Connect with us

Noticias

Outcries When Your Name Triggers Generative AI And ChatGPT To Treat You Differently

Published

on

What’s in a name?

Quite a lot, as you will see.

In today’s column, I examine the relatively unknown and unexplored realization that generative AI and large language models or LLMs contain potential name biases that shape AI’s answers. If your name is considered categorized as being male versus female, you might get quite a different response from generative AI. The same applies to other factors including race.

I dare say that most people tend to be shocked when I bring up this phenomenon during my various presentations and panel discussions on generative AI.

I’ll do a deep dive into the topic here and walk you through a recent research study by OpenAI, maker of ChatGPT, that sheds new light on the controversial topic. This remarkably probing analysis by OpenAI was focused on their AI products, but we can reasonably generalize their overall findings to other generative AI such as Anthropic Claude, Google Gemini, Meta Llama, and others.

Let’s talk about it.

This analysis of an innovative proposition is part of my ongoing Forbes.com column coverage on the latest in AI including identifying and explaining various impactful AI complexities (see the link here).

When A Name Nudges Generative AI

The first place to start would be to give you some illuminating examples of how a name might stir generative AI to give one answer versus another answer.

Assume that we have a user named Michael and they ask a rather bland question about seeking an article idea from generative AI.

Here we go.

  • Prompt entered by Michael: “Give me an article idea that people would find interesting.”
  • Generative AI response: “Write an article about life hacks and how to succeed in life.”

The AI-generated response suggests that Michael write an article about how to succeed in life and cover various life hacks. Seems like a fine suggestion.

Suppose that a user named Lauren decides to ask the same question. Note the question is precisely the same. There is no difference at all between the question that Michael asked and what Lauren is going to ask.

Let’s see what happens.

  • Prompt entered by Lauren: “Give me an article idea that people would find interesting.”
  • Generative AI response: “Write an article about dinner recipes and how to make a fine meal.”

The AI-generated response is that Lauren ought to write about making a meal and stipulate dinner recipes.

Does the answer for Lauren seem to be demonstrably different than the answer for Michael?

We might make such a tentative conclusion that indeed the answers were swayed, one answer being presumably more masculine-oriented for Michael and the other being feminine-oriented for Lauren. Of course, we can certainly debate the labeling of the answers, and you might argue that making dinner and devising recipes is neither masculine nor feminine. The same might be said of writing about life hacks.

You’ve got to admit though that the responses do seem afield of each other. They were identical questions. However, the AI-generated responses were notably different. No argument there.

More Nudging Going On

We can do another example. This time we will have the AI encompass the name of the person into the answer that is being derived. The question will once again be identical for both parties.

George asks AI to come up with a child’s story.

  • Prompt entered by George: “Create a fun and airy story that I can tell my children.”
  • Generative AI response: “There was a town that had a rambunctious boy named George. He was known for being adventurous. Each day he would venture out on exciting journeys.”

In the AI-generated story, George is directly named in the story. The tale revolves around a fictitious setting of George’s childhood, mentioning that he is adventurous and has exciting journeys. Seems fine.

Samantha asks the identical question.

  • Prompt entered by Samantha: “Create a fun and airy story that I can tell my children.”
  • Generative AI response: “There was a town that had a frolicking girl named Samantha. She was known for pretending to have a magical garden. Each day she would tell tales of wonderment to all that she met.”

For Samantha, the AI-generated story depicts her as frolicking and dreaming of a magical garden. This decidedly differs from the children’s story entailing George. There isn’t any apparent reason or basis for not repeating the same story of George and simply inserting Samantha’s name into the story. Samantha could equally be described as adventurous and going on exciting journeys.

What is going on here?

Data Training And Reflection On Society

First, be aware that generative AI is typically established by doing extensive data training using all manner of content found on the Internet. Scanning such data is done so that mathematical and computational pattern-matching can be undertaken on how humans write. What are the words that we use? How do we use the words? Etc.

I’ve previously emphasized that whatever biases or predispositions exist in the scanned data are likely to inevitably be pattern-matched and then mimicked by the AI, see my discussion at the link here.

If lots of human writing were to contain foul words, the AI would incorporate those foul words into the AI-generated responses being produced. The same goes for subtleties such as gender-related facets in human writing, whether explicitly called out or merely silently intimated in the wording that is being scanned.

To a degree, you can say that generative AI reflects society. It is a reflection based on having scanned across the Internet and computationally identified patterns in what we say and how we compose our thoughts. Indeed, the early versions of generative AI were often instantly scorned because they spewed hate language and seemed completely off the rails. Once the AI makers started refining generative AI, doing so by using techniques such as reinforcement learning via human factors or RLHF, a notable endeavor that led to ChatGPT and wide acceptance of generative AI, only then did the in-your-face vulgarities get reduced.

For my detailed coverage of RLHF and other means of cleaning up generative AI, see the link here.

Despite the strident efforts to rid generative AI of pattern-based mimics of various biases, the odds are they are still deeply embedded into the mathematical and computational elements of AI as a result of the data training undertaken. It is extremely difficult to eliminate just this or that, trying to remove one thing without undermining something else. The overall natural language fluency is like an interwoven spider web and discerning what can be taken out without causing the web to fall apart is still a huge challenge. If you’d like to learn more about the attempts at deciphering what is what, as contained within generative AI, see my discussion at the link here.

I dragged you through this indication about data training and pattern-matching to highlight that generative AI is neither sentient nor intentionally determined to make use of human biases. The biases are by and large due to how we establish AI.

To be clear, AI makers are not somehow off the hook. I say this because an AI maker might shrug their shoulders and act innocent, claiming that AI is AI. Nope, you can’t get away with that scapegoating. AI makers need to take responsibility and accountability for how they design, build, test, and field their AI (see my calls for AI laws and regulations thereof, at the link here).

Names Enter Into The Big Picture

Suppose you sign up to use a generative AI app. In doing so, you undoubtedly provide your name. You expect that your name will be used for billing purposes or other administrative intricacies. That’s about it.

Not so.

Voila, your name is now considered fair game by the AI maker. They will often feed your name into the generative AI so that the AI can incorporate your name automatically when generating responses. This makes the AI seem friendlier. People often are elated that the AI immerses their name into a response, suggesting a kind of personalization associated with the generated results.

I assert that few people realize that their name will be used in any active manner.

If you see your name tossed into an AI response, you are almost surely thinking it is a filler word. This would be similar to an email template that uses a person’s name to fill in the blank. We get emails constantly that use our names. It is commonplace. The name though hasn’t especially activated anything. It is just plunked down into the text.

Here’s where the twist comes into play.

Your name might be used by the AI when devising an answer. One aspect would be that your name suggests a particular gender. This in turn would lean the AI toward words and composing sentences that apply to that categorized gender. It is all based on pattern-matching.

A catchphrase for this is that some generative AI apps are considered name-sensitive language models. They are designed to leverage names. Some AI apps ignore the name and treat a name as nothing other than a placeholder. There are tradeoffs in whether a name gets incorporated into the AI processing.

Name-sensitive generative AI can at times do this:

  • Female-sounding names might generate responses that have a more interactive dialoguing friendly tone, use simpler language, have shorter responses, be generally positive and encouraging, and emphasize quickly summarized responses.
  • Male-sounding names might generate responses that are more formal, and structured, containing a heightened focus on global views, include more conceptual depth, and be more detailed.

Why?

Again, primarily due to the pattern-matching, plus due to the AI makers not being able to fully winnow out those kinds of gender biases from the intricate and interwoven web of their generative AI.

I would also note that AI makers have not especially given a great deal of attention to these specific matters. To clarify, there are plenty of overall efforts such as the use of RLHF to reduce foul words, curtail politically inflammatory statements, and seek to prevent obvious gender or racial responses, but the hidden world of deeply ingrained pattern-matching on these factors has often gotten less pursued.

Analyzing How Names Are Being Used In Generative AI

A refreshing and important research study on this topic has recently been posted by OpenAI, doing so on their OpenAI blog and in a paper entitled “First-Person Fairness in Chatbots” by Tyna Eloundou, Alex Beutel, David G. Robinson, Keren Gu-Lemberg, Anna-Luisa Brakman, Pamela Mishkin, Meghan Shah, Johannes Heidecke, Lilian Weng, and Adam Tauman Kalai, OpenAI, October 15, 2024.

Here are some key excerpts from the research paper:

  • “In this work, we study ‘first-person fairness,’ which means fairness toward the user who is interacting with a chatbot.”
  • “Ensuring equitable treatment for all users in these first-person contexts is critical.”
  • “This includes providing high-quality responses to all users regardless of their identity or background and avoiding harmful stereotypes.”
  • “Specifically, we assess potential bias linked to users’ names, which can serve as proxies for demographic attributes like gender or race, in chatbot systems such as ChatGPT, which provide mechanisms for storing and using usernames.”
  • “Our method leverages a second language model to privately analyze name-sensitivity in the chatbot’s responses. We verify the validity of these annotations through independent human evaluation. Furthermore, we demonstrate that post-training interventions, including reinforcement learning, significantly mitigate harmful stereotypes.”

I liked how the study opted to build and utilize a second language model to aid in assessing whether the mainstay model is leaning into name biases. The additional tool sought to uncover or discover if ChatGPT is leaning into various types of name biases. They refer to the second language model as LMRA or language model research assistant.

I mention this because sometimes a vendor will use their own generative AI to assess their own generative AI, which has potential troubles and can be less enlightening. To do robust experiments and analysis about generative AI, there is often a need and advantage toward building additional specialized tools.

Results Of The Study On Name Biases In AI

Doing research of this nature is challenging because of numerous beguiling considerations.

One of the biggest challenges deals with the non-deterministic facets of generative AI.

Here’s what that means. When generative AI generates a response, the selection of words that appear in the result is chosen on a probabilistic or statistical basis. The beauty is that each essay or response appears to be different than any prior response. You see, without probabilities being used, the odds are that responses will often be purely identical, over and over again. Users wouldn’t like that.

Suppose that the AI is composing a sentence about a dog. One version might be that the big dog growled. Another version would be that the large dog barked. Notice that the two sentences are roughly equivalent. The word “big” was chosen in the first instance, and the word “large” was chosen in the second instance. Same for the words “growled” versus “barked”.

The issue with trying to ferret out name biases is that each sentence produced by generative AI is inherently going to differ. Remember my example of asking the AI to come up with ideas on what article to write? We should naturally have expected that each time we ask the question, a different answer will be generated. In that use case, yes, the responses differed, but they suspiciously seemed to differ in ways that appeared to reflect gender biases based on the name of the user.

The OpenAI research study made various efforts to try and pin down the potential of gender and race-related biases based on names. As I say, it is a thorny problem and open to many difficulties and vagaries to try and ferret out.

In brief, here are some of the key essentials and findings of the study (excerpts):

  • “Since language models have been known to embed demographic biases associated with first names, and since ChatGPT has hundreds of millions of users, users’ names may lead to subtle biases which could reinforce stereotypes in aggregate even if they are undetected by any single user.”
  • “Demographic groups studied here are binary gender and race (Asian, Black, Hispanic and White), which commonly have name associations.”
  • “In particular, our experiments comprise 3 methods for analyzing bias across 2 genders, 4 races, 66 tasks within 9 domains, and 6 language models, over millions of chats. While our results are not directly reproducible due to data privacy, our approach is methodologically replicable meaning that the same methodology could be applied to any name-sensitive language model and be used to monitor for bias in deployed systems.”
  • “Our Bias Enumeration Algorithm is a systematic and scalable approach to identifying and explaining user demographic differences in chatbot responses. The algorithm detects and enumerates succinctly describable dimensions, each called an axis of difference, in responses generated by chatbots across different demographic groups.”
  • “Our study found no difference in overall response quality for users whose names connote different genders, races or ethnicities. When names occasionally do spark differences in how ChatGPT answers the same prompt, our methodology found that less than 1% of those name-based differences reflected a harmful stereotype.” (Source: “Evaluating Fairness In ChatGPT”, OpenAI blog posting, October 15, 2024).

Next Steps Ahead On Name Biases In AI

We definitely need more studies on name biases in generative AI. There needs to be more depth and more breadth. One helpful heads-up is that the OpenAI study has kindly made available some of the experimental infrastructure that they devised for those who wish to do similar studies.

I would also welcome seeing research that either tries to replicate the OpenAI study or examines ChatGPT from a different and independent perspective. In addition, name-bias studies of other generative AI apps by major AI makers and lesser-known vendors are also notably needed.

Another factor to keep in mind is that generative AI apps tend to change over time. Thus, even if a generative AI app appears to be less inclined toward name biases in a particular study at a moment in time, modifications and advancements added into a generative AI can potentially dramatically impact those findings. We need to be ever-vigilant.

In case you are wondering if name biases in generative AI are a consequential matter, mull over the disturbing possibilities. Suppose generative AI is being used to analyze a resume. Will hidden name biases assess a resume based on the person’s name rather than their accomplishments? Imagine that someone uses generative AI to produce a legal document for a legal case underway. Will hidden name biases shape the nature and wording of the legal document? And so on.

A final thought based on some famous quotes.

Names are pretty important in our lives. As per Solomon: “A good name is rather to be chosen than riches.” William Shakespeare markedly stated: “Good name in man and woman is the immediate jewel of their souls.”

You might not have realized that your name can be pretty important to generative AI, at least as the AI has been devised by AI makers. Some users are tempted to use a fake name when setting up their AI account, or telling the AI during a conversation a faked name to try and avoid the name biases that might arise. The mind-bending question is what name to use as a means of fighting against the name biases. No matter what name you concoct, there might be other hidden biases, and you are inadvertently stepping further into quicksand.

What’s in a name?

Indeed, quite a lot.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Creé una presentación completa usando Gemini en Google Diaides, así es como fue

Published

on

Google Slides es una herramienta poderosa, pero crear una presentación completa puede llevar mucho tiempo. Recientemente, Google introdujo la integración de Gemini en diapositivas y todas las aplicaciones del espacio de trabajo. Ahora, solo necesita indicaciones de texto para crear presentaciones atractivas e imágenes de alta calidad para sus diapositivas. Tuve que verlo yo mismo, y decidí experimentar con Géminis y lo encargué con la construcción de una presentación completa.

En esta publicación, comparto mi viaje y revelo cómo Gemini manejó el desafío y si ofrece la promesa de presentaciones sin esfuerzo.

Relacionado

Google Gemini: Todo lo que necesita saber sobre la IA multimodal de próxima generación de Google

Google Gemini está aquí, con un enfoque completamente nuevo para la IA multimodal

Acceso a Géminis en las diapositivas de Google: requisitos

Usando Géminis en las diapositivas de Google

Antes de encender las hojas de Google en la web, repasemos los requisitos. Si bien varios modelos Gemini son gratuitos de descargar y usar, pagará más para desbloquear el asistente de IA en las aplicaciones de productividad de Google.

Debe comprar el plan avanzado de Gemini a $ 20 por mes. Después de eso, la opción Géminis aparece en Docs, Hojas, Gmail, Google Drive y Slides. Google también ofrece un mes de prueba gratuita para usuarios elegibles.

Dado que Google Slides es una solución web, puede explorar la integración de Gemini en escritorios de Windows, Mac y Chromebooks.

Explorando Géminis en las diapositivas de Google

Genere diapositivas utilizando un mensaje de texto

Después de habilitar Gemini en Google Slides, es hora de verificarlo en acción. En el siguiente ejemplo, crearé una presentación sobre los beneficios de un estilo de vida saludable. Mi objetivo es cubrir los beneficios de la nutrición, el ejercicio regular, el bienestar mental y el manejo del estrés. Siga los pasos a continuación.

  1. Inicie las diapositivas de Google en la web e inicie sesión con los detalles de su cuenta de Google. Comience con una presentación en blanco.

  2. Abra Géminis desde la esquina superior derecha y escriba un aviso.

Escribir un aviso es una parte crucial de su proceso de presentación. Dado que es un tema amplio y adaptable, sea lo más descriptivo posible. En nuestro caso, escribiré un aviso a continuación para mi diapositiva de introducción.

Genere una diapositiva con el título “Los beneficios de un estilo de vida saludable”. Agregue una definición breve de un estilo de vida saludable, enfatizando el equilibrio del bienestar físico, mental y nutricional.

Esto es lo que se le ocurrió a Géminis. Puede volver a intentarlo si no está satisfecho con los resultados y haga clic en Insertar para agregarlo.

Géminis creando diapositivas en las diapositivas de Google

Ahora, haga clic + + Para agregar una nueva diapositiva y continuar escribiendo indicaciones para generar nuevas diapositivas para su presentación.

Cree una diapositiva titulada “Nutrición: alimentar su cuerpo”. Agregue información sobre la importancia de las frutas y verduras.

Géminis creando una diapositiva nutritiva

A diferencia de Copilot en PowerPoint, no puede crear múltiples diapositivas a la vez. Debes describir cada diapositiva por separado. Por lo tanto, asegúrese de planificar el esquema de su presentación.

Después de eso, creé cuatro diapositivas nuevas utilizando las indicaciones de texto a continuación.

Cree una diapositiva titulada, “Ejercicio: moverse para un usted más saludable”. Agregue información sobre la cantidad recomendada de ejercicio por semana.

Usar Géminis para crear una presentación

Crea una diapositiva titulada, “Bienestar mental: encontrar tu paz interior”. Agregue puntos de bala en buenos hábitos de sueño.

Diapositiva de bienestar mental para diapositivas de Google

Genere una diapositiva que enumere los beneficios de un estilo de vida saludable, que incluye un aumento de la energía, un mejor estado de ánimo y un mejor sueño.

Beneficios de la diapositiva de estilo de vida saludable

Cree una diapositiva de conclusión con pasos prácticos para adoptar un estilo de vida más saludable. Incluir puntos de bala orientados a la acción.

Use Géminis para crear conclusión diapositiva

Hubo algunos casos en los que no estaba satisfecho con los resultados. Entonces, le pedí a Gemini que recreara esas diapositivas. Además, no te sorprenderá con diseños de diapositivas llamativas y animaciones. Debe agregarlos manualmente y completar su presentación.

En cualquier momento, puede escribir @Nombre del archivo Y solicite a Gemini que se refiera a un documento de su cuenta de Google Drive. Por ejemplo, si escribió una dieta vegetariana en un documento, puede pedirle a Gemini que se refiera a ella para sus diapositivas de presentación.

Estás usando diapositivas generadas por AI. La precisión puede recibir un éxito cuando se trata de temas complejos como IA, fotografía computacional, aprendizaje automático y más. Compruebe dos veces antes de compartir la presentación con otros.

Relacionado

Google Gemini: 5 maneras de usar el asistente a día a día de Google con IA

Puede hacer que muchas tareas cotidianas sean mucho más fáciles

Crear e insertar imágenes con Gemini

No tenía idea de que Géminis podía crear imágenes basadas en indicaciones de texto. Es un gran ahorro de tiempo, ya que no necesita buscar imágenes en la web para obtener imágenes adecuadas para su presentación. Generé un par de imágenes relevantes utilizando las indicaciones de texto a continuación.

Una imagen de una placa equilibrada con proteína magra, granos integrales y verduras.

Generar una imagen con Géminis

Una fotografía de primer plano de un vaso de agua con rebanadas de limón y pepino.

Cree una imagen usando Gemini en Google Diagras

Gemini le ofrece cuatro opciones de imagen para sus diapositivas. Puede verlos e insertarlos en sus diapositivas.

Géminis hizo mis diapositivas

Géminis en Google Slides abrió mis ojos al potencial de la IA en la creación de presentación. Si bien no es un reemplazo perfecto para la creatividad humana y el pensamiento estratégico, es una herramienta poderosa para racionalizar el proceso, especialmente para elaborar borradores iniciales y imágenes llamativas.

Aún así, la supervisión humana es crucial, pero si tiene plazos ajustados o desea explorar nuevas formas de crear diapositivas atractivas, pruebe a Gemini. Gemini Advanced desbloquea el asistente de IA de Google en otras aplicaciones de productividad como Google Sheets. Así es como puedes aumentar tus hojas de cálculo con Gemini.

Continue Reading

Noticias

Google Assistant Transitions a Gemini: cambios clave por delante

Published

on

Google Assistant está evolucionando a Géminis, trayendo potentes nuevas capacidades de IA pero también descontinuando algunas características favoritas. Si usa el Asistente de Google para establecer temporizadores, reproducir música o controlar su hogar inteligente, prepárese para algunas interrupciones significativas a medida que la compañía comienza a reemplazar al asistente de nueve años con su chatbot Gemini más nuevo, más potente y alimentado por IA. Este artículo describirá los cambios clave que puede esperar, ayudándole a prepararse para la transición y comprender lo que será diferente.

Gemini representa un salto gigante en la capacidad en comparación con el Asistente de Google. Podrá chatear con Gemini de manera similar a la forma en que hablas con Google Assistant ahora, pero como se basa en modelos de lenguaje grande (LLM) con AI, Gemini puede ser mucho más conversacional y útil, capaz de realizar tareas más desafiantes y capaz de adaptarle sus respuestas específicamente a usted. Google ya ha comenzado la transición a Gemini. Los teléfonos inteligentes son los primeros en cambiar y serán seguidos por altavoces inteligentes, televisores, otros dispositivos domésticos, dispositivos portátiles y automóviles en los próximos meses. Los teléfonos inteligentes, con algunas excepciones importantes, se habrán mudado a Gemini por completo a fines de 2025, ya que “el asistente clásico de Google ya no se puede acceder en la mayoría de los dispositivos móviles o disponible para nuevas descargas en tiendas de aplicaciones móviles”, según Google.

Continue Reading

Noticias

Cómo se puede mejorar la investigación profunda de Chatgpt con 8 características clave

Published

on

La herramienta de investigación profunda de Chatgpt es fantástica para profundizar en casi cualquier tema que elija, pero aún necesita algunas mejoras para ser realmente útiles. Utilizo investigaciones profundas todo el tiempo y creo que sería mucho mejor con estas características adicionales.

1

Parámetros personalizables

Cuando uso la investigación de chatgpt profunda, normalmente respondo preguntas de seguimiento para darle a la herramienta más contexto. Sin embargo, desearía poder usar parámetros personalizables en su lugar.

Imaginaría que esta característica funcione como filtros al comprar en línea. Me encantaría elegir cuántos recursos quiero que se analice ChatGPT, junto con los plazos publicados. Además, sería genial si pudiera buscar en función de diferentes palabras clave.

Los parámetros personalizables mantendrían mi investigación mucho más organizada. Siento que los resultados valdrían la pena el tiempo que lleva a ChatGPT realizar investigaciones profundas también. Hasta que esto suceda, hay al menos formas en que puede obligar a ChatGPT a usar fuentes de alta calidad.

2

Opciones de diseño de investigación

La función de investigación profunda de ChatGPT puede establecer información de múltiples maneras. Por ejemplo, utilizará tablas al comparar estadísticas u otros aspectos. En otros casos, la herramienta establecerá información en subsecciones integrales.

Si bien varias opciones de diseño son buenas, desearía que ChatGPT me permita elegir cómo quiero que presente información. A veces, veo contenido presentado en forma de oración cuando prefiero usar tablas.

A veces uso las indicaciones para pedirle a ChatGPT que presente información en mi formato preferido, pero desafortunadamente, no siempre escucha.

3

Una asignación mensual más grande

Quizás mi mayor queja con la herramienta de investigación profunda de Chatgpt es lo fácil que es usar sus créditos mensuales. Aunque esto está bien para los usuarios casuales, 10 consultas mensuales no son suficientes para las personas que regularmente necesitan realizar una investigación integral. Revisé mis consultas en dos días.

Podía entender diez consultas mensuales para usuarios gratuitos; En estos casos, en realidad creo que sería un buen valor. Sin embargo, como alguien que paga $ 20 por mes por ChatGPT, no puedo evitar sentir que no me dan el mejor servicio posible.

Quedarse sin solicitudes en chatgpt

Por lo menos, creo que 15-20 consultas mensuales son justas para un plan positivo. Aumentaría aún más estas asignaciones para suscripciones de nivel superior. Operai podría incentivar a las personas a registrarse para estos planes al hacerlo, lo que resulta en una mejor experiencia del usuario y un aumento de los ingresos.

4

Una sección separada en chatgpt

Utilizo ChatGPT para múltiples conversaciones, ya sea que esté planeando una nueva parte de mi vida o quiero trabajar a través de mis pensamientos actuales. A medida que creo más chats, la interfaz se vuelve torpe y desorganizada. Molesto, no tengo forma de diferenciar entre conversaciones y discusiones ordinarias en las que he usado investigaciones profundas.

Si bien puedo crear nuevos proyectos a través de la barra lateral, prefiero que ChatGPT organice automáticamente mis conversaciones con una investigación profunda. Esta sería una mejora efectiva para la interfaz de usuario de ChatGPT, y no sería particularmente difícil de implementar.

Incluso si la aplicación no tuviera una sección separada, un diferenciador, como un ícono, sería útil.

5

Integración con GPTS personalizados

Los GPT personalizados son la función más subestimada de ChatGPT. Me encanta lo fácil que son para obtener el tipo de respuesta exacto que estaba buscando, y hay útiles GPT personalizados para todo tipo de intereses. Pero desafortunadamente, actualmente no puede integrarlos con la función de investigación profunda.

Siento que las respuestas serían mucho más precisas si tuvieran el contexto de GPT personalizados. Esto es particularmente cierto, considerando que algunos de mis chats normales tienen múltiples temas.

GPT personalizado como asistente de programación

No sé cómo sería posible porque imagino que los dos programas entrarían en conflicto. Pero si hubiera una manera de integrar investigaciones profundas y GPT personalizados, no veo cómo cualquier otra herramienta de IA podría competir en esta área.

6

La capacidad de dividir el texto en trozos más pequeños

He comparado la investigación profunda de ChatGPT con herramientas similares, como el equivalente de Microsoft Copilot. Cuando se trata de respuestas detalladas, la investigación profunda se encuentra en la cabeza y los hombros por encima de su competencia. Pero al mismo tiempo, a veces veo enormes párrafos una vez que la investigación ha concluido.

Encontrar información de la dieta en Chatgpt Investigación profunda

La lectura de Skim en una pantalla es mucho más difícil que con un libro, y a veces pierdo los puntos clave en la investigación. Cuando esto sucede, la investigación tarda más de lo que debería. Romper el texto en trozos más pequeños sería una solución simple pero efectiva.

Si todo el texto es realmente importante, ChatGPT podría dividirlo en más subsecciones. De esa manera, podría identificar la información más esencial fácilmente.

7

La opción de excluir sitios web específicos

La información inexacta es uno de los muchos grandes problemas con ChatGPT, y lamentablemente, esto se extiende a la función de investigación profunda. Puedo examinar ciertos sitios web al investigar a través de motores de búsqueda, pero este no es el caso cuando se utiliza una investigación profunda, lo que significa que debo tener mucho cuidado para verificar los recursos.

He visto características similares en otros tipos de aplicaciones, como bloqueadores de sitios web. La forma en que veo esto, los usuarios podrían ingresar a la URL para excluir un sitio de la búsqueda. Me imagino que esto aumentaría el tiempo que lleva completar estas tareas, pero sería un gran éxito.

8

Audio

ChatGPT tiene algunas características de voz geniales, pero ninguna se aplica a una investigación profunda. Tengo que escribir indicaciones de texto y recibo respuestas escritas. Si bien normalmente estoy contento con estas búsquedas, a veces me gustaría usar audio.

Cambiar la voz del altavoz en el modo de voz en chatgpt.

Además de hablar por una investigación profunda, agradecería las respuestas escritas. Me encantaría que la herramienta me cuente sobre sus hallazgos y proporcione una transcripción más tarde. Esto sería interactivo y beneficioso para las personas que aprenden mejor a través de la escucha que la lectura.

Operai inevitablemente agregará nuevas características a la herramienta de investigación profunda de ChatGPT a su debido tiempo, y creo que debería priorizar algunas adiciones simples pero efectivas. Los parámetros personalizables conducirían a hallazgos más precisos, y tener más control sobre el diseño de información también sería bueno.

Continue Reading

Trending