Connect with us

Noticias

Hot Trend Of Accessing Generative AI Via Simple Phone Call Gets Huge Uplift Via OpenAI’s New 1-800-ChatGPT

Published

on

In today’s column, I discuss the hot trend of being able to access generative AI and large language models (LLMs) via a simple phone call. No smartphone is required — just use any mobile phone or even old-fashioned landline, and you immediately have unfettered voice access to a full-on generative AI capability.

Nice.

This trend has notably been given a huge boost due to OpenAI announcing their newly available 1-800-CHATGPT (1-800-242-8478). Yes, OpenAI ChatGPT, the 600-pound gorilla or elephant in the room, has grandly made phone usage of generative AI a widespread phenomenon that is going to spur other AI makers to do likewise. This is decidedly an earth-shattering upping of the ante in the fiercely contested AI one-upmanship taking place.

In the case of ChatGPT access, you are limited to up to 15 minutes of free phone-based usage per month. No registration is required. The AI simply notes the phone number that you are calling from to keep track of your allowed usage (must be a U.S.-based line for now). If you happen to have more than one phone, voila, you can essentially get more time per month by using up the 15 minutes permitted per separate phone line. For those outside the U.S. or who otherwise don’t want to make a phone call per se, OpenAI has also established a text-message-based approach to the same catchy phone number via the use of WhatsApp.

Before you get started partying, it turns out that there is more to being astute and safe about using generative AI over the phone than perhaps meets the eye. There are certainly celebratory upsides, but lots of disconcerting downsides too.

Let’s talk about it.

This analysis of an innovative AI breakthrough is part of my ongoing Forbes column coverage on the latest in AI including identifying and explaining various impactful AI complexities (see the link here). For my coverage of the top-of-the-line ChatGPT o1 model and its advanced functionality, see the link here and the link here.

How AI Works Via Phone Is Straightforward

Before we dive into the pluses and minuses, let’s make sure we are all on the same page about how accessing generative AI via a regular phone takes place.

The fundamentals are straightforward.

I’m assuming that you might have already used a generative AI capability via the web or possibly downloaded an app for use on your smartphone. If so, you know that once you have reached the generative AI, perhaps having to log in first, you then enter a prompt. Based on the prompt, the generative AI generates a response. All of this is typically done on a text-to-text basis, whereby you enter text as your prompt and get a text-based response from the AI.

You normally proceed with a back-and-forth of you entering a prompt and the AI provides a response. This happens on a turn-by-turn basis. Modern-day generative AI is amazingly fluent-like. You can easy-peasy carry on a compelling written conversation with the AI.

Voice Enters Into The Generative AI Realm

Some generative AI now allows a voice-to-text feature. This involves you speaking to the AI and your spoken words are converted into text. The text then gets fed into the AI. All else is roughly the same thereafter. In addition, some generative AI currently allows for a text-to-voice feature. That involves the AI producing text as a response, but rather than showing you the text, the system reads aloud the text to you.

Here’s the deal with regular phone-based access to generative AI.

You dial a phone number that automatically connects you to the designated generative AI.

The AI starts the conversation by doing a text-to-voice telling you a standardized opening. For example, when calling ChatGPT you generally get this introductory salutation:

  • “Hi, I’m ChatGPT, an AI assistant. Our conversation may be reviewed for safety. By continuing this call, you agree to OpenAI’s terms and privacy policy. So, how can I help you?”

On any subsequent calls that you make to the ChatGPT phone line, the AI will detect that you previously called and will therefore start the opening by saying “Hello, again” and follow with the rest of the standard opening.

You then carry on a conversation with the AI, entirely via voice. Your voice utterances are converted into text, the AI processes the text as normally would be the case, and the AI generates a text response that is then said to you via a text-to-voice function.

Voila, this process continues until either you hang up or your time limit is reached.

Things That Can Go Wrong Right Away

In the real world, not everything is wine and roses.

Let’s see how that applies to generative AI being accessed via a regular phone.

First, some people are undoubtedly going to misdial and reach some number other than the designated one. Oopsie. The problem too is that this might occur on a massive scale. Currently, there are 300 million weekly active users of ChatGPT. How many of those users will opt to access ChatGPT via regular phone? In addition, how many new users who haven’t used ChatGPT will be attracted to using phone-based access?

We don’t know what the volume is going to be, but the odds are that it could be a rather large number. The point is that even if some small percentage misdials, there could be a slew of people calling other numbers inadvertently. On a tremendously beguiling scale. This could be an exasperating mess.

Second, and I deplore saying so, there is a distinct possibility that some evildoers will try to grab-up other phone numbers that are specifically similar to the designated phone number. Here’s their scam. They hope that people will misdial to their dastardly number. They then try to sell the person on swamp land or some other rip-off. People will be perhaps confused and assume that they have reached the correct number, a reputable number. Baddies will deceptively take advantage of them by asking for credit card numbers, social security numbers, and the like.

Sad face.

More Voice Issues To Be Thinking About

The next thing to consider is whether you are able to be adequately heard by the generative AI.

Imagine this. You tell the AI to find all the stores that are near the city named Pinole. Though voice-to-text translation is pretty good these days, there is a solid chance that your utterance will be misheard. The AI responds by telling you about the stores that are near the city named Binhole, a completely different city.

You and the AI go back and forth trying to iron this out. Meanwhile, your allotted time, let’s say 15 minutes, is rapidly dwindling. You decide this is fruitless and in anger vow to never call the number again.

Even if your commentary is readily interpretable, including an accent, there is the issue of potential background noise. Suppose you are standing on the streets of New York City and trying to get the generative AI to tell you which museum has your favorite painting. The background noise could be marring your perfect pronunciation.

Rinse and repeat.

Another frustration will be dropped lines. If you are in a rideshare car and the driver doesn’t speak your language, you might be tempted to call the generative AI and ask it to convert your destination instructions into that other language. You make the connection to the AI, which maybe can’t connect at first or at all due to a bad reception — and then start a conversation. Midway through, the line drops.

All in all, there might be a lot of angst involved.

Considerations Of A Private Nature

I’ve previously covered that many of the generative AI apps stipulate in their licensing agreements that whatever text you enter is fully accessible to the AI maker, see my analysis at the link here. The issue is this. Your text-based prompts under those stipulations can be examined by the AI researchers and AI developers of the AI maker. They can also reuse your entered data to further data train the AI. Bottom-line is that you are potentially getting yourself into a privacy intrusion and undercut any semblance of confidentiality.

Most users don’t know of this.

What about phone-based access to generative AI?

It is conceivable that an AI maker will decide to employ the same licensing requirements.

Realize that your utterances are being converted into text and that the transcribed text will be stored and made available to the AI maker. Keep this in mind. You’ll need to decide what kind of remarks or commentary you are willing to say to the generative AI phone-based capability. Also, it would be wise to find out beforehand what licensing stipulations the AI maker has established for their phone-based generative AI.

An added twist occurs with the voice aspects in the context of phone-based interaction.

When you enter text into a conventional generative AI online, the only communication being conveyed is the text. Period, end of story. In contrast, when you speak via phone, your voice is being captured too.

Your actual voice.

So what?

If the licensing allows the AI maker to exploit your voice, they could potentially use it to make a synthetic voice that sounds like you. Or, if not going quite that far, they might use your voice recording to further train the AI on how to interpret voice utterances. The gist is that your voice is possibly going to be used in ways that you might not have thought would occur.

Be wary and on your toes.

Making The Connection Of You To You

I’m guessing that some might be thinking that since you don’t need to register to use the generative AI for its phone-based functionality, you are essentially acting anonymously. Ergo, it doesn’t matter what you say, nor whether they record you or not. They just have some random person’s data that they have collected.

You can go on your merry way.

Well, maybe yes, maybe not.

The usual method of tracking you is going to be via the phone number you are using to make the call. That is something you are freely giving up. They could presumably try to pair the phone number with other databases. Doing so might enable the AI maker to figure out your name, address, age, and a wide variety of personal data.

The twofer is they can match what you’ve said to who you are.

Envision that you have called the AI several times to ask questions about sailboats. The next thing you know, the AI maker behind the scenes sells your name and phone number to a company that makes and sells sailboats. Of course, they can do this with just the phone number alone, not necessarily having to go through the trouble of matching your phone number to who you are. They simply sell your phone number and the fact that you have made inquiries about sailboats, the rest is up to the buyer for that information.

An interesting angle is that if an AI maker goes that route, they are likely to be embroiled in numerous federal, state, and local laws on such matters. The FTC is already pursuing various companies for AI-based scams, see my coverage at the link here. It would seem doubtful that the major generative AI vendors would go down that bumpy path. Presumably, hopefully, not.

The other issue is that once the use of generative AI via phone becomes a common practice, fly-by-nights could set up similar arrangements. Call this or that 800 number and get a full hour with interactive AI. Call now. Don’t wait.

How can they afford to do this?

They lean into the data in the manner I’ve described above.

Multimodal Is Not Likely Included For Now

A typical phone-based approach is going to assume that the user has a voice-only phone.

Thus, the AI cannot ask the user to take a picture of something. Without having a visual clue of what the user is discussing, the generative AI might have a limited ability to provide on-target responses.

For example, I am walking through a beautiful outdoor park and happen to notice a plant that looks potentially dangerous. I want to quickly find out if the plant is harmful. With smartphones, you can usually load an app or make an online connection that allows you to activate the camera on your phone. If the camera isn’t activated for the app, you can typically take a photo and send the picture to the app.

In the case of a typical phone-based generative AI, you have to be good enough at describing things to do what you need to do. For the plant, I might tell the AI that it is green in color, has leaves that are three-pronged, and appears to grow near the base of trees. Is that sufficient for the AI to figure out what plant it is? Probably a stretch.

The other side of this same coin is that the generative AI cannot display to the user a result in any pictorial way. Nor can the AI give the result in a text format. Why would someone want their result in text versus machine-produced voice? It could be that the person can’t adequately hear the AI, or maybe they hear it but want to write down what the AI has said. Having a text option would be handy, but again we are assuming that the user is calling on a conventional phone that lacks a multi-modal capacity.

Gradually, you can bet that most of the phone-based generative AI offerings will readily switch to multi-modal mode if a user is calling from a suitably equipped smartphone. The moment you make the connection to the AI, it will detect what your device is and what it can do. From then on, the AI will inform you of the ways to provide input and the means of producing outputs to the device that you are using.

We Live In Exciting Times

Gosh, some of you might be thinking, this discussion is all doom and gloom.

Isn’t there anything upbeat to say about this emerging means of using generative AI?

Yes, absolutely, there is lots to say.

The very exciting prospect is that people who have not yet experienced generative AI due to lack of an Internet connection or not having Wi-Fi will now be able to readily use generative AI. There might be millions upon millions of people who either can’t afford the equipment for such access or don’t live in a place where access is feasible.

The reach of a regular phone call is an incredible expansion of possibilities. I dare say that making phone calls is a lot simpler, easier, and readily possible. You don’t need to download anything to use the AI. You can use the AI pretty much anywhere and at any time, assuming you have access to a phone.

Some would assert that this is a vital step in the democratization of AI (read about the essentials at the link here). That’s a catchphrase that says we don’t want to end up in a situation of those that have AI and those that don’t have AI. The have-nots are presumably going to be at a disadvantage to the haves. Phone access ought to go a long way toward leveling the playing field concerning the access constraint.

All in all, you’ve got the widespread ubiquity of phones, the ease of using a regular phone, the relatively low cost of the phone and hopefully low cost for usage, and access to generative AI that only requires being able to speak. No typing skills are needed. No dealing with logins. Etc.

Just call and start using generative AI.

Boom, drop the mic.

Keep Our Wits About Us At All Times

I hope that the last bit of rah-rah gives you a sense of how important this new trend is.

And though I certainly don’t want to spoil the party, I ask that we all keep our heads and realize that in some sense we are also opening a Pandora’s box. How so? As I’ve repeatedly stated, people are using generative AI for all kinds of purposes, including mental health guidance. They simply access generative AI and start asking for therapy that would be seemingly akin to meeting with a human therapist, and most of the AI apps readily comply, see my analysis at the link here.

The good news is that phone-based access to generative AI implies that a bunch more people can now use AI for their mental health assistance. The bad news is roughly the same, namely, we are amid a massive scale experiment of people using everyday generative AI to give them mental health guidance. What if the AI isn’t doing this prudently? What if people avoid seeking human therapists since they assume AI is all they need?

The population-level consequences are potentially staggering and we upping the ante via phone-based generative AI access, see my predictions on what might arise at a population-level, at the link here.

A final contemplative thought for now.

In 1876, Alexander Graham Bell purportedly transmitted the first-ever recognizable speech message to his assistant Thomas A. Watson by saying, “Mr. Watson come here, I want you.” A stellar moment in history. Something never to be forgotten.

You might one day want to tell your kids that you were one of the first to use a phone-based generative AI. Something you’ll never forget. Think about your options, decide what seems appropriate to your needs and concerns, and make that call.

Get going and remember the date that you did so.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Implementación y evaluación de un modelo de enseñanza de pasantía quirúrgica optimizado utilizando ChatGPT | Educación Médica BMC

Published

on

Los avances tecnológicos están haciendo avanzar significativamente la educación médica. Actualmente, el desarrollo del plan de estudios médico enfatiza la mejora de los métodos de enseñanza a través de la simulación médica, la discusión de la literatura y la investigación. Existe una creciente defensa de la integración de la inteligencia artificial y las pautas clínicas en la enseñanza para cultivar mejor el razonamiento clínico y las habilidades de pensamiento lógico de los estudiantes.

Múltiples estudios han demostrado los beneficios potenciales de ChatGPT en la educación médica. Los chatbots como ChatGPT pueden ser una herramienta poderosa para mejorar la alfabetización sanitaria, especialmente entre estudiantes y jóvenes estudiantes. [6]. En primer lugar, ChatGPT ofrece acceso rápido e inmediato a amplia información médica, lo que ayuda a los estudiantes de medicina novatos a analizar datos médicos complejos. [7]. En segundo lugar, al crear escenarios y estudios de casos, ChatGPT ayuda a los estudiantes a perfeccionar y mejorar sus habilidades de planificación de diagnóstico y tratamiento, mejorando así sus capacidades de razonamiento clínico y su preparación para situaciones clínicas del mundo real. [8]. En tercer lugar, ChatGPT puede respaldar las tareas académicas respondiendo preguntas y redactando resúmenes. Su capacidad para crear esquemas y revisiones de la literatura puede agilizar la investigación médica. Además, también facilita el resumen de publicaciones relevantes y destaca hallazgos importantes, lo que ayuda a los investigadores médicos a navegar por la gran cantidad de material disponible en línea. [9]. Finalmente, ChatGPT permite el aprendizaje personalizado para los estudiantes al actuar como tutor o asistente virtual, ayudándolos con las tareas y fomentando experiencias de aprendizaje interactivas. [10].

En este estudio, ChatGPT se utilizó en cuatro funciones clave en las fases de educación médica previa, en clase y posterior a la clase. Durante la fase de preparación previa a la clase, los estudiantes pudieron consultar ChatGPT sobre cualquier problema que encontraron, lo que facilitó una comprensión inicial de conceptos, terminología y casos médicos fundamentales. En un estudio, se pudo generar una serie de imágenes a partir de texto descriptivo utilizando un modelo de aprendizaje profundo basado en redes generativas adversarias. La herramienta se utiliza en el proceso narrativo visual para facilitar el aprendizaje mejorado por la tecnología y mejorar las habilidades de razonamiento lógico. [11]. Los modelos de aprendizaje profundo basados ​​en redes generativas adversarias desempeñan un papel clave en la simulación de varios tipos de entornos de aprendizaje y ayudan a desarrollar habilidades prácticas en modelos de asistentes de enseñanza virtuales. Los resultados experimentales muestran que este modelo mejora el efecto de aprendizaje de los estudiantes y mejora su motivación y capacidad de aprendizaje. [12]. En el aula, se empleó ChatGPT para simular las interacciones con los pacientes, proporcionando una plataforma para que los estudiantes practiquen habilidades de diagnóstico y comunicación en un entorno seguro y controlado. En sus interacciones con ChatGPT, los estudiantes son libres de practicar habilidades de diagnóstico y comunicación sin los riesgos que podría representar un paciente real. Un diagnóstico falso o una falta de comunicación no tiene un impacto real en el paciente, lo que permite a los estudiantes aprender mediante prueba y error. ChatGPT está disponible y los estudiantes pueden practicar a su propio ritmo y necesidades de aprendizaje, sin depender de un tiempo y lugar específicos. Esta flexibilidad hace que el aprendizaje sea más eficiente y conveniente. ChatGPT puede simular una variedad de escenarios clínicos y características del paciente para brindar una experiencia interactiva diversa. Los estudiantes están expuestos a diferentes condiciones y antecedentes de pacientes, mejorando así su capacidad para afrontar situaciones complejas. Después de clase, los estudiantes pueden interactuar con ChatGPT individualmente o en grupos de estudio, discutiendo preguntas de práctica proporcionadas por la herramienta, abordando preguntas difíciles o desafiantes y explorando el material desde varias perspectivas. A lo largo del proceso interactivo, los estudiantes evaluaron continuamente su comprensión del material, identificaron sus debilidades y ajustaron sus estrategias de aprendizaje y áreas de enfoque de manera oportuna para enfocarse en áreas específicas para revisión y refuerzo, asegurando que se mantuvieran en el camino correcto. [13]. De manera similar, los instructores podrían utilizar ChatGPT para recopilar recursos didácticos y estudios de casos relevantes durante la fase de preparación de la lección. Al aprovechar ChatGPT, podrían mejorar la participación de los estudiantes en el aula y utilizar la herramienta después de clase para recopilar y analizar los comentarios de los estudiantes sobre el proceso de enseñanza. Además, los estudiantes podrían utilizar ChatGPT para resolver rápidamente cualquier confusión relacionada con el conocimiento profesional. Con la capacitación del modelo ChatGPT, los estudiantes de medicina y los médicos pueden mejorar su razonamiento clínico y sus habilidades de toma de decisiones, mejorando así el desempeño del análisis y diagnóstico de casos. Además, ChatGPT proporciona a los estudiantes de medicina una experiencia de aprendizaje personalizada y eficiente a través de conversaciones simuladas, tutorías inteligentes y preguntas y respuestas automatizadas, profundizando así la comprensión de los conocimientos médicos de los estudiantes. [14].

Los resultados de este estudio indican que las puntuaciones teóricas de los grupos de estudio fueron significativamente más altas que las de los grupos de control, lo que refleja mejores resultados de aprendizaje. No se observaron diferencias significativas en las puntuaciones entre los dos grupos de estudio ni entre los dos grupos de control. Esto sugiere que la aplicación de ChatGPT en los grupos de estudio resultó en una comprensión y dominio superiores del conocimiento teórico en comparación con los métodos de enseñanza tradicionales utilizados en los grupos de control.

Los resultados de satisfacción docente de este estudio indican que los estudiantes de los grupos de estudio que utilizaron ChatGPT informaron puntuaciones de satisfacción total significativamente más altas, así como mejores calificaciones en la organización del curso y los métodos de enseñanza, en comparación con los grupos de control. Las diferencias en la satisfacción con el contenido del curso y los instructores fueron relativamente menores, lo que sugiere que el uso de ChatGPT como ayuda didáctica, a través de su novedoso y atractivo formato interactivo de preguntas y respuestas, su fuerte interactividad y su enfoque estructurado, parece mejorar la participación de los estudiantes. y participación en el aprendizaje. Esto indica que ChatGPT puede fomentar eficazmente un mayor interés y promover resultados educativos. La diferencia más notable entre los métodos de enseñanza radica en la ejecución en el aula; La capacidad de ChatGPT para simular varios escenarios y realizar análisis de casos, combinada con el acceso a recursos didácticos adicionales, mejora significativamente las habilidades de aplicación clínica de los estudiantes de medicina.

La evaluación del estudio sobre el cumplimiento del aprendizaje abarcó cuatro aspectos. Los hallazgos indican que no hubo diferencias significativas entre los grupos en cuanto al establecimiento de planes de aprendizaje. Sin embargo, para los otros tres aspectos (preparación autónoma previa a la clase y revisión posterior a la clase, participación en la enseñanza en el aula y búsqueda de retroalimentación y asistencia), los grupos de estudio exhibieron calificaciones significativamente más altas en comparación con los grupos de control. En muchos estudios y análisis estadísticos, una “puntuación más alta” suele considerarse un resultado positivo, lo que significa que el grupo de estudio obtuvo mejores resultados en algo. Los indicadores de evaluación de este estudio son todos positivos y se puede considerar que una “puntuación más alta” indica un mejor desempeño del grupo de investigación, lo que es un resultado positivo. Esto sugiere que la incorporación de ChatGPT como ayuda didáctica mejora el cumplimiento del aprendizaje de los estudiantes al promover el aprendizaje activo, fomentar el aprendizaje basado en la investigación y mejorar su interés y capacidad para el aprendizaje autónomo.

Si bien las mejoras en el cumplimiento son evidentes, la profundización continua de la comprensión antes, durante y después de la clase también contribuye a mejorar el pensamiento lógico y las habilidades analíticas. En particular, el estudio encontró una tasa relativamente baja de preguntas y solicitudes de ayuda de los estudiantes, durante y después de clase. Las diferencias observadas entre los grupos de estudio y control pueden atribuirse a la capacidad de ChatGPT para ayudar a los estudiantes a superar la timidez y no juzgar los errores. La herramienta de inteligencia artificial ayuda a los estudiantes a superar las dudas, permitiéndoles hacer preguntas de forma libre y repetida sin temor a ser juzgados o interacciones negativas. Al generar materiales de aprendizaje basados ​​en el estado de aprendizaje y las necesidades de cada estudiante, ChatGPT les permite adoptar un enfoque más autónomo del aprendizaje y tener una experiencia educativa adaptada a sus preferencias. Estas interacciones facilitan la aclaración oportuna, una comprensión más profunda y el dominio del material.

ChatGPT también puede adaptar planes y materiales de aprendizaje individualizados para cada estudiante para adaptarse a los diferentes estilos y habilidades de aprendizaje dentro del aula. Este enfoque personalizado fomenta un circuito de retroalimentación positiva, mejorando las capacidades de aprendizaje de los estudiantes.

La aplicación de ChatGPT en la educación médica sigue siendo un tema de considerable debate. Si bien ChatGPT ofrece funcionalidades innovadoras y ventajas potenciales, también plantea varias preocupaciones éticas y prácticas, el potencial de uso indebido, particularmente en los ámbitos de la educación y el mundo académico. [15]. Como chatbot, ChatGPT carece de la capacidad de pensar críticamente como un ser humano, lo que limita su capacidad para interpretar y analizar información médica más allá de sus algoritmos programados. No posee el juicio ni el discernimiento necesarios para los aspectos éticos o legales de la práctica médica y puede plantear riesgos relacionados con violaciones de datos y privacidad. [16, 17].

El auge de herramientas de inteligencia artificial como ChatGPT ha llevado a la deshonestidad académica, con informes de estudiantes que utilizan la tecnología para hacer trampa en sus trabajos de ensayo. [18]. Algunas investigaciones sugieren que ChatGPT puede no ser un recurso confiable para problemas complejos que requieren habilidades y conocimientos avanzados. [19]. Además, los académicos han estado preocupados por la confiabilidad de ChatGPT como fuente creíble de información. [20]. Según muchos educadores, ChatGPT puede ser utilizado fácilmente para hacer trampa por parte de estudiantes que toman cursos de comunicación y filosofía, pero es fácil de identificar. Una preocupación creciente es que los estudiantes eventualmente perderán la capacidad de generar ideas originales y no podrán presentar argumentos adecuados para demostrar un punto. [21]. La accesibilidad tecnológica es un desafío. El uso eficaz de ChatGPT depende de la conectividad de la red y la disponibilidad del dispositivo, lo que puede resultar problemático en diferentes regiones y entre poblaciones estudiantiles específicas. Se deben desarrollar políticas para utilizar ChatGPT en diferentes entornos técnicos. [22]. Una preocupación es la posible devaluación del aprendizaje cooperativo en la educación médica, particularmente en enfoques tradicionales como ABP, CBL y TBL. La colaboración y el trabajo en equipo son cruciales en estos enfoques, y ChatGPT puede reducir involuntariamente la importancia de las interacciones entre humanos. Mantener un equilibrio entre la tecnología y las relaciones es esencial para un aprendizaje eficaz. Si bien ChatGPT mejora el ABP mediante instrucción personalizada, los educadores deben enfatizar la importancia duradera del aprendizaje basado en el paciente y el trabajo en equipo. A pesar de las capacidades de simulación y los conocimientos teóricos de ChatGPT, no puede reemplazar la experiencia práctica obtenida a través de interacciones en el mundo real, especialmente en la educación médica. Reconocer las limitaciones de los modelos es esencial para evitar una dependencia excesiva del aprendizaje por simulación. Integrar perfectamente ChatGPT en los planes de estudio existentes es un desafío que requiere que los educadores inviertan tiempo en diseñar e integrar componentes impulsados ​​por IA que se alineen con los objetivos generales de aprendizaje. [23]. Dadas estas consideraciones, es esencial utilizar ChatGPT con prudencia como herramienta auxiliar de aprendizaje, complementando en lugar de reemplazar los métodos educativos y las técnicas de investigación tradicionales, y siendo consciente de las limitaciones de ChatGPT.

Continue Reading

Noticias

OpenAI de Musk y Warren chocan para dirigir el futuro de la gobernanza de la IA

Published

on

Un doble enfrentamiento (Elon Musk versus OpenAI y Musk versus la senadora Elizabeth Warren (demócrata por Massachusetts)) pone de relieve cuestiones cruciales sobre la combinación de propósitos organizacionales y el equilibrio del poder público y privado.

Musk está demandando a OpenAI, que él cofundó, alegando que su reorganización de una entidad sin fines de lucro a una con fines de lucro traiciona su misión original de garantizar que la IA beneficie a la humanidad.

Mientras tanto, Warren ha expresado su preocupación por la posible superposición de roles de Musk como empresario tecnológico (que resulta ser propietario de la mayoría de X.AI Corp., un competidor de OpenAI) y futuro funcionario gubernamental. Warren instó al presidente electo Donald Trump en una carta del 16 de diciembre a aplicar estrictamente un escrutinio de conflictos de intereses a Musk.

La forma en que se desarrollen estas dos confrontaciones dará forma a nuestro futuro tecnológico.

‘Franken-Gorgon’ de OpenAI

La demanda de Musk apunta a la matriz sin fines de lucro, OpenAI Inc., y esencialmente a todos los demás involucrados en la creación de una subsidiaria con ganancias limitadas, OpenAI LP. El llamado modelo híbrido permitió a los inversores de la filial obtener un retorno de la inversión de hasta 100 veces. Cualquier beneficio restante fluyó hacia la matriz. Musk sostiene que este cambio prioriza las ganancias sobre el bien público, convirtiendo a OpenAI en lo que él llama un Frankenstein.

Musk modificó su denuncia en noviembre para incluir acusaciones de que OpenAI Inc. se estaba reorganizando para convertirse en una corporación con fines de lucro en toda regla. En palabras de Musk (o de sus abogados), OpenAI pasó “de una organización benéfica exenta de impuestos a una gorgona con fines de lucro y que paraliza el mercado por valor de 157 mil millones de dólares, y en sólo ocho años”.

Dado que no existe una ley anti-Franken-Gorgon, las afirmaciones de Musk son una mezcla de supuestas violaciones de la ley antimonopolio, la ley de fideicomisos caritativos, la ley de agencia, fraude e incluso extorsión. Aunque Musk cita las promesas que le hizo Altman, no plantea un reclamo por incumplimiento de contrato.

OpenAI respondió el 13 de diciembre que el modelo de beneficio limitado es una solución innovadora que le permite competir con otras empresas de tecnología sin dejar de ser fiel a su misión. También argumentó que Musk carece de legitimación activa para demandar.

El modelo OpenAI plantea dudas sobre la transparencia y la gobernanza. ¿Puede servir a dos amos (su misión y sus inversores) sin comprometer a uno por el otro? Nadie ha descubierto cómo hacer que este tipo de teoría de las partes interesadas funcione en la práctica. Un objetivo a menudo es consumido por el otro, razón por la cual no existe una forma legal convencional de estructurar una llamada entidad híbrida.

Confusión del modelo híbrido

El modelo híbrido de OpenAI se hace eco de la reciente aparición de corporaciones de beneficio público, que están diseñadas para perseguir tanto ganancias como fines públicos. A diferencia de las corporaciones tradicionales, las PBC están obligadas por ley a considerar el impacto de sus decisiones en la sociedad y el medio ambiente, no sólo en los accionistas.

Esta estructura proporciona un modelo potencial para que organizaciones como OpenAI alineen la innovación con la responsabilidad. “Potencial” es la palabra clave aquí, porque la ley del PBC no contempla rendimientos máximos sobre la inversión.

Si bien el modelo de beneficio limitado es innovador, subraya la necesidad de marcos legales más claros para regir las entidades híbridas. Los formuladores de políticas deberían explorar la posibilidad de adaptar los principios del PBC para abordar los desafíos únicos que plantean la IA y otras industrias de alto riesgo. Quizás algún día los modelos de beneficio limitado puedan convertirse en una forma estándar.

Dilema de doble rol

Warren ha cuestionado públicamente si el doble papel de Musk como empresario privado de IA y copresidente del propuesto Departamento de Eficiencia Gubernamental crearía conflictos de intereses. Ha pedido estándares éticos más estrictos, particularmente dada la influencia de Musk sobre las políticas que afectan directamente sus empresas. Básicamente, ella respondió a su queja de que OpenAI no es ético devolviéndole la acusación.

Pero que los multimillonarios asesoren o participen en el gobierno no es un fenómeno nuevo. Desde la defensa de políticas impulsadas por la filantropía de Andrew Carnegie en el siglo XIX hasta el papel de Warren Buffett en el asesoramiento de políticas financieras durante la crisis económica de 2008, los líderes empresariales ricos a menudo han dado forma a las políticas públicas. La participación de Musk es parte de una larga tradición de aprovechar la experiencia del sector privado para la gobernanza pública.

Dicho esto, hay mucho en juego en la era de la IA. Como asesor gubernamental y empresario con intereses creados en el desarrollo de la IA, Musk debe afrontar este doble papel con cuidado. La transparencia y la rendición de cuentas son esenciales para mantener la confianza pública, especialmente cuando los límites entre la influencia privada y la responsabilidad pública se vuelven borrosos.

Debido a que Musk se está moviendo hacia lo que equivale a una casa de cristal de la atención de los medios, parece advertir Warren, tal vez no debería tirar piedras.

El futuro de la gobernanza de la IA

La disputa entre Musk y OpenAI es más que una batalla legal: es un caso de prueba de cómo gobernamos las organizaciones impulsadas por una misión en la era de la IA.

Los modelos híbridos, como la estructura Franken-Gorgon de OpenAI, desafían las leyes corporativas y sin fines de lucro existentes, lo que refuerza la necesidad de juntas directivas fuertes e independientes, actualizaciones regulatorias y una conducta ética superior a la junta. Las entidades híbridas necesitan tales juntas para garantizar que la misión siga siendo la prioridad.

La matriz sin fines de lucro de OpenAI ha enfrentado críticas por no brindar una supervisión suficiente de su subsidiaria con fines de lucro, lo que destaca la necesidad de estructuras de gobernanza más claras. En la medida en que los miembros de la junta directiva de la empresa sean beneficiarios financieros de los esfuerzos con fines de lucro, se encuentran en una posición sesgada al tomar decisiones sobre la misión sin fines de lucro.

Los formuladores de políticas deben reconocer que las leyes actuales no fueron diseñadas para híbridos. Adaptar los principios del PBC o crear marcos específicos para modelos híbridos podría proporcionar la claridad y la responsabilidad necesarias en la industria de la IA.

La confianza es clave. La transparencia es fundamental. Organizaciones como OpenAI deben comunicar claramente sus objetivos y estructuras para mantener la confianza con los donantes, los inversores y el público. Sin transparencia, los híbridos corren el riesgo de erosionar la confianza de la que dependen para operar con eficacia.

A medida que evoluciona el panorama de la IA, las decisiones que tomemos ahora guiarán no solo el futuro de la tecnología sino también los valores que sustentan su desarrollo. La historia de OpenAI es un microcosmos de estos desafíos: un recordatorio de que equilibrar las ganancias y el propósito tiene que ver tanto con la gobernanza como con la visión.

El caso es Musk v. Altman, ND Cal., No. 4:24-cv-04722, respuesta a la moción de orden judicial preliminar de los demandantes 13/12/24.

Este artículo no refleja necesariamente la opinión de Bloomberg Industry Group, Inc., el editor de Bloomberg Law y Bloomberg Tax, ni de sus propietarios.

Información del autor

Anat Alon-Beck es profesora asociada de derecho en la Facultad de Derecho de la Universidad Case Western Reserve.

Seth Oranburg es profesor de la Facultad de Derecho de la Universidad de New Hampshire y director del Programa de Organizaciones, Negocios y Mercados del Instituto Liberal Clásico de la Universidad de Nueva York.

Escríbanos: Pautas para el autor

Continue Reading

Noticias

Los padres de Suchir Balaji quieren saber qué pasó tras el aparente suicidio

Published

on

SAN FRANCISCO – Los padres de un ex investigador de OpenAI conocido por recientemente denunciar las prácticas comerciales de la compañía están cuestionando las circunstancias de la muerte de su hijo el mes pasado.

En una entrevista esta semana, la madre y el padre de Suchir Balaji expresaron confusión y conmoción por su repentino fallecimiento, expresando dudas de que su hijo pudiera haberse suicidado, según lo determinado por el médico forense del condado.

La familia contrató a un experto para realizar una autopsia independiente, pero aún no ha publicado los hallazgos del informe.

“Exigimos una investigación exhaustiva; ese es nuestro llamado”, dijo la madre de Balaji, Poornima Ramarao.

La policía de San Francisco encontró a Balaji muerto en su apartamento de Lower Haight el 26 de noviembre, menos de una semana después de cumplir 26 años.

La Oficina del Médico Forense de San Francisco dijo más tarde a esta agencia de noticias que su muerte fue considerada un suicidio, aunque aún no se ha publicado el informe final de la autopsia mientras la oficina completa las pruebas toxicológicas. A principios de este mes, funcionarios de la policía de San Francisco dijeron que “actualmente no hay evidencia de juego sucio”.

La muerte de Balaji conmocionó a todo Silicon Valley y a la industria de la inteligencia artificial.

Obtuvo atención nacional a finales de octubre cuando acusó a su antiguo empleador, OpenAI, de violar la ley federal de derechos de autor al desviar datos de Internet para entrenar su exitoso chatbot, ChatGPT.

Sus preocupaciones respaldaron las acusaciones difundidas en los últimos años por autores, guionistas y programadores informáticos que dicen que OpenAI robó su contenido sin permiso, en violación de las leyes de “uso justo” de Estados Unidos que rigen cómo las personas pueden utilizar el trabajo publicado anteriormente.

Las empresas de medios han estado entre las que demandaron a la empresa, incluido The Mercury News y siete de sus periódicos afiliados y, por separado, The New York Times.

Poornima Ramarao, madre de Suchir Balaji, habla con esta nueva organización en su casa en el condado de Alameda, California, el lunes 23 de diciembre de 2024. Suchir Balaji, de 26 años, es un ex investigador de OpenAI conocido por denunciar la exitosa empresa de inteligencia artificial. quien fue encontrado muerto en su departamento en noviembre pasado. (Nhat V. Meyer/Bay Area News Group)

En una entrevista con The New York Times publicada en octubre de 2024, Balaji describió su decisión de dejar la empresa de inteligencia artificial generativa en agosto y sugirió que sus prácticas de recopilación de datos “no son un modelo sostenible para el ecosistema de Internet en su conjunto”.

“Si crees en lo que yo creo, simplemente tienes que dejar la empresa”, dijo al periódico.

El 18 de noviembre, Balaji había sido nombrado en documentos judiciales como alguien que tenía “documentos únicos y relevantes” que respaldarían el caso contra OpenAI. Él estuvo entre al menos 12 personas, muchas de ellas ex empleados o empleados actuales de OpenAI, que fueron mencionadas por el periódico en documentos judiciales por tener material útil para su caso.

Su muerte, una semana después, dejó a los padres de Balaji atónitos.

En una entrevista en su casa del condado de Alameda esta semana, su madre dijo que su único hijo “fue un ser humano increíble, desde la infancia”.

“Nadie cree que él pueda hacer eso”, dijo Ramarao sobre su suicidio.

OpenAI no respondió de inmediato a una solicitud de comentarios, pero en un comunicado a Business Insider dijo que estaba “devastado” al enterarse de la muerte de Balaji y dijo que habían estado en contacto con sus padres “para ofrecerles todo nuestro apoyo durante este momento difícil”.

“Nuestra prioridad es seguir haciendo todo lo posible para ayudarles”, decía el comunicado de la empresa. “Nos dimos cuenta de sus preocupaciones por primera vez cuando The New York Times publicó sus comentarios y no tenemos constancia de ninguna interacción posterior con él.

“Respetamos su derecho y el de otros a compartir opiniones libremente”, añade el comunicado. “Nuestros corazones están con los seres queridos de Suchir y extendemos nuestro más sentido pésame a todos los que lamentan su pérdida”.

Nacido en Florida y criado en el Área de la Bahía, Balaji fue un prodigio desde temprana edad, dijo su madre a esta agencia de noticias. Pronunció su nombre a los 3 meses; a los 18 meses me pedía “que encendiera una lámpara para animarme” y podía reconocer palabras a los 20 meses, dijo.

Balaji parecía tener una habilidad especial para la tecnología, las matemáticas y la informática, llevándose a casa trofeos y ganando renombre, incluso en la Olimpiada de Computación de los Estados Unidos de América de 2016.

En 2020, comenzó a trabajar para OpenAI y consideró admirable el entonces compromiso de la compañía de operar como una organización sin fines de lucro, dijo su madre. Su opinión sobre la empresa se agrió en 2022 mientras le asignaban la tarea de recopilar datos de Internet para el programa GPT-4 de la empresa, informó el New York Times. El programa analizó texto de casi todo Internet para entrenar su programa de inteligencia artificial, informó el medio.

Ramarao dijo que no estaba al tanto de la decisión de su hijo de hacer públicas sus preocupaciones sobre OpenAI hasta que el periódico publicó su entrevista. Si bien ella inmediatamente sintió ansiedad por su decisión, llegando incluso a implorarle que hablara con un abogado de derechos de autor, Ramarao también expresó orgullo por la valentía de su hijo.

“No dejaba de asegurarme: ‘Mamá, no estoy haciendo nada malo, ve a ver el artículo’. Sólo digo que, en mi opinión, no hay nada malo en ello”, dijo Ramarao, una ex empleada de Microsoft que trabajó en su programa de computación en la nube Azure. “Lo apoyé. No lo critiqué. Le dije: ‘Estoy orgulloso de ti, porque tienes tus propias opiniones y sabes lo que está bien y lo que está mal’. Era muy ético”.

Después de dejar la empresa, Balaji decidió crear una organización sin fines de lucro, centrada en los campos del aprendizaje automático y las neurociencias, dijo Ramarao. Ya había hablado con al menos un capitalista de riesgo para obtener financiación inicial, dijo.

“Les pregunto: ‘¿Cómo vas a manejar tu vida?’ “Dijo Ramarao. Recordó cómo su hijo intentó repetidamente disipar cualquier preocupación sobre sus finanzas, sugiriendo que “el dinero no es importante para mí; quiero ofrecer un servicio a la humanidad”.

Balaji también parecía tener una agenda ocupada. Cumplió 26 años durante un viaje de mochilero a las Islas Catalina con varios amigos de la escuela secundaria. Este tipo de viajes eran para él algo habitual: en abril viajó con varios amigos a la Patagonia y América del Sur.

Balaji habló por última vez con sus padres el 22 de noviembre, una llamada telefónica de 10 minutos que se centró en su reciente viaje y que terminó hablando de cenar.

“Estaba muy feliz”, dijo Ramarao. “Se lo pasó genial. Pasó uno de los mejores momentos de su vida”.

Los padres de Suchir Balaji, Poornima Ramarao, izquierda, y Ramamurthy Balaji, derecha, sostienen una fotografía de su hijo de 2022, en su casa en Union City, California, el lunes 23 de diciembre de 2024. Suchir Balaji, de 26 años, es un ex investigador de OpenAI conocido por denunciar la exitosa compañía de inteligencia artificial que fue encontrado muerto en su apartamento el pasado mes de noviembre. (Nhat V. Meyer/Bay Grupo de noticias del área)
Los padres de Suchir Balaji, Poornima Ramarao, izquierda, y Balaji Ramamurthy, derecha, sostienen una fotografía de su hijo de 2022, en su casa en el condado de Alameda, California, el lunes 23 de diciembre de 2024. Suchir Balaji, de 26 años, es un ex investigador de OpenAI conocido por denunciar la exitosa compañía de inteligencia artificial que fue encontrado muerto en su apartamento el pasado mes de noviembre (Nhat V. Meyer/Grupo de Noticias del Área de la Bahía)

Ramarao recuerda haber llamado a su hijo poco después del mediodía del 23 de noviembre, pero dijo que sonó una vez y saltó el correo de voz. Pensando que él estaba ocupado con amigos, no intentó visitar su departamento hasta el 25 de noviembre, cuando llamó pero no obtuvo respuesta. Dijo que llamó a las autoridades esa noche, pero supuestamente un centro de despacho de la policía le dijo que poco se podía hacer ese día. Ella hizo un seguimiento el 26 de noviembre y la policía de San Francisco encontró más tarde el cuerpo de Balaji dentro de su apartamento.

Ramarao dijo que no le informaron de la muerte de su hijo hasta que apareció una camilla frente al apartamento de Balaji. No se le permitió entrar hasta el día siguiente.

“Nunca podré olvidar esa tragedia”, dijo Ramarao. “Se me rompió el corazón”.

Ramarao cuestionó la investigación de las autoridades sobre la muerte de su hijo, afirmando que la policía de San Francisco cerró su caso y lo entregó a la oficina del médico forense del condado una hora después de descubrir el cuerpo de Balaji.

Ramarao dijo que desde entonces ella y su marido encargaron una segunda autopsia del cuerpo de Balaji. Ella se negó a revelar cualquier documento de ese examen. Su abogado, Phil Kearney, se negó a comentar sobre los resultados de la autopsia independiente de la familia.

La semana pasada, el portavoz de la policía de San Francisco, Evan Sernoffsky, remitió las preguntas sobre el caso a la oficina del médico forense. David Serrano Sewell, director ejecutivo de la Oficina del Médico Forense Jefe, declinó hacer comentarios.

Sentada en el sofá de su sala, Ramarao sacudió la cabeza y expresó su frustración por los esfuerzos de investigación de las autoridades hasta el momento.

“Como padres afligidos, tenemos derecho a saber qué le pasó a nuestro hijo”, dijo Ramarao. “Estaba tan feliz. Fue muy valiente”.

Si usted o alguien que conoce está luchando contra sentimientos de depresión o pensamientos suicidas, 988 Suicide & Crisis Lifeline ofrece apoyo, información y recursos de ayuda gratuitos las 24 horas. Llame o envíe un mensaje de texto a Lifeline al 988, o visite el sitio web 988lifeline.org, donde está disponible el chat.

Publicado originalmente:

Continue Reading

Trending