, solo para un grupo selecto de sus usuarios Pro. Su diseño integrado en el navegador sugiere aplicaciones empresariales, pero carece del pulido y la accesibilidad de Gemini 2.0. Microsoft también lanzó un modelo Phi-4 rápido y potente.
- Haiku Claude 3.5 de Anthropic: Anthropic, hasta ahora en una acalorada carrera por el liderazgo del modelo de lenguaje grande (LLM) con OpenAI, no ha entregado nada tan innovador en el lado multimodal (. Acaba de lanzar 3.5 Haiku, notable por su eficiencia y velocidad. Pero su centrarse en la reducción de costos y tamaños de modelos más pequeños contrasta con las características innovadoras de la última versión de Google y la del modo de voz con visión de OpenAI.
Navegando desafíos y aprovechando oportunidades
Si bien estas tecnologías son revolucionarias, persisten desafíos:
- Accesibilidad y escalabilidad: OpenAI y Microsoft se han enfrentado a obstáculos en su implementación, y Google debe asegurarse de evitar obstáculos similares. Google hizo referencia a que su función de transmisión en vivo (Proyecto Astra) tiene un límite de memoria contextual de hasta diez minutos de memoria durante la sesión. Aunque es probable que esa cifra aumente con el tiempo.
- Privacidad y seguridad: Los sistemas de inteligencia artificial que analizan videos en tiempo real o datos personales necesitan salvaguardias sólidas para mantener la confianza. El modelo Flash Gemini 2.0 de Google tiene generación de imágenes nativas incorporada, acceso a API de terceros y puede acceder a la búsqueda de Google y ejecutar código. Todo eso es poderoso, pero puede ser peligrosamente fácil revelar accidentalmente información privada mientras se juega con estas cosas.
- Integración de ecosistemas: Mientras Microsoft aprovecha su suite empresarial y Google se ancla en Chrome, la pregunta sigue siendo: ¿Qué plataforma ofrece la experiencia más fluida para las empresas?
Sin embargo, todos estos obstáculos se ven superados por los beneficios potenciales de la tecnología, y no hay duda de que los desarrolladores y las empresas se apresurarán a adoptarla durante el próximo año.
Conclusión: Un nuevo amanecer, liderado por ahora por Google
Como comentamos el desarrollador Sam Witteveen y yo en nuestro podcast grabado el miércoles por la noche después del lanzamiento de Google, Gemini 2.0 Flash es un lanzamiento realmente impresionante: el momento en que la IA multimodal se ha vuelto real. Los avances de Google han marcado un nuevo punto de referencia, aunque es cierto que esta ventaja puede ser extremadamente fugaz. OpenAI y Microsoft le pisan los talones. Todavía estamos en las primeras etapas de esta revolución, al igual que en 2008, cuando a pesar del lanzamiento del iPhone, no estaba claro cómo responderían Google, Nokia y RIM. La historia demostró que Nokia y RIM no lo hicieron y murieron. Google respondió muy bien y le ha dado una oportunidad al iPhone.
Asimismo, está claro que Microsoft y OpenAI están muy en esta carrera con Google. Mientras tanto, Apple decidió asociarse en la tecnología y esta semana anunció una mayor integración con ChatGPT, pero ciertamente no está tratando de ganar directamente en esta nueva era de ofertas multimodales.
En nuestro podcast, Sam y yo también cubrimos la ventaja estratégica especial de Google en el área del navegador. Por ejemplo, su versión Project Mariner, una extensión de Chrome, le permite realizar tareas de navegación web en el mundo real con incluso más funcionalidad que las tecnologías competidoras ofrecidas por Anthropic (llamada Computer Use) y OmniParser de Microsoft (aún en investigación). Aunque es cierto que la función de Anthropic te brinda más acceso a los recursos locales de tu computadora. Todo esto le da a Google una ventaja en la carrera por impulsar las tecnologías de IA agentes también en 2005, incluso si Microsoft parece estar a la cabeza en el lado de la ejecución real de la entrega de soluciones agentes a las empresas. Los agentes de IA realizan tareas complejas de forma autónoma, con una mínima intervención humana; por ejemplo, pronto realizarán tareas de investigación avanzada y comprobaciones de bases de datos antes de realizar comercio electrónico, negociación de acciones o incluso compra de bienes raíces.
El enfoque de Google en hacer que estas capacidades de Gemini 2.0 sean accesibles tanto para los desarrolladores como para los consumidores es inteligente, porque garantiza que se dirige a la industria con un plan integral. Hasta ahora, Google ha tenido la reputación de no centrarse tan agresivamente en los desarrolladores como Microsoft.
La pregunta para los tomadores de decisiones no es si adoptar estas herramientas, sino qué tan rápido pueden integrarlas en los flujos de trabajo. Será fascinante ver a dónde nos lleva el próximo año. Asegúrese de escuchar nuestras conclusiones para usuarios empresariales en el siguiente vídeo:
Noticias
Implementación y evaluación de un modelo de enseñanza de pasantía quirúrgica optimizado utilizando ChatGPT | Educación Médica BMC
Los avances tecnológicos están haciendo avanzar significativamente la educación médica. Actualmente, el desarrollo del plan de estudios médico enfatiza la mejora de los métodos de enseñanza a través de la simulación médica, la discusión de la literatura y la investigación. Existe una creciente defensa de la integración de la inteligencia artificial y las pautas clínicas en la enseñanza para cultivar mejor el razonamiento clínico y las habilidades de pensamiento lógico de los estudiantes.
Múltiples estudios han demostrado los beneficios potenciales de ChatGPT en la educación médica. Los chatbots como ChatGPT pueden ser una herramienta poderosa para mejorar la alfabetización sanitaria, especialmente entre estudiantes y jóvenes estudiantes. [6]. En primer lugar, ChatGPT ofrece acceso rápido e inmediato a amplia información médica, lo que ayuda a los estudiantes de medicina novatos a analizar datos médicos complejos. [7]. En segundo lugar, al crear escenarios y estudios de casos, ChatGPT ayuda a los estudiantes a perfeccionar y mejorar sus habilidades de planificación de diagnóstico y tratamiento, mejorando así sus capacidades de razonamiento clínico y su preparación para situaciones clínicas del mundo real. [8]. En tercer lugar, ChatGPT puede respaldar las tareas académicas respondiendo preguntas y redactando resúmenes. Su capacidad para crear esquemas y revisiones de la literatura puede agilizar la investigación médica. Además, también facilita el resumen de publicaciones relevantes y destaca hallazgos importantes, lo que ayuda a los investigadores médicos a navegar por la gran cantidad de material disponible en línea. [9]. Finalmente, ChatGPT permite el aprendizaje personalizado para los estudiantes al actuar como tutor o asistente virtual, ayudándolos con las tareas y fomentando experiencias de aprendizaje interactivas. [10].
En este estudio, ChatGPT se utilizó en cuatro funciones clave en las fases de educación médica previa, en clase y posterior a la clase. Durante la fase de preparación previa a la clase, los estudiantes pudieron consultar ChatGPT sobre cualquier problema que encontraron, lo que facilitó una comprensión inicial de conceptos, terminología y casos médicos fundamentales. En un estudio, se pudo generar una serie de imágenes a partir de texto descriptivo utilizando un modelo de aprendizaje profundo basado en redes generativas adversarias. La herramienta se utiliza en el proceso narrativo visual para facilitar el aprendizaje mejorado por la tecnología y mejorar las habilidades de razonamiento lógico. [11]. Los modelos de aprendizaje profundo basados en redes generativas adversarias desempeñan un papel clave en la simulación de varios tipos de entornos de aprendizaje y ayudan a desarrollar habilidades prácticas en modelos de asistentes de enseñanza virtuales. Los resultados experimentales muestran que este modelo mejora el efecto de aprendizaje de los estudiantes y mejora su motivación y capacidad de aprendizaje. [12]. En el aula, se empleó ChatGPT para simular las interacciones con los pacientes, proporcionando una plataforma para que los estudiantes practiquen habilidades de diagnóstico y comunicación en un entorno seguro y controlado. En sus interacciones con ChatGPT, los estudiantes son libres de practicar habilidades de diagnóstico y comunicación sin los riesgos que podría representar un paciente real. Un diagnóstico falso o una falta de comunicación no tiene un impacto real en el paciente, lo que permite a los estudiantes aprender mediante prueba y error. ChatGPT está disponible y los estudiantes pueden practicar a su propio ritmo y necesidades de aprendizaje, sin depender de un tiempo y lugar específicos. Esta flexibilidad hace que el aprendizaje sea más eficiente y conveniente. ChatGPT puede simular una variedad de escenarios clínicos y características del paciente para brindar una experiencia interactiva diversa. Los estudiantes están expuestos a diferentes condiciones y antecedentes de pacientes, mejorando así su capacidad para afrontar situaciones complejas. Después de clase, los estudiantes pueden interactuar con ChatGPT individualmente o en grupos de estudio, discutiendo preguntas de práctica proporcionadas por la herramienta, abordando preguntas difíciles o desafiantes y explorando el material desde varias perspectivas. A lo largo del proceso interactivo, los estudiantes evaluaron continuamente su comprensión del material, identificaron sus debilidades y ajustaron sus estrategias de aprendizaje y áreas de enfoque de manera oportuna para enfocarse en áreas específicas para revisión y refuerzo, asegurando que se mantuvieran en el camino correcto. [13]. De manera similar, los instructores podrían utilizar ChatGPT para recopilar recursos didácticos y estudios de casos relevantes durante la fase de preparación de la lección. Al aprovechar ChatGPT, podrían mejorar la participación de los estudiantes en el aula y utilizar la herramienta después de clase para recopilar y analizar los comentarios de los estudiantes sobre el proceso de enseñanza. Además, los estudiantes podrían utilizar ChatGPT para resolver rápidamente cualquier confusión relacionada con el conocimiento profesional. Con la capacitación del modelo ChatGPT, los estudiantes de medicina y los médicos pueden mejorar su razonamiento clínico y sus habilidades de toma de decisiones, mejorando así el desempeño del análisis y diagnóstico de casos. Además, ChatGPT proporciona a los estudiantes de medicina una experiencia de aprendizaje personalizada y eficiente a través de conversaciones simuladas, tutorías inteligentes y preguntas y respuestas automatizadas, profundizando así la comprensión de los conocimientos médicos de los estudiantes. [14].
Los resultados de este estudio indican que las puntuaciones teóricas de los grupos de estudio fueron significativamente más altas que las de los grupos de control, lo que refleja mejores resultados de aprendizaje. No se observaron diferencias significativas en las puntuaciones entre los dos grupos de estudio ni entre los dos grupos de control. Esto sugiere que la aplicación de ChatGPT en los grupos de estudio resultó en una comprensión y dominio superiores del conocimiento teórico en comparación con los métodos de enseñanza tradicionales utilizados en los grupos de control.
Los resultados de satisfacción docente de este estudio indican que los estudiantes de los grupos de estudio que utilizaron ChatGPT informaron puntuaciones de satisfacción total significativamente más altas, así como mejores calificaciones en la organización del curso y los métodos de enseñanza, en comparación con los grupos de control. Las diferencias en la satisfacción con el contenido del curso y los instructores fueron relativamente menores, lo que sugiere que el uso de ChatGPT como ayuda didáctica, a través de su novedoso y atractivo formato interactivo de preguntas y respuestas, su fuerte interactividad y su enfoque estructurado, parece mejorar la participación de los estudiantes. y participación en el aprendizaje. Esto indica que ChatGPT puede fomentar eficazmente un mayor interés y promover resultados educativos. La diferencia más notable entre los métodos de enseñanza radica en la ejecución en el aula; La capacidad de ChatGPT para simular varios escenarios y realizar análisis de casos, combinada con el acceso a recursos didácticos adicionales, mejora significativamente las habilidades de aplicación clínica de los estudiantes de medicina.
La evaluación del estudio sobre el cumplimiento del aprendizaje abarcó cuatro aspectos. Los hallazgos indican que no hubo diferencias significativas entre los grupos en cuanto al establecimiento de planes de aprendizaje. Sin embargo, para los otros tres aspectos (preparación autónoma previa a la clase y revisión posterior a la clase, participación en la enseñanza en el aula y búsqueda de retroalimentación y asistencia), los grupos de estudio exhibieron calificaciones significativamente más altas en comparación con los grupos de control. En muchos estudios y análisis estadísticos, una “puntuación más alta” suele considerarse un resultado positivo, lo que significa que el grupo de estudio obtuvo mejores resultados en algo. Los indicadores de evaluación de este estudio son todos positivos y se puede considerar que una “puntuación más alta” indica un mejor desempeño del grupo de investigación, lo que es un resultado positivo. Esto sugiere que la incorporación de ChatGPT como ayuda didáctica mejora el cumplimiento del aprendizaje de los estudiantes al promover el aprendizaje activo, fomentar el aprendizaje basado en la investigación y mejorar su interés y capacidad para el aprendizaje autónomo.
Si bien las mejoras en el cumplimiento son evidentes, la profundización continua de la comprensión antes, durante y después de la clase también contribuye a mejorar el pensamiento lógico y las habilidades analíticas. En particular, el estudio encontró una tasa relativamente baja de preguntas y solicitudes de ayuda de los estudiantes, durante y después de clase. Las diferencias observadas entre los grupos de estudio y control pueden atribuirse a la capacidad de ChatGPT para ayudar a los estudiantes a superar la timidez y no juzgar los errores. La herramienta de inteligencia artificial ayuda a los estudiantes a superar las dudas, permitiéndoles hacer preguntas de forma libre y repetida sin temor a ser juzgados o interacciones negativas. Al generar materiales de aprendizaje basados en el estado de aprendizaje y las necesidades de cada estudiante, ChatGPT les permite adoptar un enfoque más autónomo del aprendizaje y tener una experiencia educativa adaptada a sus preferencias. Estas interacciones facilitan la aclaración oportuna, una comprensión más profunda y el dominio del material.
ChatGPT también puede adaptar planes y materiales de aprendizaje individualizados para cada estudiante para adaptarse a los diferentes estilos y habilidades de aprendizaje dentro del aula. Este enfoque personalizado fomenta un circuito de retroalimentación positiva, mejorando las capacidades de aprendizaje de los estudiantes.
La aplicación de ChatGPT en la educación médica sigue siendo un tema de considerable debate. Si bien ChatGPT ofrece funcionalidades innovadoras y ventajas potenciales, también plantea varias preocupaciones éticas y prácticas, el potencial de uso indebido, particularmente en los ámbitos de la educación y el mundo académico. [15]. Como chatbot, ChatGPT carece de la capacidad de pensar críticamente como un ser humano, lo que limita su capacidad para interpretar y analizar información médica más allá de sus algoritmos programados. No posee el juicio ni el discernimiento necesarios para los aspectos éticos o legales de la práctica médica y puede plantear riesgos relacionados con violaciones de datos y privacidad. [16, 17].
El auge de herramientas de inteligencia artificial como ChatGPT ha llevado a la deshonestidad académica, con informes de estudiantes que utilizan la tecnología para hacer trampa en sus trabajos de ensayo. [18]. Algunas investigaciones sugieren que ChatGPT puede no ser un recurso confiable para problemas complejos que requieren habilidades y conocimientos avanzados. [19]. Además, los académicos han estado preocupados por la confiabilidad de ChatGPT como fuente creíble de información. [20]. Según muchos educadores, ChatGPT puede ser utilizado fácilmente para hacer trampa por parte de estudiantes que toman cursos de comunicación y filosofía, pero es fácil de identificar. Una preocupación creciente es que los estudiantes eventualmente perderán la capacidad de generar ideas originales y no podrán presentar argumentos adecuados para demostrar un punto. [21]. La accesibilidad tecnológica es un desafío. El uso eficaz de ChatGPT depende de la conectividad de la red y la disponibilidad del dispositivo, lo que puede resultar problemático en diferentes regiones y entre poblaciones estudiantiles específicas. Se deben desarrollar políticas para utilizar ChatGPT en diferentes entornos técnicos. [22]. Una preocupación es la posible devaluación del aprendizaje cooperativo en la educación médica, particularmente en enfoques tradicionales como ABP, CBL y TBL. La colaboración y el trabajo en equipo son cruciales en estos enfoques, y ChatGPT puede reducir involuntariamente la importancia de las interacciones entre humanos. Mantener un equilibrio entre la tecnología y las relaciones es esencial para un aprendizaje eficaz. Si bien ChatGPT mejora el ABP mediante instrucción personalizada, los educadores deben enfatizar la importancia duradera del aprendizaje basado en el paciente y el trabajo en equipo. A pesar de las capacidades de simulación y los conocimientos teóricos de ChatGPT, no puede reemplazar la experiencia práctica obtenida a través de interacciones en el mundo real, especialmente en la educación médica. Reconocer las limitaciones de los modelos es esencial para evitar una dependencia excesiva del aprendizaje por simulación. Integrar perfectamente ChatGPT en los planes de estudio existentes es un desafío que requiere que los educadores inviertan tiempo en diseñar e integrar componentes impulsados por IA que se alineen con los objetivos generales de aprendizaje. [23]. Dadas estas consideraciones, es esencial utilizar ChatGPT con prudencia como herramienta auxiliar de aprendizaje, complementando en lugar de reemplazar los métodos educativos y las técnicas de investigación tradicionales, y siendo consciente de las limitaciones de ChatGPT.
Noticias
OpenAI de Musk y Warren chocan para dirigir el futuro de la gobernanza de la IA
Un doble enfrentamiento (Elon Musk versus OpenAI y Musk versus la senadora Elizabeth Warren (demócrata por Massachusetts)) pone de relieve cuestiones cruciales sobre la combinación de propósitos organizacionales y el equilibrio del poder público y privado.
Musk está demandando a OpenAI, que él cofundó, alegando que su reorganización de una entidad sin fines de lucro a una con fines de lucro traiciona su misión original de garantizar que la IA beneficie a la humanidad.
Mientras tanto, Warren ha expresado su preocupación por la posible superposición de roles de Musk como empresario tecnológico (que resulta ser propietario de la mayoría de X.AI Corp., un competidor de OpenAI) y futuro funcionario gubernamental. Warren instó al presidente electo Donald Trump en una carta del 16 de diciembre a aplicar estrictamente un escrutinio de conflictos de intereses a Musk.
La forma en que se desarrollen estas dos confrontaciones dará forma a nuestro futuro tecnológico.
‘Franken-Gorgon’ de OpenAI
La demanda de Musk apunta a la matriz sin fines de lucro, OpenAI Inc., y esencialmente a todos los demás involucrados en la creación de una subsidiaria con ganancias limitadas, OpenAI LP. El llamado modelo híbrido permitió a los inversores de la filial obtener un retorno de la inversión de hasta 100 veces. Cualquier beneficio restante fluyó hacia la matriz. Musk sostiene que este cambio prioriza las ganancias sobre el bien público, convirtiendo a OpenAI en lo que él llama un Frankenstein.
Musk modificó su denuncia en noviembre para incluir acusaciones de que OpenAI Inc. se estaba reorganizando para convertirse en una corporación con fines de lucro en toda regla. En palabras de Musk (o de sus abogados), OpenAI pasó “de una organización benéfica exenta de impuestos a una gorgona con fines de lucro y que paraliza el mercado por valor de 157 mil millones de dólares, y en sólo ocho años”.
Dado que no existe una ley anti-Franken-Gorgon, las afirmaciones de Musk son una mezcla de supuestas violaciones de la ley antimonopolio, la ley de fideicomisos caritativos, la ley de agencia, fraude e incluso extorsión. Aunque Musk cita las promesas que le hizo Altman, no plantea un reclamo por incumplimiento de contrato.
OpenAI respondió el 13 de diciembre que el modelo de beneficio limitado es una solución innovadora que le permite competir con otras empresas de tecnología sin dejar de ser fiel a su misión. También argumentó que Musk carece de legitimación activa para demandar.
El modelo OpenAI plantea dudas sobre la transparencia y la gobernanza. ¿Puede servir a dos amos (su misión y sus inversores) sin comprometer a uno por el otro? Nadie ha descubierto cómo hacer que este tipo de teoría de las partes interesadas funcione en la práctica. Un objetivo a menudo es consumido por el otro, razón por la cual no existe una forma legal convencional de estructurar una llamada entidad híbrida.
Confusión del modelo híbrido
El modelo híbrido de OpenAI se hace eco de la reciente aparición de corporaciones de beneficio público, que están diseñadas para perseguir tanto ganancias como fines públicos. A diferencia de las corporaciones tradicionales, las PBC están obligadas por ley a considerar el impacto de sus decisiones en la sociedad y el medio ambiente, no sólo en los accionistas.
Esta estructura proporciona un modelo potencial para que organizaciones como OpenAI alineen la innovación con la responsabilidad. “Potencial” es la palabra clave aquí, porque la ley del PBC no contempla rendimientos máximos sobre la inversión.
Si bien el modelo de beneficio limitado es innovador, subraya la necesidad de marcos legales más claros para regir las entidades híbridas. Los formuladores de políticas deberían explorar la posibilidad de adaptar los principios del PBC para abordar los desafíos únicos que plantean la IA y otras industrias de alto riesgo. Quizás algún día los modelos de beneficio limitado puedan convertirse en una forma estándar.
Dilema de doble rol
Warren ha cuestionado públicamente si el doble papel de Musk como empresario privado de IA y copresidente del propuesto Departamento de Eficiencia Gubernamental crearía conflictos de intereses. Ha pedido estándares éticos más estrictos, particularmente dada la influencia de Musk sobre las políticas que afectan directamente sus empresas. Básicamente, ella respondió a su queja de que OpenAI no es ético devolviéndole la acusación.
Pero que los multimillonarios asesoren o participen en el gobierno no es un fenómeno nuevo. Desde la defensa de políticas impulsadas por la filantropía de Andrew Carnegie en el siglo XIX hasta el papel de Warren Buffett en el asesoramiento de políticas financieras durante la crisis económica de 2008, los líderes empresariales ricos a menudo han dado forma a las políticas públicas. La participación de Musk es parte de una larga tradición de aprovechar la experiencia del sector privado para la gobernanza pública.
Dicho esto, hay mucho en juego en la era de la IA. Como asesor gubernamental y empresario con intereses creados en el desarrollo de la IA, Musk debe afrontar este doble papel con cuidado. La transparencia y la rendición de cuentas son esenciales para mantener la confianza pública, especialmente cuando los límites entre la influencia privada y la responsabilidad pública se vuelven borrosos.
Debido a que Musk se está moviendo hacia lo que equivale a una casa de cristal de la atención de los medios, parece advertir Warren, tal vez no debería tirar piedras.
El futuro de la gobernanza de la IA
La disputa entre Musk y OpenAI es más que una batalla legal: es un caso de prueba de cómo gobernamos las organizaciones impulsadas por una misión en la era de la IA.
Los modelos híbridos, como la estructura Franken-Gorgon de OpenAI, desafían las leyes corporativas y sin fines de lucro existentes, lo que refuerza la necesidad de juntas directivas fuertes e independientes, actualizaciones regulatorias y una conducta ética superior a la junta. Las entidades híbridas necesitan tales juntas para garantizar que la misión siga siendo la prioridad.
La matriz sin fines de lucro de OpenAI ha enfrentado críticas por no brindar una supervisión suficiente de su subsidiaria con fines de lucro, lo que destaca la necesidad de estructuras de gobernanza más claras. En la medida en que los miembros de la junta directiva de la empresa sean beneficiarios financieros de los esfuerzos con fines de lucro, se encuentran en una posición sesgada al tomar decisiones sobre la misión sin fines de lucro.
Los formuladores de políticas deben reconocer que las leyes actuales no fueron diseñadas para híbridos. Adaptar los principios del PBC o crear marcos específicos para modelos híbridos podría proporcionar la claridad y la responsabilidad necesarias en la industria de la IA.
La confianza es clave. La transparencia es fundamental. Organizaciones como OpenAI deben comunicar claramente sus objetivos y estructuras para mantener la confianza con los donantes, los inversores y el público. Sin transparencia, los híbridos corren el riesgo de erosionar la confianza de la que dependen para operar con eficacia.
A medida que evoluciona el panorama de la IA, las decisiones que tomemos ahora guiarán no solo el futuro de la tecnología sino también los valores que sustentan su desarrollo. La historia de OpenAI es un microcosmos de estos desafíos: un recordatorio de que equilibrar las ganancias y el propósito tiene que ver tanto con la gobernanza como con la visión.
El caso es Musk v. Altman, ND Cal., No. 4:24-cv-04722, respuesta a la moción de orden judicial preliminar de los demandantes 13/12/24.
Este artículo no refleja necesariamente la opinión de Bloomberg Industry Group, Inc., el editor de Bloomberg Law y Bloomberg Tax, ni de sus propietarios.
Información del autor
Anat Alon-Beck es profesora asociada de derecho en la Facultad de Derecho de la Universidad Case Western Reserve.
Seth Oranburg es profesor de la Facultad de Derecho de la Universidad de New Hampshire y director del Programa de Organizaciones, Negocios y Mercados del Instituto Liberal Clásico de la Universidad de Nueva York.
Escríbanos: Pautas para el autor
Noticias
Los padres de Suchir Balaji quieren saber qué pasó tras el aparente suicidio
SAN FRANCISCO – Los padres de un ex investigador de OpenAI conocido por recientemente denunciar las prácticas comerciales de la compañía están cuestionando las circunstancias de la muerte de su hijo el mes pasado.
En una entrevista esta semana, la madre y el padre de Suchir Balaji expresaron confusión y conmoción por su repentino fallecimiento, expresando dudas de que su hijo pudiera haberse suicidado, según lo determinado por el médico forense del condado.
La familia contrató a un experto para realizar una autopsia independiente, pero aún no ha publicado los hallazgos del informe.
“Exigimos una investigación exhaustiva; ese es nuestro llamado”, dijo la madre de Balaji, Poornima Ramarao.
La policía de San Francisco encontró a Balaji muerto en su apartamento de Lower Haight el 26 de noviembre, menos de una semana después de cumplir 26 años.
La Oficina del Médico Forense de San Francisco dijo más tarde a esta agencia de noticias que su muerte fue considerada un suicidio, aunque aún no se ha publicado el informe final de la autopsia mientras la oficina completa las pruebas toxicológicas. A principios de este mes, funcionarios de la policía de San Francisco dijeron que “actualmente no hay evidencia de juego sucio”.
La muerte de Balaji conmocionó a todo Silicon Valley y a la industria de la inteligencia artificial.
Obtuvo atención nacional a finales de octubre cuando acusó a su antiguo empleador, OpenAI, de violar la ley federal de derechos de autor al desviar datos de Internet para entrenar su exitoso chatbot, ChatGPT.
Sus preocupaciones respaldaron las acusaciones difundidas en los últimos años por autores, guionistas y programadores informáticos que dicen que OpenAI robó su contenido sin permiso, en violación de las leyes de “uso justo” de Estados Unidos que rigen cómo las personas pueden utilizar el trabajo publicado anteriormente.
Las empresas de medios han estado entre las que demandaron a la empresa, incluido The Mercury News y siete de sus periódicos afiliados y, por separado, The New York Times.
En una entrevista con The New York Times publicada en octubre de 2024, Balaji describió su decisión de dejar la empresa de inteligencia artificial generativa en agosto y sugirió que sus prácticas de recopilación de datos “no son un modelo sostenible para el ecosistema de Internet en su conjunto”.
“Si crees en lo que yo creo, simplemente tienes que dejar la empresa”, dijo al periódico.
El 18 de noviembre, Balaji había sido nombrado en documentos judiciales como alguien que tenía “documentos únicos y relevantes” que respaldarían el caso contra OpenAI. Él estuvo entre al menos 12 personas, muchas de ellas ex empleados o empleados actuales de OpenAI, que fueron mencionadas por el periódico en documentos judiciales por tener material útil para su caso.
Su muerte, una semana después, dejó a los padres de Balaji atónitos.
En una entrevista en su casa del condado de Alameda esta semana, su madre dijo que su único hijo “fue un ser humano increíble, desde la infancia”.
“Nadie cree que él pueda hacer eso”, dijo Ramarao sobre su suicidio.
OpenAI no respondió de inmediato a una solicitud de comentarios, pero en un comunicado a Business Insider dijo que estaba “devastado” al enterarse de la muerte de Balaji y dijo que habían estado en contacto con sus padres “para ofrecerles todo nuestro apoyo durante este momento difícil”.
“Nuestra prioridad es seguir haciendo todo lo posible para ayudarles”, decía el comunicado de la empresa. “Nos dimos cuenta de sus preocupaciones por primera vez cuando The New York Times publicó sus comentarios y no tenemos constancia de ninguna interacción posterior con él.
“Respetamos su derecho y el de otros a compartir opiniones libremente”, añade el comunicado. “Nuestros corazones están con los seres queridos de Suchir y extendemos nuestro más sentido pésame a todos los que lamentan su pérdida”.
Nacido en Florida y criado en el Área de la Bahía, Balaji fue un prodigio desde temprana edad, dijo su madre a esta agencia de noticias. Pronunció su nombre a los 3 meses; a los 18 meses me pedía “que encendiera una lámpara para animarme” y podía reconocer palabras a los 20 meses, dijo.
Balaji parecía tener una habilidad especial para la tecnología, las matemáticas y la informática, llevándose a casa trofeos y ganando renombre, incluso en la Olimpiada de Computación de los Estados Unidos de América de 2016.
En 2020, comenzó a trabajar para OpenAI y consideró admirable el entonces compromiso de la compañía de operar como una organización sin fines de lucro, dijo su madre. Su opinión sobre la empresa se agrió en 2022 mientras le asignaban la tarea de recopilar datos de Internet para el programa GPT-4 de la empresa, informó el New York Times. El programa analizó texto de casi todo Internet para entrenar su programa de inteligencia artificial, informó el medio.
Ramarao dijo que no estaba al tanto de la decisión de su hijo de hacer públicas sus preocupaciones sobre OpenAI hasta que el periódico publicó su entrevista. Si bien ella inmediatamente sintió ansiedad por su decisión, llegando incluso a implorarle que hablara con un abogado de derechos de autor, Ramarao también expresó orgullo por la valentía de su hijo.
“No dejaba de asegurarme: ‘Mamá, no estoy haciendo nada malo, ve a ver el artículo’. Sólo digo que, en mi opinión, no hay nada malo en ello”, dijo Ramarao, una ex empleada de Microsoft que trabajó en su programa de computación en la nube Azure. “Lo apoyé. No lo critiqué. Le dije: ‘Estoy orgulloso de ti, porque tienes tus propias opiniones y sabes lo que está bien y lo que está mal’. Era muy ético”.
Después de dejar la empresa, Balaji decidió crear una organización sin fines de lucro, centrada en los campos del aprendizaje automático y las neurociencias, dijo Ramarao. Ya había hablado con al menos un capitalista de riesgo para obtener financiación inicial, dijo.
“Les pregunto: ‘¿Cómo vas a manejar tu vida?’ “Dijo Ramarao. Recordó cómo su hijo intentó repetidamente disipar cualquier preocupación sobre sus finanzas, sugiriendo que “el dinero no es importante para mí; quiero ofrecer un servicio a la humanidad”.
Balaji también parecía tener una agenda ocupada. Cumplió 26 años durante un viaje de mochilero a las Islas Catalina con varios amigos de la escuela secundaria. Este tipo de viajes eran para él algo habitual: en abril viajó con varios amigos a la Patagonia y América del Sur.
Balaji habló por última vez con sus padres el 22 de noviembre, una llamada telefónica de 10 minutos que se centró en su reciente viaje y que terminó hablando de cenar.
“Estaba muy feliz”, dijo Ramarao. “Se lo pasó genial. Pasó uno de los mejores momentos de su vida”.
Ramarao recuerda haber llamado a su hijo poco después del mediodía del 23 de noviembre, pero dijo que sonó una vez y saltó el correo de voz. Pensando que él estaba ocupado con amigos, no intentó visitar su departamento hasta el 25 de noviembre, cuando llamó pero no obtuvo respuesta. Dijo que llamó a las autoridades esa noche, pero supuestamente un centro de despacho de la policía le dijo que poco se podía hacer ese día. Ella hizo un seguimiento el 26 de noviembre y la policía de San Francisco encontró más tarde el cuerpo de Balaji dentro de su apartamento.
Ramarao dijo que no le informaron de la muerte de su hijo hasta que apareció una camilla frente al apartamento de Balaji. No se le permitió entrar hasta el día siguiente.
“Nunca podré olvidar esa tragedia”, dijo Ramarao. “Se me rompió el corazón”.
Ramarao cuestionó la investigación de las autoridades sobre la muerte de su hijo, afirmando que la policía de San Francisco cerró su caso y lo entregó a la oficina del médico forense del condado una hora después de descubrir el cuerpo de Balaji.
Ramarao dijo que desde entonces ella y su marido encargaron una segunda autopsia del cuerpo de Balaji. Ella se negó a revelar cualquier documento de ese examen. Su abogado, Phil Kearney, se negó a comentar sobre los resultados de la autopsia independiente de la familia.
La semana pasada, el portavoz de la policía de San Francisco, Evan Sernoffsky, remitió las preguntas sobre el caso a la oficina del médico forense. David Serrano Sewell, director ejecutivo de la Oficina del Médico Forense Jefe, declinó hacer comentarios.
Sentada en el sofá de su sala, Ramarao sacudió la cabeza y expresó su frustración por los esfuerzos de investigación de las autoridades hasta el momento.
“Como padres afligidos, tenemos derecho a saber qué le pasó a nuestro hijo”, dijo Ramarao. “Estaba tan feliz. Fue muy valiente”.
Si usted o alguien que conoce está luchando contra sentimientos de depresión o pensamientos suicidas, 988 Suicide & Crisis Lifeline ofrece apoyo, información y recursos de ayuda gratuitos las 24 horas. Llame o envíe un mensaje de texto a Lifeline al 988, o visite el sitio web 988lifeline.org, donde está disponible el chat.
Publicado originalmente:
-
Startups7 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos8 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos8 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Recursos7 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Estudiar IA7 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Tutoriales8 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Eventos8 meses ago
La nueva era de la inteligencia artificial por el Washington Post – Mayo 2024
-
Noticias6 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo