Noticias
OpenAI Researcher Dan Roberts on What Physics Can Teach Us About AI
Contents
Dan Roberts: In the 40s, the physicists went to the Manhattan Project. Even if they were doing other things, that was, that was the place to be. And so now AI is the same thing and, you know, basically OpenAI is that place. So maybe, maybe we don’t need a public sector organized Manhattan Project, but it, you know, it can be OpenAI.
Sonya Huang: Joining us for this episode is Dan Roberts, a former Sequoia AI Fellow who recently joined OpenAI as a researcher. This episode was recorded on Dan’s second-to-last day at Sequoia, before he knew that he would go on to become a core contributor to o1, also known as Strawberry.
Dan is a quantum physicist who did undergraduate research on invisibility cloaks before getting a PhD at MIT and doing his postdoc at the legendary Princeton IAS. Dan has researched and written extensively about the intersection of physics and AI.
There are two main things we hope to learn from Dan in this episode. First, what can physics teach us about AI? What are the physical limits on an intelligence explosion and the limits of scaling laws, and how can we ever hope to understand neural nets? And second, what can AI teach us about physics and math and how the world works?
Thank you so much for joining us today, Dan.
The path to physics
Dan Roberts: Thanks. Delighted to be here on my, probably, second-to-last day at Sequoia. Depending on when this airs and how you’re going to talk about it.
Pat Grady: You will always be part of the Sequoia family, Dan.
Dan Roberts: Thanks, I appreciate it.
Sonya Huang: Maybe just to get started tell us a little bit about “Who is Dan?” You have a fascinating backstory. I think you worked on invisibility cloaks back in college. Like, what led you to become a theoretical physicist in the first place?
Dan Roberts: Yeah, I think–and this is, you know, my stock answer at this point, but I think it’s true–I was just an annoying three year old who never grew up. I asked “why” all the time. Curious. How does everything work? I have a 19-month at home right now, and I can see the way he followed the washing machine repairman around and had to look inside the washing machine. So like, I think I just kept that going. And when you’re more quantitatively oriented than not, rather than going to philosophy I think you sort of veer into physics. And that was sort of what interested me. How does the world work? What is all this other stuff that’s out there?
The question that you didn’t ask, but maybe I’ll just answer it ahead of time–the sort of inward facing stuff felt less quantitative and more in the realm of the humanities. Like, so “What is all this stuff?” That’s pretty physics-y. “What am I? Who am I? What does it mean to be me?” That felt not very science-y at all. But with AI it sort of seems like we can think about both “What does it mean to be intelligent,” and also “What is all this other stuff?” in some of the same frameworks. And so that’s been very exciting for me.
Sonya Huang: So we should be trying to recruit your 19-month-old right now is what you’re saying?
Dan Roberts: Oh yeah. Absolutely. He grew out of one of his Sequoia onesies, but he fits into a Sequoia toddler t-shirt now. And so he definitely is ready to be a future founder.
Sonya Huang: I guess, at what point did you know that you wanted to think about AI? At what point did that switch start to flip?
Dan Roberts: Yeah. So, I think like many people, when I discovered computers, I wanted to understand how they worked and how to program them. In undergrad, I took an AI class and it was very much good old fashioned AI. A lot of the ideas in that class actually are coming back to be relevant, but at the time it was, it seemed not very practical. It was a lot of, you know, “If this happens, do that.” And there was also some game-playing there. That was sort of interesting. It was very algorithmic, but it didn’t seem related to what it means to be intelligent.
What does it mean to be intelligent?
Pat Grady: Can we just pick up on that real quick? Like, what do you think it means to be intelligent?
Dan Roberts: That’s a great question.
Pat Grady: I can see wheels turning.
Dan Roberts: Yeah. Well, this is one of those questions where I don’t have a stock answer, but I think it’s important to not say nonsense. One of the things that’s exciting to me about AI is the ability to have systems that do what humans do, and to be able to understand them from “What are the lines of Python that cause that system to do something?” to, you know, to trace that through and understand what are the outputs, and you know, how the system can like, see and classify what it means. You know, “What is a cat? What is not a cat?” Or can write poetry and, you know, it’s just a few lines of code. Whereas, if you’re trying to study humans and ask, “What does it mean for humans to be intelligent?” you have to go from biology, through neuroscience, through psychology, up to other higher level versions of ways of approaching this question.
And so, I think maybe a nice answer for intelligence, at least the things that are interesting to me, is “The things that humans do.” And now, if you pull back the answer that I just said a second ago, that’s how I connect it to AI. AI is taking pieces of what humans do, and we’re understanding, at least an example that’s kind of simple and easy to study, that we might use to understand better what what it is that humans do.
The path to AI
Sonya Huang: So Dan, you mentioned when you were, you know, studying AI in college, there was a lot of what sounds like kind of hard-coded logic and brute force type approaches. Was there a moment that kind of clicked for you, of like, “Oh, okay. This is different”? Was there a key result or a moment where it was like, “Okay, we’re going bigger places than kind of the ‘if this, then that’ logic of the past”?
Dan Roberts: Yeah, actually it didn’t click. I sort of wrote it off. And it would be great if there was a separation between like ten years between then and the next thing that I’m going to say, but actually the writing-off maybe lasted a year or two, because then I went to the UK for the first part of grad school. I spent a very long time in grad school and I discovered machine learning and a more statistical approach to artificial intelligence, where you have a bunch of examples of large amounts of data. Or at the time, maybe we wouldn’t have said large amounts of data, but we would have said, you have data examples of a task that you want to perform. And there’s different ways that machine learning works, but you write down a very flexible algorithm that can adapt to these examples and start to perform in a way similar to the examples that you have.
And that approach borrows a lot from physics. It also, at the time, I started… So graduated college in 2009. Discovered machine learning in 2010, 2011. 2012 is the big year for deep learning. And so, you know, there’s not a big separation here between write-off and rediscovery. But I think–and machine learning clearly existed in 2009, it just wasn’t related to the class that I took–but this approach made a lot of sense to me. And it started to have, you know, I got lucky, and then it started to have real progress and seemed to fit in a framework that I understood scientifically. And I got very excited about it.
Sonya Huang: Why do you think there are so many people who come from a similar background or similar path to you? Like, a lot of ex-physicists working on AI. Like, is that a coincidence? Is that herd behavior, or do you think there’s something that makes physicists particularly well suited to understanding AI?
Dan Roberts: I think the answer is yes to all the ways you…
Sonya Huang: All the above.
Dan Roberts: You know, physicists infiltrate lots of different subjects, and we get parodied about the way that we go about trying to use our hammers to tackle these things that may or may not be nails. Throughout history, there are a lot of times that physicists have contributed to things that look like machine learning. I think in the near term, the path that physicists used to take when they didn’t remain in academia often was going into quantitative finance, then data science. And I think machine learning, and its realization in industry, was exciting because, again, it’s something that feels a lot like actual physics and is working towards a problem that’s very interesting and exciting for a lot of people.
You know, you’re doing this podcast because you’re excited about AI. Everyone’s excited about AI. And in many ways it’s a research problem that feels a lot like the physics that people were doing. But I think the methods of physics actually are different from the methods of traditional computer science and very well suited for studying large scale machine learning that we use to work on AI.
Traditionally physics involves a lot of interplay between theory and experiment. You come up with some sort of model that you have some sort of theoretical intuition about. Then you go and do a bunch of experiments and you validate that model or not. And then there’s this tight feedback loop between collecting data, coming up with theories, coming up with toy models. Understanding moves forward by that. And, you know, we get these really nice explanatory theories. And I think the way that big deep learning systems work, you have this tight feedback loop where you can do a number of experiments. The sort of math that we use is very well suited to the math that a lot of physicists are familiar with. And so I think it’s very natural for a lot of physicists to work on this. And those tools, a number of them differ from the traditional, at least theoretical, computer science and theoretical machine learning tools for studying the theoretical side of machine learning, and maybe also differentiation between just being an awesome engineer and also being a scientist. And there’s tools from doing science that are helpful in studying these systems.
Pat Grady: Dan, you wrote this, what I thought was a beautiful article, Black Holes and the Intelligence Explosion, and in there you talk about this concept of, sort of the microscopic point of view, and then the system level point of view and how physics really equips people to think about the system level point of view, and that has a sort of complimentary benefit to understanding these systems. Can you just take a minute and kind of explain sort of microscopic versus system level, and how the physics influence helps to understand the system level?
Dan Roberts: Sure. So, let me start with an analogy that I think is, like, very, you know, goes even further than an analogy. But going back, what year is it? Maybe like 200 years or so around the time of the Industrial Revolution, there was steam engines and steam power and a lot of technology that resulted from this and ultimately powered industrialization. And in the beginning, there was a lot of engineering of these steam engines, you know, and there was this high level theory of how this work called thermodynamics, where, you know, and I imagine everyone’s seen this in high school, perhaps where, you know, there’s the Ideal Gas Law that tells you that there’s some relationship between pressure and volume and temperature. And, you know, these are very macro level things. Like you can buy a thermometer. You can also measure the volume of your room and you can buy a barometer as well. Maybe people don’t or look up on the weather report. But, you know, these are like measurements that we use and we talk about. But then underlying this, and it took us a bit later to validate this and understand it, there’s the notion of atoms and molecules, the air molecules bouncing around. And somehow we now understand that those air molecules give rise to things like temperature and pressure and volume. I guess it is easier to understand that the gases, the molecules, are confined to a room.
But there’s a precise way in which you can start with a statistical understanding of those molecules and derive thermodynamics, like, derive the Ideal Gas Law from it. And you can go further than that to derive that it’s ideal because it’s wrong. It’s just a toy model. But you can, there are corrections to it, and you can sort of understand, you know, from the microscopic perspective, which is the molecules, which we don’t really interact with. You know, we don’t see them, we don’t interact with them on a day-to-day basis, but their statistical aggregate properties give rise to, sort of, this behavior that we do see at the macro scale.
And part of, to get to your question, you know, I think there’s a similar thing going on with deep learning systems. And I wrote a book with Sho Yaida and Boris Hanin on how to apply these sorts of ideas to deep learning, and, at least in an initial framework that allows you to start doing this in an initial way. And to answer your question, the sort of micro perspective is you have neurons and weights and biases, and we can talk about in detail how that works, but when people think of the architecture, there’s some very specific, some people say circuits, there’s specific ways in which these things, you know, there’s an input signal which might be an image or text, and then there’s many parameters. And, you know, it’s very simple to write down. It’s not that many lines of code even taking into account the machine learning libraries, but it’s, you know, it’s like a very simple set of equations. But there’s a lot of weights. There’s a lot of numbers that you have to know in order to get it to do something. And that’s sort of the micro… that’s like the molecules perspective.
And then there’s like the macro perspective, which is, well, what did it do? Did it produce a poem? Did it solve a math problem? How does, how do we go from that, those weights and biases to, to that macro perspective? And so for statistical physics to thermodynamics, we understand that completely. And you can imagine trying to do the same sort of thing, literally applying the same sorts of methods to understand how does the underlying micro statistical behavior of these models lead to the sort of macro or, as you said, system level perspective?
Sonya Huang: Dan, maybe speaking of scaling laws, and I think you were at our event, AI Ascent, Andre Karpathy mentioned that current AI systems are like 5 or 6 orders of magnitude off in efficiency compared to biological neural nets. How do you think about that? Do you think scaling laws get us there? Just a combination of scaling laws plus hardware getting more efficient or, like, do you think that there’s kind of big step function leaps that need to come in research?
Dan Roberts: There’s maybe two things that could be meant here. One is that the way humans seem to work at a similar scale to AI systems is much more efficient. You know, we don’t need to see trillions of tokens before we speak. You know, my toddler is already starting to speak in sentences. And he’s been exposed to far less tokens than a typical large language model. And so there’s some sort of disconnect between human efficiency at learning and what large language models do. Of course, they’re very different systems. They’re designed, you know, the way in which they learn is right now very different. And so in some sense that’s to be expected. So, there’s this gap here that you could imagine bridging.
There’s another thing that I think is not what you meant, but I think is sort of the thing to answer about with respect to scaling laws, which is, and I talked about this a bit in the article, but lots of people seem to talk about this, which is “What is the final GPT?” You know, there’s GPT-4 right now, and it could be other companies as well, but since I’m going to join OpenAI let me represent my new company, right? So is it going to be six? Is it going to be seven? At some point, assuming we have to scale things up, there are things that are going to break. Whether they’re economic, we’re going to run out of, you know, we’re going to try to train a model that’s larger than the world’s GDP or GWP, however, the D works for the world. Or we’re going to run out of, you know, we’re not going to be able to produce enough GPUs. Or we’re not going to be able to put, you know, it’s going to cover the surface of the Earth. You know, a lot of these things are going to break down at some point. And so probably the economic one happens first. So how many, you know, how many more iterations do we get before we run out of actually being able to scale practically? And where does that get us? And then, I think, to tie those two perspectives together, there’s scaling on its own. And of course, it’s impossible to disentangle this because people are making things more efficient.
But you know, there’s like, you could imagine there’s the, take literally what GPT-2 was, which was the initial big model, and keep scaling it up. Is that going to get us to some, you know, super different, exciting, economically powerful, or however you want to define what the end state of AI research and AI startups and AI in industry is? Or do we need lots of new exciting ideas? And, and again, of course, you can’t really disentangle these, but I think the general scaling hypothesis is that it’s just the scaling and it’s not the ideas that matter. Whereas, the “How do we get to be efficient like humans?” I think requires, like, non-trivial ideas. And to answer your question, the reason I’m excited about joining OpenAI is that I think there is high leverage to be had in the ideas, you know, in going beyond scaling, and that we will need that in order to get to the next steps. I have no idea what I’ll be working on, but when this airs I guess I will know what I’m working on, but you know that that’s what’s really exciting to me.
The pendulum between scale and ideas
Pat Grady: Dan, is there almost like a pendulum that swings back and forth between scale and ideas in terms of how people apply their efforts in the world of AI? Like, transformers came out. Great idea. Since then, we’ve largely been in this race to scale. It feels like things are starting to asymptote for a bunch of practical reasons that you mentioned. Is the pendulum swinging back toward ideas as the currency? You know, it’s less now about who can, you know, have the biggest GPU cluster and more about finding new architectural breakthroughs, whether that’s, you know, reasoning or something else?
Dan Roberts: Yeah. That’s a really great question. I think there’s this article by Richard Sutton called The Bitter Lesson, not the bitter pill, and it basically gives the argument that ideas aren’t important, that scale is what you need, and that all the ideas are always trumped by scaling, by scaling things up. It says a bunch of things, but maybe that’s a high level takeaway. And, you know, there’s a sense of this where there are a lot of interesting ideas that came out in the 80s and 90s that people didn’t really have scale to explore. And then, I remember when, after AlphaGo and DeepMind was writing a lot of papers, people were rediscovering those papers and re-implementing them in deep learning systems. But this was sort of still before people realized, “No, the thing that you need to do is scale up.” And even now, with transformers, people are exploring other architectures or even simpler architectures that we knew before that seem to be able to, you know, there’s a notion, you know, maybe scaling laws don’t come from as long as the architecture isn’t sick in some way.
They come from sort of the underlying data process and having large amounts of data rather than from having a special idea. I think the real answer is that there’s a balance between the two. That scale is hugely important, and maybe it was just not understood how important. And we also didn’t have the resources to to scale things up at various times, you know, the things that have to go into producing these GPU clusters that are producing these models are, you know, you guys know this as well, like there’s a lot of parts along the supply chain, or along the product chain, whatever you actually call it, in order to make those things happen and to deploy them. And even, you know, the way GPUs were originally, they’ve now co-evolved to be well suited for these models. And the reason, in some sense, you can think of transformers was a good idea was because it was designed to be well-suited to train on the systems that we had at the time. And so sure, these other architectures could do it at an ideal scientific level, but at a practical level, it was important to to get something that was that that was able to to reach that scale.
So I think, you know, if you brought in ideas to be that sort of thing that’s married with scale in some way, then I still think ultimately, like, you know, someone came up with the idea of deep learning. That was an important idea. You know, there’s Pitts and McCulloch came up with the original idea for the neuron. Rosenblatt came up with the original perceptron. And there’s like a lot of people, from going back like 80 or so years, of people just making important discoveries that were ideas that contribute. So, I think it’s both. But it’s easy to see how, you know, if you’re bottlenecked, people think about ideas. And then if you unlock a new capacity of scale somehow, then you just see a huge set of results. And it seems like scale is super important. And I really think it’s more of a synergy between the two.
The Manhattan Project of AI
Sonya Huang: Maybe on the topic of the race to scale, Dan, you mentioned kind of just the economic constraints and realities, which I guess are more, like, practically a ceiling in the private sector. You also mentioned the Manhattan Project earlier in terms of things that physicists have been involved with. Like, do you think we need a Manhattan Project style thing for AI? Like at the nation state or at the international level?
Dan Roberts: Well, one thing I can say is that part of the process that led me to OpenAI is I was talking with your partner, Shaun Maguire, who brought me to Sequoia in the first place, and trying to figure out is there a startup that makes sense for me to work on that has the right mix of, sort of, scientific questions, research questions, and also as a business? And I think it was Shaun that said–and I don’t mean the analogy in terms of the impact of, you know, in terms of like negative impact of what you might think of the Manhattan Project, but just in terms of the scale and the organization–he said, “You know, in the 40s, the physicists’ physicist went to the Manhattan Project. Even if they were doing other things, that was the place to be.” And so now AI is the same thing, and basically said OpenAI is that place. So maybe, maybe we don’t need a public sector organized Manhattan Project, but it, you know, it can be OpenAI.
Sonya Huang: OpenAI as the Manhattan Project. I love that.
Dan Roberts: Well, maybe that’s not a direct quote that we want to be taken out of context, but I think in terms of…
Sonya Huang: The metaphorical Manhattan Project.
Dan Roberts:Yeah. In terms of scale and ambition. I mean, I think a lot of physicists would love to work at OpenAI for a lot of the same reasons that they probably were excited to… Well, okay, there’s a number of different reasons. Maybe we just have to leave it as a nuanced thing rather than making broad claims.
AI’s black box
Sonya Huang: Can we talk a little bit about this… Like, can we ever understand AI, especially as we go to these deep neural nets, or do you think it’s a hopeless black box, so to speak?
Dan Roberts: Yeah, I think within the… This is my answer to the “What are you a contrarian about?” Although maybe, you know, on the internet everyone takes every side of every position, so it’s hard to say you have a contrarian position. But I think within AI communities, you know, I think my contrarian position is that we can really understand these systems. And in, you know, physics systems are extremely complicated, and we have made a huge amount of progress in understanding them. I think these systems sit in the same framework. And, you know, another principle that Sho and I talk about in our book, and that’s a principle of physics, is that there’s this often extreme simplicity at very large scales, basically due to the statistical averaging, or more technically, the central limit theorem. Things can simplify–and I’m not saying this is what happens exactly in large language models, Of course not–but I do think that we can apply sort of the methods that we have and also, you know, maybe hopefully have AI that can help us do this in the future. And by AI, I mean tools. Not like individual intelligences just going running on their own and solving these problems. But I guess I feel at the extreme end that this is not going to be an art, that the science will will catch up and that it will will be able to make extreme leaps in really understanding how these systems work and behave.
What can AI teach us about physics?
Pat Grady: So, Dan, we’ve talked a bunch about what physics can teach us about AI. Can we talk a bit about what AI can teach us about physics? Are you optimistic about domains like physics and math and how these emerging models can, you know, probe further into those domains?
Dan Roberts: Yes, I’m definitely optimistic. I guess my perspective is that math will be easier than physics, which maybe betrays the fact that I’m a physicist, not a mathematician. And I’ll say–I can give explain why I think that in a second–but, you know, I still have a lot of friends that work in physics and they, you know, there’s like a growing sense and maybe even approaching a dread, that maybe this is actually the answer to “Why do physicists work on AI?” Because, you know, if what you care about is the answer to your physics question and you want to make it happen as soon as possible, what is the highest leverage thing you can do? Maybe it’s not work on the physics question you care about, but it’s work on AI to make the, you know, because you think that the AI might end up solving those questions very rapidly anyway. And I don’t know the extent that anyone really takes it seriously, but I think within the theoretical physics community that I come from, that this is sort of a thing that somewhat gets thrown around and discussed.
I think maybe to give a more object-level answer, I think what’s exciting about math–and maybe when you have Noam Brown on, if you have him on, he’ll talk about this, but this is something that that he’s talked about for a while before he joined OpenAI–I think the that we have, you know, we made a lot of progress in terms of solving games by doing more than just looking up what is the strategy that we should use to play the games, but also being able to simulate forward and, you know, the way that if I’m in a very hard position in a particular game, rather than just playing with intuition, I might sit and think about what I should do. Yeah, sometimes this goes under the name inference-time compute rather than raining-time compute or pre-training. And you know, there’s a sense in which what it means to do reasoning is very related to this ability to sit and think. So we know how to do it for games because there’s a very clear winning and loss signal. So you can simulate ahead and sort of figure out what it means to do good or not. And I think math, in some parts of math–again, I’m not a mathematician and well, you know, I’m always scared about talking about math publicly and saying something wrong that will upset mathematicians–but it seems like certain types of math problems are not as constrained as games, but are still constrained enough where there’s a notion of like finding a proof, right? You know, there’s definite problems in terms of search, in terms of how do you figure out what is the next, you know, move in the proof, but the fact that we might call it a move suggests that there’s things in math that feel a lot like games. And so we might think the fact that we can do well at games maybe means that we can do well at certain types of mathematical discovery.
Can AI help solve physics’ biggest problems?
Pat Grady: Well, I was going to say since you mentioned Noam, he likes to use the example with test-time compute of whether it could help to prove the Riemann hypothesis. Is there a similar problem or hypothesis in the world of physics that you are optimistic AI can help to solve sometime in our lifetimes?
Dan Roberts: Yeah. So, I mean, there’s a Millennium Problem relating to physics–and if I try to remember exactly what it is I’m sure I will butcher it and then no one will believe that I’m actually a physicist–but it’s related to the, you know, it’s a mathematical physics question related to the Yang-Mills mass gap. But I think, what I wanted to say is that I think some of the flavor of what physicists care about and doing physics feels a little different. This is where I might get in trouble. It feels a little different than some of, like, the mathematical proof type things. Physicists are known to be more informal and, you know, hand-wavy. But also, on the other hand, connected to, in some sense, connected to the interplay between experiment and the sort of models that physicists study is maybe what saves them is that, you know, they have things that are informal and hand-wavy, but very explanatory. And then the mathematicians, it’s like we were saying earlier, the engineers discovered all the exciting industrial machines, and the physicists maybe cleaned up a bunch of the theory about how that works. And then the mathematicians come later and clean up, like, formalize everything and clean it up even more. And so there’s a mathematician or mathematical physicist that cleans up a lot of, you know, make proper and try and, you know, understand in formal ways some of the stuff that physicists do.
But rather than talking about–I mean, I think the key point there is that the sort of questions that are interesting to physicists maybe don’t look like proofs, and maybe it’s not about how do we, given a particular model, how do we actually solve it? Like once things are set up correctly, like it’s often, you know, senior or you know, people that are trained in the field are able to sort of figure out how to analyze those systems. It’s more the other stuff. Like, what is the right model to study? Does it capture the right sort of problems? Does this relate to the thing that you care about? What are the insights you can draw from it? And so for AI to help there, I think it would look different than the way we’re sort of trying to build AI systems for math. So rather than here’s, you know, here’s the word problem going, you know, solve this high school level problem or, you know, prove the Riemann hypothesis.
It’s like, you know, the questions in physics are like, “What is quantum gravity? What happens when something goes into a black hole?” And that’s not like, you know, start generating tokens on that. What does that even look like? And you know, if you go to a physics department, you know, people hang out at the blackboard. They chat about things. Like, maybe they sketch mathematical things, but you know, there’s a lot of other things that go into this. And so maybe the sort of data that you need to collect looks more like that. Or maybe it looks like the random emails and conversations on Slack and the scratch work. And so, I mean, there are definitely tools that we can use, like “Help me understand this new paper so I don’t have to spend two weeks trying to study it and understand it.” You know, maybe let me ask questions about it. I think there are problems with the way that’s currently implemented.
But, you know, I think there are a lot of tools that will help accelerate physicists just like Mathematica, which is a software package that does integrals, and it does a lot more than that. Sorry, Stephen Wolfram. But I use it to do integrals and, you know, sometimes it doesn’t know integrals and you can look them up in like these integral tables. Anyway. You know, I think, you know, and this applies to other branches of science too. Like, I think the ways in which the questions are asked and what it means to do science in different fields, maybe can look further and further from gains, let’s just say. And so to the extent that that’s true, I think we’ll need to. And not even clear that we’ll need lots of ideas or I mean, we we will need lots of ideas, but it’s more just like, we’ll have to, I think, we’ll just have to approach them all differently. And maybe not, like maybe eventually we’ll have a universal thing that knows how to do all of it. But initially, like at least to me, a lot of these things feel a little different from each other.
Sonya Huang: You’ll have a front row seat to it, in part because you’re also on the prize committee for the AI Math Olympiad, which is something I’m personally super interested in.
Maybe to your last point on, kind of like, maybe eventually this stuff generalizes. Like, why do you think people are so focused on solving the hardest problems today, like physics, math? Those were the subjects that everyone was terrified of in school, right? Where it feels like there’s a lot more other domains that are also unsolved for now. Like do you think, do you think going for the hardest domains first kind of lets you get towards a generalized intelligence? Like how does solving these different domains kind of fit together in the grander puzzle?
Dan Roberts: Yeah. The first thing that comes to mind when you said that is to just push back and say, “Well, it’s not hard. These are the easy domains.” I mean, I’m bad at biology. It doesn’t make any sense to me at all. My girlfriend actually is in bioengineering and is in biotech. And so, like, what she does just makes no sense to me. I can’t understand any of it, where physics makes complete sense to me. I think maybe a better answer or a less glib answer is that, like I was trying to say about math, there are constraints. And, you know, in particular with math, a lot of it is unembodied. You don’t have to go and do experiments in the real world. You know, they’re sort of self-sufficient and that’s close to, like, what generating text, like the way language models work, or even the way some reinforcement learning systems work for games. And so, I think the further that you go from that, the messier things become, the harder it probably is, and also the harder it is to get the right kind of data to train these systems.
If you want to build an AI–and people are trying to do this, but it seems difficult–if you want to build an AI system that solves biology, I guess you need to also make sure robotics works, you know, so that it can do those sorts of experiments and like it has to understand that sort of data. Or maybe it has humans do it. But, you know, there’s a lot, you know, for a self-sustaining AI biologist, it seems like there’s a lot of things that are going to go into it. I mean, on the way, we’ll have things like AlphaFold 3, which just came out and which I didn’t get a chance to read the details of, but, you know, I saw that they’re trying to use it for drug discovery. And so, you know, I think each of these fields will have things developed along the way. But I think the less constraints there are and the sort of messier and more embodied it is, the harder it will be to accomplish.
Sonya Huang: No, that makes sense. So, like hard for a human is not the same thing–doesn’t correlate to hard for machine.
Dan Roberts: Yeah. Plus, also maybe humans disagree about what’s hard or not.
Sonya Huang: Some of us think more like machines, I guess. And then I guess the second question was like, do you think it all coalesces into, like, one big model that understands everything? Because right now it seems like there’s a lot of domain-specific problem solving that’s happening.
Dan Roberts: Yeah. I mean, the way things are going, it seems like the answers should be yes. It’s really dangerous to speculate in this field because everything you say is wrong. Usually much sooner than later.
Sonya Huang: Good thing we’re on record. We’ll hold you to it.
Dan Roberts: Yeah, exactly. But also, like, what does it mean to be different? You know, like, there’s a trivial way to make both things–make the question meaningless–by, like you say, the model is the union of all those other models. But there’s also a sense in which mixture of experts was originally meant to be that, it’s not that in practice at all. But, you know, there is a sliding scale here. But, you know, it does seem like people, at least the big labs, are going for the one big model and have a belief that that’s, you know, well… I don’t know, but maybe I will in the future, understand what the philosophy is there.
Lightning round
Pat Grady: Dan, we have a handful of more general questions to kind of close things out here. So I’ll start with the high level one. If we think kind of short-term, medium-term, long-term and call it, you know, five months, five years, five decades, what are you most excited or optimistic about in the world of AI?
Dan Roberts: Five years ago was after the transformer model came out, but it was around maybe when GPT-2 came out. So it seems like, you know, for the last five years we’ve been doing scaling. I imagine within the next five years, we’ll see that scaling will terminate. And maybe it will terminate in, you know, a utopia of some kind, you know, that people are excited about where we’re all post-economic and so forth, and we’ll have to shut down all your funds and, you know, return monopoly money because money won’t matter. Or we’ll see that we need lots of ideas. Maybe there will be another AI winter.
I imagine that–and again, scary to really speculate–but I imagine, like something will be something will be interestingly different within five years about AI. And it might just be that AI is over and we’re on to the, you know, we’re on to the next exciting investment opportunity. And, you know, everyone else will shift elsewhere. And you know, I’m not saying that. That’s not what’s motivating me about AI, but, you know. So maybe five years is enough time to see that. And I think in, in one year, I mean, or there’s a five. I messed this up. Whatever. Maybe it was five months, I don’t remember. I’m sorry.
Pat Grady: It’s five months. It’s okay, it’s okay. These are approximations. I know you said physicists are very hand-wavy. Venture capitalists are very hand-wavy. These are approximations.
Dan Roberts: In physics there’s–I like to joke that there’s like three numbers. There’s zero, one and infinity. And, you know, those are the only numbers that matter. You know, things are either arbitrarily small, arbitrarily large, or about order one.
So. Okay. Good. Thanks for reminding me. But yeah, for five months, I mean, I’m excited to well, to learn what’s exciting at the forefront of a huge research lab like OpenAI. And I think one thing that will be interesting will be the delta between the next generation of models, right? Because there’s ways in which things are scaling up in terms of, it’s not really public, I guess, aside from Meta, but in terms of size of data, size of models. And we see scaling laws that relate to, you know, something like the loss and, you know, it’s hard to translate that into actual capabilities. And so what will it feel like to talk to the next generation model? What will it look like? Will it have a huge economic impact or not? And I think I, you know, in terms of estimating velocity, right, you need a few points. You can’t just have one point. And we sort of have, you know, we’re starting to have that with GPT-3 to GPT-4. .But, you know, I feel like with the next delta, we’ll get to really see what the velocity looks like and what it feels like going from model to model to model. And maybe I’ll be able to make a better prediction in five months from now, but then I guess I probably won’t be able to tell it to you guys.
Sonya Huang: Thanks, Dan. One thing that stood out to me is just like your writing is so accessible and light and funny, and that’s not what I’m used to when I read super technical stuff. Like, do you think all technical writing should be informal and funny? Like, is that deliberate?
Dan Roberts: It’s definitely deliberate. It goes into, I think in some sense it’s inherited. I mean, I definitely am a not serious person, but I also think it’s an inherited, sort of, from the style of the field that I came from. But I’ll tell you a story. I was at lunch. I was a postdoc at the Institute for Advanced Study in Princeton, and I was having lunch and joking around with this professor, Nati Seiberg, who’s a professor at the institute. And then we got into, I think we were talking about someone, someone asked a question about, like, “What is a good title?” And I was like, “Oh, the title has to be a joke.” And he was on board with that. And then I was explaining that for me, the reason to write a paper is for the jokes. Like you have a bunch of jokes in mind, and then you want people to read those jokes. And so you have to package it into the science product, and people want to read the science product, and they’re forced to suffer through the jokes. And Nati, who is this Israeli professor, he was like, “I don’t get it. Why? Why can’t you just do the science? Why do you need the, like… the jokes are great too, but like, you should write for the science, not for the jokes.”
And I was adamant that I write for the jokes. But I think it’s, I think it’s what you said that at some point, you know, you learn about the scientific method and, you know, the, the formal ways of doing things, and you learn all these rules and then you grow up a bit. Or maybe, I had a roommate who was a linguist, he’s now a professor of linguistics at UT Austin, and like, he emphasized that you can–he would tell me which rules that I could break or what, like where the rules come from and why they’re important or not. And you sort of realize that you can break these rules. And, like, the ultimate goal should be, is the reader going to read it and understand it and enjoy it. So you don’t want to do things that compromise their ability to read and understand. But you don’t want to obscure things. You want to make it, you know, if it’s more enjoyable, people are more likely to read it and take the point. It’s also more fun if you’re writing it. So I think that’s where that comes from.
Sonya Huang: Dan, thank you so much for joining us today. We learned a lot. We enjoyed your jokes and I hope you have. I hope you have a wonderful second-to-last day at Sequoia. Thank you for spending part of it with us. We really appreciate it.
Dan Roberts: Thanks. I was absolutely delighted to be here chatting with you guys. This was wonderful.
Noticias
La iniciativa de respaldo OpenAI de Sam Altman encabezada por varios miembros del personal anti-Trump que impulsan causas liberales
OpenAI se ha asociado con una nueva iniciativa de IA liderada por un grupo cofundado con salientes Enviado presidencial especial para el clima, John Kerry que ha impulsado causas de izquierda y tiene varios miembros de la junta alineados con los demócratas.
OpenAI, dirigida por el director ejecutivo Sam Altman, respalda una iniciativa conocida como AI 2030, que tiene como objetivo dar forma al “diálogo público sobre la competencia de Estados Unidos contra China en IA”, Politico informó en octubre.
La iniciativa está liderada por el grupo de expertos “no partidista” American Security Project (ASP), del que Kerry fue miembro fundador y sirvió dos períodos en la junta directiva.
ASP tiene promovió la idea que el cambio climático es una amenaza a la seguridad nacional, y argumentó en su sitio web que retirarse del Acuerdo Nuclear con Irán era una mala idea que “daña la seguridad nacional”. El grupo recibió previamente una subvención de 500.000 dólares de la Fundación Rockefeller “para utilizarla en su iniciativa Guerra Mundial Cero, un esfuerzo para lograr acción y movilización a través de la concientización y la educación pública para detener el aumento de las emisiones globales de carbono”. La Fundación Rockefeller ha donado decenas de millones de dólares a causas de izquierda.
BIDEN PRODUCE UNA SEGUNDA ACCIÓN DE IA DURANTE LA ÚLTIMA SEMANA EN EL CARGO CON UNA ORDEN EJECUTIVA QUE Acelera LA INFRAESTRUCTURA DE EE. UU.
El exjefe de gabinete de Kerry, David Wade, que brindó ayuda de respuesta rápida a Hunter Biden cuando se arremolinaba el escándalo de Burisma, actualmente forma parte de la junta directiva y recientemente escribió un artículo de opinión en The Hill explicando cómo la IA en los EE. UU. ha alcanzado su “momento Sputnik”. “, destacando la necesidad de competir con China en IA.
El exsecretario de Defensa de Obama, Chuck Hagel, quien llamado el entonces presidente Trump una “vergüenza” en 2018, también forma parte de la junta directiva de la ASP.
ELON MUSK, TITANES DE LA IA Y LA TECNOLOGÍA, CAPITALISTAS DE RIESGO INVITADOS A LA CENA PREVIA A LA INAUGURACIÓN AL AMANECER DE LA ERA TRUMP
El representante Don Beyer, demócrata por Virginia, que también forma parte de la junta directiva de ASP, se ha opuesto públicamente a las políticas arancelarias de Trump, calificándolas de “idiotas” e “ilegales” en un comunicado de prensa de 2023.
En 2018, ASP promovió un artículo de opinión del miembro de la junta directiva Matthew Wallin en el que criticaba las tácticas diplomáticas de Trump contra el presidente ruso Vladimir Putin.
En 2017, Wallin amplificó la narrativa mediática desacreditada en una publicación en X, luego Twitter, en la que Trump llamó a los supremacistas blancos en la manifestación mortal de Charlottesville “buenas personas”.
Chris Lehane, jefe de política global de OpenAI, es el autor de la infame y controvertida “Vasta conspiración de la derecha”. memorándum promocionado por la entonces primera dama Hillary Clinton, que desestimó el escándalo de Monica Lewinsky como parte de una conspiración mediática de derecha.
Además de ser consultor del Partido Demócrata desde hace mucho tiempo, Lehane ha contribuido recientemente con dinero para ayudar al exsenador Bob Casey, demócrata por Pensilvania, y al senador Adam Schiff, demócrata por California.
Altman recientemente siguió a otros titanes de la tecnología e hizo una importante donación de 1 millón de dólares a la toma de posesión de Trump a título personal, pero se ha enfrentado al escrutinio por donaciones anteriores de alto valor en dólares a esfuerzos de izquierda, incluida una Donación de $250,000 a un súper PAC demócrata y a la firma de investigación de la oposición American Bridge durante las elecciones de 2020.
EL CEO DE OPENAI, SAM ALTMAN, LLEGA AL 2025 CON UN TWIT CRÍPTICO Y PREOCUPANTE SOBRE EL FUTURO DE LA IA
Altman ha donado a cientos de demócratas en los últimos años en comparación con solo un republicano, Newsweek informó este verano pasado. También fue elegido recientemente para ser copresidente del equipo de transición del alcalde demócrata entrante de San Francisco.
Además de organizar una recaudación de fondos para el candidato presidencial demócrata Andrew Yang en su casa de San Francisco a finales de 2019, Altman ha donado más de 1 millón de dólares a demócratas y grupos demócratas, incluidos $600,000 para el PAC de la mayoría del Senado alineado con el senador Chuck Schumer, $100,000 para el Fondo de Victoria de Biden y más de $150,000 para el Comité Nacional Demócrata (DNC). También donó miles de dólares a los partidos demócratas estatales y a los principales demócratas de la Cámara y el Senado.
En 2014, Altman fue coanfitrión de una recaudación de fondos para el Comité Nacional Demócrata en las oficinas de Y Combinator en Mountain View, California, que fue encabezada por el entonces presidente Obama.
Tras la victoria de Trump en noviembre, Altman publicó en X: “Felicidades al presidente Trump. Le deseo un gran éxito en el trabajo”.
“Es de vital importancia que Estados Unidos mantenga su liderazgo en el desarrollo de la IA con valores democráticos”, añadió.
Durante el mandato de Altman de 2014 a 2019 como director ejecutivo de Y Combinator, una incubadora emergente que lanzó Airbnb, DoorDash y DropBox, habló sobre China en múltiples publicaciones de blog y entrevistas. En 2017, Altman dijo que “se sentía más cómodo discutiendo ideas controvertidas en Beijing que en San Francisco” y que sentía que una expansión a China era “importante” porque “algunos de los empresarios más talentosos” que ha conocido han estado operando allá.
El currículum de Altman y sus esfuerzos en inteligencia artificial han provocado la ira del aliado de Trump, Elon Musk, en los últimos años. Musk dijo el año pasado: “No confío en OpenAI. No confío en Sam Altman. Y no creo que debamos tener la IA más poderosa del mundo controlada por alguien que no es digno de confianza”.
Musk, que ha estado involucrado en una disputa legal muy publicitada con Altman, también ha dicho que la función ChatGPT de OpenAI está infectada con el “virus despertado”.
ChatGPT es un chatbot de IA cuya función principal es imitar a un humano en una conversación. Usuarios de todo el mundo han utilizado ChatGPT para escribir correos electrónicos, depurar programas informáticos, responder preguntas sobre tareas, jugar, escribir historias y letras de canciones, y mucho más.
“Va a eliminar muchos empleos actuales, eso es cierto. Podemos crear otros mucho mejores. La razón para desarrollar la IA, en términos de impacto en nuestras vidas y de mejorarlas, y las ventajas, será la mejor tecnología”. la humanidad aún se ha desarrollado”, dijo Altman en una entrevista de 2023 con ABC News. “La promesa de esta tecnología, una de las que más me entusiasma, es la capacidad de proporcionar aprendizaje individual: un excelente aprendizaje individual para cada estudiante”.
¿QUÉ ES LA INTELIGENCIA ARTIFICIAL (IA)?
En los últimos meses, según se informa, OpenAI ha estado lanzando silenciosamente sus productos al ejército estadounidense y buscando contratos de defensa, informó Forbes.
En una declaración a Fox News Digital, un portavoz de OpenAI dijo: “Estados Unidos tiene que ganar la carrera de la IA, y es por eso que los estadounidenses de ambos lados del pasillo están unidos para apoyar políticas que ayuden a Estados Unidos a mantener su ventaja competitiva frente a China. ”
“ASP es una organización bipartidista de casi veinte años que trabaja con legisladores, oficiales de bandera retirados, expertos en la materia y grupos de todo el espectro político para producir investigaciones de alta calidad y forjar un consenso bipartidista sobre las amenazas emergentes a nuestra seguridad nacional”. dijo un portavoz de ASP a Fox News Digital en un comunicado.
HAGA CLIC AQUÍ PARA OBTENER LA APLICACIÓN FOX NEWS
“Si bien OpenAI es uno de los muchos donantes para Imperativo de la IA 2030garantizamos un equilibrio equitativo de opiniones informadas por expertos independientes y miembros del Consenso para la Seguridad Estadounidense, incluida Julia Nesheiwat, Ph.D., ex asesora de Seguridad Nacional de Trump, y Neil Chatterjee, ex presidente de la Comisión Federal Reguladora de Energía durante el gobierno de Trump. También organizamos recientemente una mesa redonda con Nazak Nikakhtar, otro exfuncionario de Trump”.
La declaración continuó: “El objetivo principal de Imperativo de la IA 2030 es garantizar que Estados Unidos, no China, gane la carrera por la supremacía de la IA. China aspira a superar a Estados Unidos y liderar el mundo en IA para 2030. No podemos permitir que eso suceda. El presidente Trump ha sido un líder en la creación de un consenso bipartidista de que Estados Unidos necesita competir más vigorosamente con China, y esperamos trabajar con su administración y el Congreso republicano para diseñar políticas efectivas y rentables hacia este objetivo”.
Nikolas Lanum, Cameron Cawthorne y Joe Schoffstall de Fox News Digital contribuyeron a este informe.
Noticias
Tareas de ChatGPT y más | Edición Semanal
¡Hola y bienvenido a nuestro resumen semanal!
Parece que, en la última semana, Mark Zuckerberg ha conseguido lo imposible. Con un podcast con Joe Rogan, ha generado más controversia que Elon. Qué raro, ¿eh?
De todos modos, tenemos toneladas de IA. noticias, guíasy herramientas útiles hoy, ¡así que hablemos!
Esta edición de IA para creadores:
-
Materiales destacados 🎟️
-
Noticias de la semana 🌍
-
Herramientas útiles ⚒️
-
Guías Semanales 📕
-
Meme de IA de la semana 🤡
-
Tweet de IA de la semana 🐦
-
(Bonus) Materiales 🎁
FineVoice lanza una nueva función de generación de video a SFX con IA en línea para ahorrarle tiempo en la creación de audio para videos
La nueva función AI Video-to-SFX Generator de FineVoice puede crear fácilmente efectos de sonido de alta calidad que se adapten al video. Esta nueva herramienta le ahorrará tiempo en la búsqueda de los mejores efectos de sonido y le ayudará a alinearlos con el contenido del vídeo. Puede crear una experiencia audiovisual más vívida, haciendo que sus videos sean más atractivos.
OpenAI ha introducido una función beta llamada “Tareas” en ChatGPT. Esta herramienta transforma el chatbot en un asistente de IA más proactivo. Estas son sus características clave:
-
Recordatorios de programación: Puede configurar recordatorios únicos o recurrentes, como informes meteorológicos diarios o notificaciones sobre fechas importantes.
-
Sugerencias proactivas: ChatGPT puede sugerir tareas basadas en conversaciones en curso, aunque se requiere la aprobación del usuario para activar estas sugerencias.
-
Notificaciones multiplataforma: Al finalizar la tarea, recibirá notificaciones en plataformas web, de escritorio y móviles.
Acceso y Disponibilidad:
La función “Tareas” está en versión beta y disponible para los suscriptores de ChatGPT Plus, Team y Pro. Si es uno de ellos, seleccione “GPT-4.0 con tareas programadas” en el selector de modelo. Hay un límite de 10 tareas activas por usuario en un momento dado.
Mantenga su buzón actualizado con conocimientos y noticias clave de la industria de la IA
Los empleados de OpenAI no han ocultado que Tareas es una de las primeras incursiones de la compañía en la IA de los agentes. Será un foco clave en 2025. Esto es lo que el presidente y cofundador de OpenAI, Greg Brockman, escribió sobre el lanzamiento:
En cuanto al futuro, el próximo agente de la empresa probablemente será el misterioso “Operador.” Según un informe de Bloomberg, OpenAI pronto presentará una IA autónoma que podrá controlar nuestras computadoras y realizar tareas independientemente del usuario. Anteriormente, los conocedores dijeron que el lanzamiento sería en enero de 2025.
Tareas Es la principal novedad de la semana, y de sus características podremos hablar durante mucho tiempo. Por eso le hemos dedicado un post aparte. Compruébelo si quiere saber cómo aprovechar al máximo la última versión de OpenAI:
Convierte ChatGPT en tu asistente personal
A fines de la semana pasada, el director de Meta apareció en el podcast de Joe Rogan y discutió una amplia gama de temas. Mark hizo muchas declaraciones interesantes sobre política, censura y tecnología. No los analizaremos todos (es mejor que vea el podcast), pero destacaremos los más importantes para nuestra industria.
Me refiero a esta afirmación:
Dijo que para 2025, Meta y otras empresas de tecnología tendrán IA que podrá funcionar como ingenieros de nivel medio, escribiendo y depurando código de manera eficiente. Entonces, a largo plazo, Meta espera automatizar toda la codificación de sus aplicaciones. Según Mark, los sistemas de IA podrían reducir el tiempo de escritura de códigos en un 35-45% y tiempo de documentación por hasta 50%.
Casi al mismo tiempo, la compañía dijo que Meta recortaría un 5 por ciento de su fuerza laboral, apuntando a “los trabajadores de menor desempeño”.
Luma AI ha presentado el modelo de vídeo Ray 2. Esta plataforma, accesible a través de Dream Machine, está destinada a consumidores, prosumidores y profesionales. Ray 2 produce videoclips de hasta 10 segundos con cinematografía avanzada y movimientos suaves. Comprende las interacciones entre personas, animales y objetos, lo que permite la creación de personajes consistentes y físicamente precisos.
Microsoft ha anunciado la integración de su asistente Copilot AI en las suscripciones personales y familiares de Microsoft 365, ampliando su disponibilidad más allá de los usuarios empresariales. Esta integración permite a los usuarios utilizar funciones de IA en Word, Excel, PowerPoint, Outlook y OneNote. Después de esta actualización, los precios de suscripción aumentarán en $3 por mes, con el plan Personal ahora a $9,99 y el plan Familiar a $12,99.
La compañía también presentó Copilot Chat, un servicio de chat gratuito basado en inteligencia artificial para empresas. Permite la creación de agentes de IA para ayudar con tareas como investigación de mercado y preparación de reuniones. Las funciones avanzadas requieren una suscripción mensual de $30 a Microsoft 365 Copilot.
¡Compartir es cuidar! Recomiende a alguien que recientemente haya comenzado un viaje de aprendizaje en IA. ¡Hazlos más productivos y gana recompensas!
Google también ha actualizado su estrategia para un Géminis. La compañía anunció que todas las funciones de inteligencia artificial de su suite Workspace, incluidas aplicaciones como Gmail, Docs, Sheets y Meet, ahora están disponibles sin costo adicional. Anteriormente, estas funciones formaban parte del plan de negocios de Gemini, que requería $20 adicionales al mes por usuario. Al mismo tiempo, Google está aumentando el precio de los planes estándar de Workspace en aproximadamente 2 dólares al mes por usuario, elevando la suscripción base de 12 a 14 dólares mensuales.
Es bastante interesante que se realizaron actualizaciones similares para Microsoft 365 y Google Workspace en la misma semana. Dicho esto, los objetivos son claros: ambas empresas están repensando sus enfoques hacia la IA en 2025 para que su uso sea más común.
La plataforma de vídeo de IA con sede en Londres, Synthesia, ha recaudado 180 millones de dólares en una Serie D. Esta inversión eleva el capital total de la startup a más de 330 millones de dólares y valora a la empresa en $2.1 mil millonesconvirtiéndolo en el La empresa de medios de IA generativa más valiosa del Reino Unido. La plataforma de Synthesia permite a las empresas crear contenido de vídeo de IA con avatares humanos realistas y atiende a más de 60.000 clientes, entre ellos más del 60 % de las empresas Fortune 100.
Los fondos respaldarán el desarrollo de productos, el crecimiento del talento y la expansión a mercados como Japón, Australia, Europa y América del Norte.
Mistral AI y Agence France-Presse (AFP) se han asociado para integrar el contenido informativo de AFP en Le Chat. Esta colaboración otorga a la IA de Mistral acceso a la producción diaria de la AFP de 2.300 historias en seis idiomas, mejorando la capacidad del chatbot para proporcionar respuestas precisas y actualizadas. Los socios afirmaron que el acuerdo garantiza que los resultados de Le Chat se basen en información confiable, abordando las preocupaciones sobre la difusión de información errónea.
Por cierto, Google también hizo un trato similar esta semana. La compañía acordó trabajar con Associated Press para ayudar a que Gemini sea más relevante para los usuarios.
Uso del navegador: habilitamos la IA para controlar su navegador
Magic Inbox: agentes sociales de IA que organizan reuniones para su negocio
Eververse: plataforma de gestión de proyectos de código abierto integrada en IA
Exportación de Cursor Convo: guarde y reviva sin esfuerzo sus chats de Cursor AI
Resumen: su espacio de conocimiento de IA para imágenes reveladoras
Recap es una herramienta diseñada para transformar información compleja en atractivos gráficos visuales e ideas mentales. Genera preguntas de nivel experto para estimular el pensamiento crítico y crea representaciones visuales como mapas mentales, diagramas de flujo, líneas de tiempo y tablas para simplificar contenido complejo. Una plataforma bastante útil para creadores, emprendedores, estudiantes y profesores.
Comparte esta publicación con amigos, ¡especialmente aquellos interesados en historias de IA!
¿Funcionan realmente los detectores de IA y GPT?
Construya todo con agentes de IA: así es como
Esta IA escuchó 1.000 horas de podcast por mí | Tutorial de código
Cómo utilizar ChatGPT en el trabajo [+ 100 Prompts to Try]
¡Este NUEVO agente de IA de 1 clic es una locura! 🤯
Cree su AGENTE AI personal de Gmail en 30 minutos | Tutorial de cursores
Ese es un buen punto del director ejecutivo de Perplexity.
Cómo Decagon AI transformó la atención al cliente para Duolingo
El imperio de la IA de Nvidia: una mirada a sus principales inversiones en startups
Los asesores financieros de IA se dirigen a los jóvenes que viven de cheque en cheque
CEO de Replit sobre los avances en IA: “Ya no nos importan los codificadores profesionales”
MatterGen: Un nuevo paradigma de diseño de materiales con IA generativa
¡Comparte esta edición con tus amigos!
Noticias
El prototipo: el equipo de bioingeniería de OpenAI
En la edición de esta semana de The Prototype, analizamos un nuevo modelo de IA para bioingeniería, los lanzamientos de cohetes en duelo de esta semana, imanes, láseres y más. Puedes registrarte para recibir The Prototype en tu bandeja de entrada aquí.
ohplumaAI se asoció con Retro Biosciences para construir un modelo de aprendizaje automático centrado en generar nuevas proteínas. El nuevo modelo, llamado GPT-4b, es una versión personalizada del modelo GPT-4o de OpenAI construido específicamente para Retro y centrado en la bioingeniería. Curiosamente, el modelo se centra menos en predecir estructuras de proteínas específicas, como AlphaFold de Deepmind, sino en predecir cómo esas proteínas interactuarán con otras.
Utilizando el modelo, los científicos de Retro rediseñaron dos proteínas del factor Yamanka, que desempeñan un papel clave en el desarrollo fetal. Estudios anteriores han descubierto que si estas proteínas se introducen en una célula adulta madura, como una célula de la piel, hará que vuelva a comportarse como una célula madre. Investigadores de todo el mundo están intentando aprovechar esta propiedad para desarrollar tratamientos para enfermedades como la ceguera y la diabetes.
Sin embargo, un desafío para el desarrollo de estos tratamientos es que las proteínas Yamanka que se encuentran en la naturaleza son terriblemente ineficientes para convertir células maduras en células madre. Sin embargo, las primeras pruebas de laboratorio mostraron que estas versiones recientemente diseñadas producían aproximadamente 50 veces más biomarcadores asociados con este tipo de reprogramación celular. Esto sugiere que son significativamente mejores para producir células madre que las proteínas que se encuentran en la naturaleza.
En el futuro, las dos empresas planean realizar más investigaciones para validar estos hallazgos iniciales y explorar su potencial en el desarrollo de nuevos tratamientos para enfermedades.
Manténganse al tanto.
Blue Origin de Bezos envía un cohete a órbita mientras falla la prueba de la nave espacial SpaceX
mitemprano el jueves por la mañanaLa compañía espacial de Jeff Bezos, Blue Origin, puso en órbita con éxito su cohete New Glenn. El lanzamiento tuvo lugar en Cabo Cañaveral, Florida. Aunque se cumplió la misión principal, su objetivo secundario (aterrizar con éxito el propulsor del cohete para su reutilización) no.
El fin de semana pasado, mi colega Jeremy Bogaisky informó que Blue Origin tenía mucho en juego para este lanzamiento: tuvo lugar menos de una semana antes de que Donald Trump regresara a la Casa Blanca, con el CEO de SpaceX, Elon Musk, trabajando con él en una reestructuración prometida en gobierno. Blue Origin tiene múltiples contratos gubernamentales para New Glenn, particularmente relacionados con el regreso de la NASA a la Luna, por lo que tenía mucho que demostrar.
Hablando de SpaceX, esa compañía realizó una séptima prueba de su propio gran cohete, Starship, el jueves por la tarde. Si bien la compañía pudo lanzar la versión más nueva de su cohete, explotó a medida que ascendía (la compañía lo llamó eufemísticamente un “desmontaje rápido no programado”). SpaceX pudo atrapar con éxito el propulsor del cohete cuando regresaba a la Tierra.
Aunque la relación entre Bezos y Musk con respecto a sus empresas espaciales ha sido polémica en ocasiones, eso parece ser cosa del pasado, al menos por ahora. Temprano en el día, Bezos tuiteó buena suerte a SpaceX en el lanzamiento de su Starship. Elon Musk respondió con memes de la película Hermanastroscomparándose a sí mismo y a Bezos con los personajes enemigos convertidos en amigos de Will Ferrell y John C. Reilly en la película.
DESCUBRIMIENTO DE LA SEMANA: COMPUTACIÓN BASADA EN LÁSER
Investigadores de la Universidad de California en Santa Bárbara tienen un nuevo tipo de arquitectura de chip fotónico que utiliza láseresen lugar de electricidad, para el cálculo. El objetivo es lograr un mejor rendimiento con costes energéticos significativamente más bajos. Intentos anteriores de desarrollar tales chips han toparse con obstáculos que involucran velocidades de procesamiento o programabilidad. Este sistema utiliza Campos magnéticos para afectar dinámicamente a los láseres.que potencialmente podría superar estos problemas. La investigación fue publicada en Fotónica de la naturaleza.
FRONTERA FINAL: SATÉLITES NORMALIZADOS
Orbital desvánque se desarrolla infraestructuras satelitales estandarizadas que puede utilizarse para una amplia variedad de aplicaciones, anunció que ha recaudado 170 millones de dólares en capital de riesgo. En una publicación de blog, los cofundadores Pierre-Damien Vaujour y Alex Greenberg dijeron que 2025 es el año en que su negocio “alcanzará la escala de flota”. Hasta ahora, la compañía ha vendido más de 30 de sus satélites, que según los cofundadores están diseñados para configurarse para satisfacer las necesidades de sus clientes de una manera rápida y confiable, reduciendo el tiempo y el costo en comparación con la construcción de un satélite a medida para cada misión. “Estamos priorizando la velocidad de puesta en órbita, la previsibilidad de los horarios, la simplicidad y la confiabilidad a través de la herencia en lugar del rendimiento absoluto”.
FORBES LO LLAMÓ: AUTOMATIZACIÓN DEL TRÁMITE DE INVESTIGACIÓN
Hace más de 10 años, nombramos Surbhi Sarnafundador de la empresa NVision Médicaa nuestra lista de 30 menores de 30 en la categoría Atención sanitaria. Desde entonces, vendió NVision por 275 millones de dólares. Ahora ha vuelto con una nueva empresa. Cotejarque se lanzó esta semana con 30 millones de dólares en financiación inicial con la misión de automatizar uno de los más aspectos tediosos de la investigación en ciencias de la vida: cumplimentar todos los papeleo.
QUE MÁS ESCRIBI ESTA SEMANA
Infecciones por norovirus están aumentando en todo el país. Pero a pesar de que esta enfermedad afecta a unos 20 millones de personas al año con “gripe estomacal” no existe vacuna ni tratamiento. Escribí sobre el desafío de hacer un vacuna contra norovirus–y por qué moderna puede ser lo más cercano a llevar uno al mercado.
En mi otro boletín, InnovationRx, mi colega Amy Feldman y yo cubrimos la amplia gama de noticias sobre atención médica que surgen de la revista anual Conferencia de atención médica de JP Morganincluyendo una serie de ofertas de alto valorlos impactos de la Incendios forestales en Californianuevas colaboraciones sanitarias con el gigante de la IA NVIDIA y más.
COMENTARIOS DE CIENCIA Y TECNOLOGÍA
El proyecto de Brightline para conectar Los Ángeles y Las Vegas con un tren bala está recaudando 2.500 millones de dólares en inversión privada.
California ha invertido millones en sensores e inteligencia artificial con el objetivo de detectar, o incluso predecir, incendios forestales para poder controlarlos rápidamente. Pero no eran rival para los incendios actuales. Mi colega Cyrus Farivar explica por qué.
Una colaboración de investigación en Tennessee demostró la primera transmisión de una enfermedad estabilizada. señal cuántica a través de una red que utiliza múltiples canales de longitud de onda, un paso clave en la construcción de una eventual Internet cuántica.
Un equipo de científicos desarrolló un método para almacenar vacunas y fármacos biológicos sin refrigeraciónlo que podría reducir los costos de la cadena de suministro y mejorar el acceso a los medicamentos en regiones remotas.
Los investigadores desarrollaron un proceso basado en insectos para reciclar plástico alimentándolo larvas de gusano de la harina. El compostaje de los residuos resultantes conduce a la formación de un biocarbón que puede utilizarse para fertilizar plantas.
CONSEJO DE CIENCIA PROFESIONAL: FOMENTAR LA COLABORACIÓN CON ELLA
Uno de los desafíos de administrar una gran empresa es que los departamentos tienden a obtener ensiladolo que puede provocar fricción cuando una mano no sabe lo que está haciendo la otra. Este es particularmente el caso de departamentos de TIcuyo trabajo necesariamente toca cada parte de la empresa. Nueva investigación basada en datos intersectoriales realizada por Universidad de Binghamton considera que esta tendencia puede mitigarse si el liderazgo de la empresa trabaja activamente para impulsar colaboración y cooperación entre unidades de negocio y TI con un equilibrio de motivación e incentivos.
QUE ME ENTRETENE ESTA SEMANA
Acabo de terminar de ver la serie limitada. Interior del barrio chinobasada en la novela de Carlos Yu (también el showrunner). Cuenta la historia de un personaje de fondo en un procedimiento policial que quiere tener un papel más importante. Es sorprendente y deliciosamente extraño, basado en un elenco increíble liderado por. Jimmy O.Yang. A continuación planeo leer el libro. Todos los episodios se transmiten en Hulu.
MÁS DE FORBES
-
Startups8 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos8 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos8 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Recursos8 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Tutoriales8 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Estudiar IA8 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Startups6 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Noticias6 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo