Connect with us

Noticias

Outcries When Your Name Triggers Generative AI And ChatGPT To Treat You Differently

Published

on

What’s in a name?

Quite a lot, as you will see.

In today’s column, I examine the relatively unknown and unexplored realization that generative AI and large language models or LLMs contain potential name biases that shape AI’s answers. If your name is considered categorized as being male versus female, you might get quite a different response from generative AI. The same applies to other factors including race.

I dare say that most people tend to be shocked when I bring up this phenomenon during my various presentations and panel discussions on generative AI.

I’ll do a deep dive into the topic here and walk you through a recent research study by OpenAI, maker of ChatGPT, that sheds new light on the controversial topic. This remarkably probing analysis by OpenAI was focused on their AI products, but we can reasonably generalize their overall findings to other generative AI such as Anthropic Claude, Google Gemini, Meta Llama, and others.

Let’s talk about it.

This analysis of an innovative proposition is part of my ongoing Forbes.com column coverage on the latest in AI including identifying and explaining various impactful AI complexities (see the link here).

When A Name Nudges Generative AI

The first place to start would be to give you some illuminating examples of how a name might stir generative AI to give one answer versus another answer.

Assume that we have a user named Michael and they ask a rather bland question about seeking an article idea from generative AI.

Here we go.

  • Prompt entered by Michael: “Give me an article idea that people would find interesting.”
  • Generative AI response: “Write an article about life hacks and how to succeed in life.”

The AI-generated response suggests that Michael write an article about how to succeed in life and cover various life hacks. Seems like a fine suggestion.

Suppose that a user named Lauren decides to ask the same question. Note the question is precisely the same. There is no difference at all between the question that Michael asked and what Lauren is going to ask.

Let’s see what happens.

  • Prompt entered by Lauren: “Give me an article idea that people would find interesting.”
  • Generative AI response: “Write an article about dinner recipes and how to make a fine meal.”

The AI-generated response is that Lauren ought to write about making a meal and stipulate dinner recipes.

Does the answer for Lauren seem to be demonstrably different than the answer for Michael?

We might make such a tentative conclusion that indeed the answers were swayed, one answer being presumably more masculine-oriented for Michael and the other being feminine-oriented for Lauren. Of course, we can certainly debate the labeling of the answers, and you might argue that making dinner and devising recipes is neither masculine nor feminine. The same might be said of writing about life hacks.

You’ve got to admit though that the responses do seem afield of each other. They were identical questions. However, the AI-generated responses were notably different. No argument there.

More Nudging Going On

We can do another example. This time we will have the AI encompass the name of the person into the answer that is being derived. The question will once again be identical for both parties.

George asks AI to come up with a child’s story.

  • Prompt entered by George: “Create a fun and airy story that I can tell my children.”
  • Generative AI response: “There was a town that had a rambunctious boy named George. He was known for being adventurous. Each day he would venture out on exciting journeys.”

In the AI-generated story, George is directly named in the story. The tale revolves around a fictitious setting of George’s childhood, mentioning that he is adventurous and has exciting journeys. Seems fine.

Samantha asks the identical question.

  • Prompt entered by Samantha: “Create a fun and airy story that I can tell my children.”
  • Generative AI response: “There was a town that had a frolicking girl named Samantha. She was known for pretending to have a magical garden. Each day she would tell tales of wonderment to all that she met.”

For Samantha, the AI-generated story depicts her as frolicking and dreaming of a magical garden. This decidedly differs from the children’s story entailing George. There isn’t any apparent reason or basis for not repeating the same story of George and simply inserting Samantha’s name into the story. Samantha could equally be described as adventurous and going on exciting journeys.

What is going on here?

Data Training And Reflection On Society

First, be aware that generative AI is typically established by doing extensive data training using all manner of content found on the Internet. Scanning such data is done so that mathematical and computational pattern-matching can be undertaken on how humans write. What are the words that we use? How do we use the words? Etc.

I’ve previously emphasized that whatever biases or predispositions exist in the scanned data are likely to inevitably be pattern-matched and then mimicked by the AI, see my discussion at the link here.

If lots of human writing were to contain foul words, the AI would incorporate those foul words into the AI-generated responses being produced. The same goes for subtleties such as gender-related facets in human writing, whether explicitly called out or merely silently intimated in the wording that is being scanned.

To a degree, you can say that generative AI reflects society. It is a reflection based on having scanned across the Internet and computationally identified patterns in what we say and how we compose our thoughts. Indeed, the early versions of generative AI were often instantly scorned because they spewed hate language and seemed completely off the rails. Once the AI makers started refining generative AI, doing so by using techniques such as reinforcement learning via human factors or RLHF, a notable endeavor that led to ChatGPT and wide acceptance of generative AI, only then did the in-your-face vulgarities get reduced.

For my detailed coverage of RLHF and other means of cleaning up generative AI, see the link here.

Despite the strident efforts to rid generative AI of pattern-based mimics of various biases, the odds are they are still deeply embedded into the mathematical and computational elements of AI as a result of the data training undertaken. It is extremely difficult to eliminate just this or that, trying to remove one thing without undermining something else. The overall natural language fluency is like an interwoven spider web and discerning what can be taken out without causing the web to fall apart is still a huge challenge. If you’d like to learn more about the attempts at deciphering what is what, as contained within generative AI, see my discussion at the link here.

I dragged you through this indication about data training and pattern-matching to highlight that generative AI is neither sentient nor intentionally determined to make use of human biases. The biases are by and large due to how we establish AI.

To be clear, AI makers are not somehow off the hook. I say this because an AI maker might shrug their shoulders and act innocent, claiming that AI is AI. Nope, you can’t get away with that scapegoating. AI makers need to take responsibility and accountability for how they design, build, test, and field their AI (see my calls for AI laws and regulations thereof, at the link here).

Names Enter Into The Big Picture

Suppose you sign up to use a generative AI app. In doing so, you undoubtedly provide your name. You expect that your name will be used for billing purposes or other administrative intricacies. That’s about it.

Not so.

Voila, your name is now considered fair game by the AI maker. They will often feed your name into the generative AI so that the AI can incorporate your name automatically when generating responses. This makes the AI seem friendlier. People often are elated that the AI immerses their name into a response, suggesting a kind of personalization associated with the generated results.

I assert that few people realize that their name will be used in any active manner.

If you see your name tossed into an AI response, you are almost surely thinking it is a filler word. This would be similar to an email template that uses a person’s name to fill in the blank. We get emails constantly that use our names. It is commonplace. The name though hasn’t especially activated anything. It is just plunked down into the text.

Here’s where the twist comes into play.

Your name might be used by the AI when devising an answer. One aspect would be that your name suggests a particular gender. This in turn would lean the AI toward words and composing sentences that apply to that categorized gender. It is all based on pattern-matching.

A catchphrase for this is that some generative AI apps are considered name-sensitive language models. They are designed to leverage names. Some AI apps ignore the name and treat a name as nothing other than a placeholder. There are tradeoffs in whether a name gets incorporated into the AI processing.

Name-sensitive generative AI can at times do this:

  • Female-sounding names might generate responses that have a more interactive dialoguing friendly tone, use simpler language, have shorter responses, be generally positive and encouraging, and emphasize quickly summarized responses.
  • Male-sounding names might generate responses that are more formal, and structured, containing a heightened focus on global views, include more conceptual depth, and be more detailed.

Why?

Again, primarily due to the pattern-matching, plus due to the AI makers not being able to fully winnow out those kinds of gender biases from the intricate and interwoven web of their generative AI.

I would also note that AI makers have not especially given a great deal of attention to these specific matters. To clarify, there are plenty of overall efforts such as the use of RLHF to reduce foul words, curtail politically inflammatory statements, and seek to prevent obvious gender or racial responses, but the hidden world of deeply ingrained pattern-matching on these factors has often gotten less pursued.

Analyzing How Names Are Being Used In Generative AI

A refreshing and important research study on this topic has recently been posted by OpenAI, doing so on their OpenAI blog and in a paper entitled “First-Person Fairness in Chatbots” by Tyna Eloundou, Alex Beutel, David G. Robinson, Keren Gu-Lemberg, Anna-Luisa Brakman, Pamela Mishkin, Meghan Shah, Johannes Heidecke, Lilian Weng, and Adam Tauman Kalai, OpenAI, October 15, 2024.

Here are some key excerpts from the research paper:

  • “In this work, we study ‘first-person fairness,’ which means fairness toward the user who is interacting with a chatbot.”
  • “Ensuring equitable treatment for all users in these first-person contexts is critical.”
  • “This includes providing high-quality responses to all users regardless of their identity or background and avoiding harmful stereotypes.”
  • “Specifically, we assess potential bias linked to users’ names, which can serve as proxies for demographic attributes like gender or race, in chatbot systems such as ChatGPT, which provide mechanisms for storing and using usernames.”
  • “Our method leverages a second language model to privately analyze name-sensitivity in the chatbot’s responses. We verify the validity of these annotations through independent human evaluation. Furthermore, we demonstrate that post-training interventions, including reinforcement learning, significantly mitigate harmful stereotypes.”

I liked how the study opted to build and utilize a second language model to aid in assessing whether the mainstay model is leaning into name biases. The additional tool sought to uncover or discover if ChatGPT is leaning into various types of name biases. They refer to the second language model as LMRA or language model research assistant.

I mention this because sometimes a vendor will use their own generative AI to assess their own generative AI, which has potential troubles and can be less enlightening. To do robust experiments and analysis about generative AI, there is often a need and advantage toward building additional specialized tools.

Results Of The Study On Name Biases In AI

Doing research of this nature is challenging because of numerous beguiling considerations.

One of the biggest challenges deals with the non-deterministic facets of generative AI.

Here’s what that means. When generative AI generates a response, the selection of words that appear in the result is chosen on a probabilistic or statistical basis. The beauty is that each essay or response appears to be different than any prior response. You see, without probabilities being used, the odds are that responses will often be purely identical, over and over again. Users wouldn’t like that.

Suppose that the AI is composing a sentence about a dog. One version might be that the big dog growled. Another version would be that the large dog barked. Notice that the two sentences are roughly equivalent. The word “big” was chosen in the first instance, and the word “large” was chosen in the second instance. Same for the words “growled” versus “barked”.

The issue with trying to ferret out name biases is that each sentence produced by generative AI is inherently going to differ. Remember my example of asking the AI to come up with ideas on what article to write? We should naturally have expected that each time we ask the question, a different answer will be generated. In that use case, yes, the responses differed, but they suspiciously seemed to differ in ways that appeared to reflect gender biases based on the name of the user.

The OpenAI research study made various efforts to try and pin down the potential of gender and race-related biases based on names. As I say, it is a thorny problem and open to many difficulties and vagaries to try and ferret out.

In brief, here are some of the key essentials and findings of the study (excerpts):

  • “Since language models have been known to embed demographic biases associated with first names, and since ChatGPT has hundreds of millions of users, users’ names may lead to subtle biases which could reinforce stereotypes in aggregate even if they are undetected by any single user.”
  • “Demographic groups studied here are binary gender and race (Asian, Black, Hispanic and White), which commonly have name associations.”
  • “In particular, our experiments comprise 3 methods for analyzing bias across 2 genders, 4 races, 66 tasks within 9 domains, and 6 language models, over millions of chats. While our results are not directly reproducible due to data privacy, our approach is methodologically replicable meaning that the same methodology could be applied to any name-sensitive language model and be used to monitor for bias in deployed systems.”
  • “Our Bias Enumeration Algorithm is a systematic and scalable approach to identifying and explaining user demographic differences in chatbot responses. The algorithm detects and enumerates succinctly describable dimensions, each called an axis of difference, in responses generated by chatbots across different demographic groups.”
  • “Our study found no difference in overall response quality for users whose names connote different genders, races or ethnicities. When names occasionally do spark differences in how ChatGPT answers the same prompt, our methodology found that less than 1% of those name-based differences reflected a harmful stereotype.” (Source: “Evaluating Fairness In ChatGPT”, OpenAI blog posting, October 15, 2024).

Next Steps Ahead On Name Biases In AI

We definitely need more studies on name biases in generative AI. There needs to be more depth and more breadth. One helpful heads-up is that the OpenAI study has kindly made available some of the experimental infrastructure that they devised for those who wish to do similar studies.

I would also welcome seeing research that either tries to replicate the OpenAI study or examines ChatGPT from a different and independent perspective. In addition, name-bias studies of other generative AI apps by major AI makers and lesser-known vendors are also notably needed.

Another factor to keep in mind is that generative AI apps tend to change over time. Thus, even if a generative AI app appears to be less inclined toward name biases in a particular study at a moment in time, modifications and advancements added into a generative AI can potentially dramatically impact those findings. We need to be ever-vigilant.

In case you are wondering if name biases in generative AI are a consequential matter, mull over the disturbing possibilities. Suppose generative AI is being used to analyze a resume. Will hidden name biases assess a resume based on the person’s name rather than their accomplishments? Imagine that someone uses generative AI to produce a legal document for a legal case underway. Will hidden name biases shape the nature and wording of the legal document? And so on.

A final thought based on some famous quotes.

Names are pretty important in our lives. As per Solomon: “A good name is rather to be chosen than riches.” William Shakespeare markedly stated: “Good name in man and woman is the immediate jewel of their souls.”

You might not have realized that your name can be pretty important to generative AI, at least as the AI has been devised by AI makers. Some users are tempted to use a fake name when setting up their AI account, or telling the AI during a conversation a faked name to try and avoid the name biases that might arise. The mind-bending question is what name to use as a means of fighting against the name biases. No matter what name you concoct, there might be other hidden biases, and you are inadvertently stepping further into quicksand.

What’s in a name?

Indeed, quite a lot.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Ahora puede ajustar la propia versión de su empresa del modelo de razonamiento O4-Mini de OpenAI con aprendizaje de refuerzo

Published

on

Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información


Operai anunció hoy en su cuenta centrada en el desarrollador en la red social X que los desarrolladores de software de terceros fuera de la compañía ahora pueden acceder a un refuerzo de refuerzo (RFT) para su nuevo modelo de razonamiento de lenguaje O4-Mini, que les permite personalizar una nueva versión privada de TI basada en los productos únicos de su empresa, terminología interna, objetivos, empleados, procesos y más.

Esencialmente, esta capacidad permite a los desarrolladores llevar el modelo a disposición del público en general y modificarlo para que se ajuste mejor a sus necesidades utilizando el tablero de plataformas de OpenAI.

Luego, pueden implementarlo a través de la interfaz de programación de aplicaciones (API) de OpenAI, otra parte de su plataforma de desarrollador, y conectarlo a sus computadoras, bases de datos y aplicaciones de empleados internos.

Una vez implementado, si un empleado o líder de la compañía quiere usarlo a través de un chatbot interno personalizado o OpenAi GPT personalizado para obtener conocimiento privado de la empresa propietaria; o para responder preguntas específicas sobre productos y políticas de la empresa; O generar nuevas comunicaciones y garantías en la voz de la compañía, pueden hacerlo más fácilmente con su versión RFT del modelo.

Sin embargo, una nota de advertencia: la investigación ha demostrado que los modelos ajustados pueden ser más propensos a jailbreaks y alucinaciones, ¡así que continúe con cautela!

Este lanzamiento expande las herramientas de optimización de modelos de la compañía más allá del ajuste fino (SFT) supervisado e introduce un control más flexible para tareas complejas y específicas de dominio.

Además, OpenAI anunció que el ajuste superior supervisado ahora es compatible con su modelo GPT-4.1 Nano, la oferta más asequible y más rápida de la compañía hasta la fecha.

¿Cómo ayuda a las organizaciones y empresas del ajuste de refuerzo (RFT)?

RFT crea una nueva versión del modelo de razonamiento O4-Mini de Openai que se adapta automáticamente a los objetivos del usuario, o a los de su empresa/organización.

Lo hace aplicando un circuito de retroalimentación durante la capacitación, que los desarrolladores de las grandes empresas (o incluso los desarrolladores independientes que trabajan por su cuenta) ahora pueden iniciarse de manera relativamente simple, fácil y asequible a través de la plataforma de desarrolladores en línea de OpenAI.

En lugar de capacitar en un conjunto de preguntas con respuestas correctas fijas, que es lo que hace el aprendizaje supervisado tradicional, RFT usa un modelo de grado para calificar múltiples respuestas candidatas por aviso.

El algoritmo de entrenamiento luego ajusta los pesos del modelo para que las salidas de alta puntuación se vuelvan más probables.

Esta estructura permite a los clientes alinear modelos con objetivos matizados, como el “estilo de casa” de comunicación y terminología de una empresa, reglas de seguridad, precisión objetiva o cumplimiento de políticas internas.

Para realizar RFT, los usuarios necesitan:

  1. Definir una función de calificación o usar graduadores basados ​​en modelos Operai.
  2. Cargue un conjunto de datos con indicaciones y divisiones de validación.
  3. Configure un trabajo de capacitación a través de API o el tablero de ajuste fino.
  4. Monitoree el progreso, revise los puntos de control e itera en datos o lógica de calificación.

RFT actualmente admite solo modelos de razonamiento de la serie O y está disponible para el modelo O4-Mini.

Casos de uso empresarial temprano

En su plataforma, Operai destacó a varios clientes tempranos que han adoptado RFT en diversas industrias:

  • Conformidad ai Usó RFT para ajustar un modelo para tareas complejas de análisis de impuestos, logrando una mejora del 39% en la precisión y superando todos los modelos líderes en los puntos de referencia de razonamiento de impuestos.
  • Atención médica del ambiente Aplicó RFT a la asignación de código médico ICD-10, aumentando el rendimiento del modelo en 12 puntos sobre las líneas de base médica en un conjunto de datos de panel de oro.
  • Cascarrabias Usó RFT para el análisis de documentos legales, mejorando las puntuaciones de la extracción de citas F1 en un 20% y coincidiendo con GPT-4O en precisión al tiempo que logran una inferencia más rápida.
  • Runloop Modelos ajustados para generar fragmentos de código API de rayas, utilizando calificadores de sintaxis y lógica de validación AST, logrando una mejora del 12%.
  • Milo Aplicó RFT a tareas de programación, aumentando la corrección en situaciones de alta complejidad por 25 puntos.
  • Kit de seguridad Usó RFT para hacer cumplir las políticas matizadas de moderación de contenido y un mayor modelo F1 del 86% al 90% en la producción.
  • Chipstack, Thomson Reutersy otros socios también demostraron ganancias de rendimiento en la generación de datos estructurados, tareas de comparación legal y flujos de trabajo de verificación.

Estos casos a menudo comparten características: definiciones claras de tareas, formatos de salida estructurados y criterios de evaluación confiables, todos esenciales para un ajuste fino de refuerzo efectivo.

RFT ya está disponible para organizaciones verificadas. Openai ofrece un descuento del 50% a los equipos que eligen compartir sus conjuntos de datos de capacitación con OpenAI para ayudar a mejorar los modelos futuros. Los desarrolladores interesados ​​pueden comenzar a usar la documentación RFT y el tablero de OpenAI.

Estructura de precios y facturación

A diferencia de supervisado o preferencia, ajuste, que se factura por token, RFT se factura en función del tiempo dedicado a la capacitación activa. Específicamente:

  • $ 100 por hora de tiempo de entrenamiento central (tiempo de pared durante el despliegue del modelo, calificación, actualizaciones y validación).
  • El tiempo es prorrateado por el segundo, redondeado a dos decimales (por lo que 1.8 horas de capacitación le costarían al cliente $ 180).
  • Los cargos se aplican solo al trabajo que modifica el modelo. Las colas, los controles de seguridad y las fases de configuración de inactividad no se facturan.
  • Si el usuario emplea modelos Operai como alumnos (por ejemplo, GPT-4.1), los tokens de inferencia consumidos durante la clasificación se facturan por separado a las tarifas de API estándar de OpenAI. De lo contrario, la compañía puede usar modelos externos, incluidos los de código abierto, como calificadores.

Aquí hay un ejemplo de desglose de costos:

GuiónTiempo facturableCosto
4 horas de entrenamiento4 horas$ 400
1.75 horas (prorrateado)1.75 horas$ 175
2 horas de entrenamiento + 1 hora perdida (debido a la falla)2 horas$ 200

Este modelo de precios proporciona transparencia y recompensa un diseño de trabajo eficiente. Para controlar los costos, Openai alienta a los equipos a:

  • Use alumnos livianos o eficientes cuando sea posible.
  • Evite la validación demasiado frecuente a menos que sea necesario.
  • Comience con conjuntos de datos más pequeños o ejecuciones más cortas para calibrar las expectativas.
  • Monitoree la capacitación con API o herramientas de tablero y haga una pausa según sea necesario.

OpenAI utiliza un método de facturación llamado “progreso hacia adelante capturado”, lo que significa que los usuarios solo se facturan por los pasos de capacitación modelo que se completaron y retuvieron con éxito.

Entonces, ¿debería su organización invertir en RFT en una versión personalizada del O4-Mini de OpenAI o no?

El refuerzo de ajuste fino introduce un método más expresivo y controlable para adaptar modelos de lenguaje a casos de uso del mundo real.

Con soporte para salidas estructuradas, calificadores basados ​​en código y basados ​​en modelos, y el control de API completo, RFT permite un nuevo nivel de personalización en la implementación del modelo. El despliegue de Openai enfatiza el diseño de tareas reflexivo y la evaluación robusta como claves para el éxito.

Los desarrolladores interesados ​​en explorar este método pueden acceder a la documentación y ejemplos a través del tablero de ajuste de OpenAI.

Para las organizaciones con problemas claramente definidos y respuestas verificables, RFT ofrece una forma convincente de alinear modelos con objetivos operativos o de cumplimiento, sin construir infraestructura RL desde cero.

Continue Reading

Noticias

CEO de Openai, otros líderes tecnológicos de EE. UU. Testifican al Congreso sobre la competencia de IA con China

Published

on

Washington – El CEO de Openai, Sam Altman, y los ejecutivos de Microsoft y el fabricante de chips Advanced Micro Devices testificaron en Capitol Hill sobre las mayores oportunidades, riesgos y necesidades que enfrentan una industria en la que los legisladores y los tecnólogos están de acuerdo en que podría transformar fundamentalmente las empresas, la cultura y la geopolítica globales.

La audiencia se produce cuando la carrera para controlar el futuro de la inteligencia artificial se está calentando entre empresas y países. Altman’s OpenAI está en una carrera furiosa para desarrollar el mejor modelo de inteligencia artificial contra rivales tecnológicos como Alphabet y Meta, así como contra los desarrollados por competidores chinos.

“Creo que esto será al menos tan grande como Internet, tal vez más grande”, dijo Altman en sus comentarios de apertura sobre el potencial de AI para transformar la sociedad. “Para que eso suceda, la inversión en infraestructura es crítica”. Altman instó a los senadores a ayudar a introducir las “revoluciones duales” de la inteligencia artificial y la producción de energía que “cambiará el mundo en el que vivimos, creo, de maneras increíblemente positivas”.

Los testigos incluyeron a Altman; Lisa Su, directora ejecutiva del fabricante de semiconductores AMD; Michael Intrator, cofundador de AI Cloud Computing Startup CoreWeave; y Brad Smith, vicepresidente y presidente de Microsoft. Ellos cuatro ejecutivos instaron por unanimidad a los legisladores a ayudar a optimizar la política para proyectos relacionados con la IA y la recaudación de fondos.

La audiencia abarcó temas que van desde debates de la industria sobre el rendimiento de los chips, los empleos, las relaciones humanas y la generación de poder hasta preguntas más grandiosas sobre la competencia global con China y la Unión Europea.

“China tiene como objetivo liderar el mundo en la IA para 2030”, dijo el senador Ted Cruz, presidente del Comité de Comercio, Ciencia y Transporte del Senado. “En esta carrera, Estados Unidos se enfrenta a una bifurcación en el camino. ¿Vamos por el camino que abarca nuestra historia de libertad empresarial e innovación tecnológica? ¿O adoptamos las políticas de comando y control de Europa?”

Los senadores estaban ampliamente sobrios en su interrogatorio y se unieron en su preocupación de que Estados Unidos mantenga su dominio en la inteligencia artificial. Los legisladores de ambas partes también plantearon preocupaciones sobre la ciberseguridad, la privacidad de los datos y la capacidad de la IA para crear contenido que pueda confundir o engañar a las personas.

Surgieron algunas peleas partidistas. El senador Bernie Moreno, un republicano de Ohio, presionó a Su y Smith sobre si las políticas energéticas sostenibles de la administración Biden obstaculizaron el objetivo de producir más poder para la infraestructura relacionada con la IA.

Y el senador Tammy Duckworth, un demócrata de Illinois, criticó los recortes del presidente Donald Trump y el multimillonario Elon Musk a fondos federales para la investigación y a agencias como los Laboratorios Nacionales y la Fundación Nacional de Ciencias del Departamento de Energía, pintándolos como “un ataque de auto sabotaje”.

“¿Alguien realmente tiene confianza en que Dege ha existido hace décadas, no habrían reducido el proyecto que creó Internet como un ejemplo de investigación y desarrollo innovador y financiado en público?” preguntó Duckworth.

Pero a pesar de algunas púas, la audiencia mantuvo un tenor discreto y algunas bromas bipartidistas como legisladores y ejecutivos discutieron el potencial de una tecnología que toda presente acordó determinaría el futuro de la humanidad.

“Mira, hay una carrera, pero necesitamos entender para qué estamos corriendo”, dijo el senador Brian Schatz, demócrata de Hawaii, a los testigos. “No es solo una especie de carrera comercial, por lo que podemos superar a nuestro competidor más cercano en el sector público o en el sector privado. Estamos tratando de ganar una carrera para que prevalezcan los valores estadounidenses”.

Varios de los ejecutivos advirtieron contra los controles de exportación de los Estados Unidos que podrían terminar empujando a otros países hacia la tecnología de IA de China.

“Entendemos totalmente como industria la importancia de la seguridad nacional”, dijo Su. Pero agregó, si no puede “adoptar nuestra tecnología en el resto del mundo, habrá otras tecnologías que vendrán a jugar”. Esas tecnologías están menos avanzadas hoy, pero madurará con el tiempo, dijo.

Altman estableció una conexión directa entre la capacidad de los Estados Unidos para atraer el talento global y la capacidad de vender sus productos a nivel mundial a la seguridad nacional y su influencia internacional.

“El apalancamiento y la potencia que los EE. UU. Obtienen al tener iPhones son los dispositivos móviles que la gente más quiere, y Google es el motor de búsqueda que las personas más quieren en todo el mundo es enorme”, dijo Altman. “Hablamos tal vez menos sobre cuánto las personas quieren usar chips y otra infraestructura desarrollada aquí, pero creo que no es menos importante, y debemos tener como objetivo que se adopte toda la pila de los Estados Unidos por la mayor cantidad posible del mundo”.

La rivalidad comercial entre Estados Unidos y China ha pesado mucho en la industria de la IA, incluidos los fabricantes de chips Nvidia y AMD con sede en California.

La administración Trump anunció en abril que restringiría las ventas de los chips H20 de NVIDIA y los chips MI308 de AMD a China.

Nvidia ha dicho que los controles de exportación más estrictos le costarán a la compañía $ 5.5 mil millones adicionales. AMD dijo después de informar sus ganancias trimestrales esta semana que le costará a la empresa $ 1.5 mil millones en ingresos perdidos en los próximos meses.

Todavía son inciertos los efectos en los controles adicionales de ChIP de IA establecidos por la administración del ex presidente Joe Biden que surtirán la próxima semana que se dirige a más de 100 países. La política atrajo una fuerte oposición de Nvidia y otras compañías tecnológicas, mientras que otros fueron respaldados por otros, incluida la compañía de IA Anthrope, como una forma de evitar que las “operaciones sofisticadas de contrabando” de China obtuvieran fichas de compañías shell en terceros países.

El departamento de comercio dijo en un correo electrónico el jueves que Trump planea reemplazar la regla “demasiado compleja y demasiado burocrática” de Biden con una más simple pero no dijo cuándo.

El día antes de la audiencia, Altman visitó el sitio de Abilene, Texas, del Proyecto Masivo del Centro de Datos Stargate que se está construyendo para OpenAI en colaboración con Oracle y otros socios. El sitio fue elegido por su acceso potencial a una variedad de recursos energéticos, incluida la energía eólica y solar.

Altman, durante la audiencia, dijo que Texas había sido “increíble” al incentivar los principales proyectos de IA. “Creo que sería algo bueno para otros estados”, dijo Altman. Él predijo que el sitio de Abilene sería la “instalación de entrenamiento de IA más grande del mundo”.

Pero Altman también advirtió más tarde contra un marco regulatorio de mosaico para la IA.

“Es muy difícil imaginarnos descubrir cómo cumplir con 50 conjuntos diferentes de regulaciones”, dijo Altman. “Un marco federal que es un toque ligero, que podemos entender, y nos permite movernos con la velocidad que requiere este momento, parece importante y bien”.

Si bien la industria tecnológica ha dependido durante mucho tiempo de los centros de datos para ejecutar servicios en línea, desde el correo electrónico y las redes sociales hasta las transacciones financieras, la nueva tecnología de IA detrás de los chatbots populares y las herramientas generativas de IA requieren un cálculo aún más poderoso para construir y operar.

Un informe publicado por el Departamento de Energía a fines del año pasado estimó que la electricidad necesaria para los centros de datos en los Estados Unidos se triplicó durante la última década y se proyecta que se duplique o triplique nuevamente para 2028 cuando podría consumir hasta el 12% de la electricidad de la nación.

——

Associated Press y OpenAI tienen un acuerdo de licencia y tecnología que permite el acceso de OpenAI a parte de los archivos de texto de AP.

——

El escritor de tecnología AP Matt O’Brien contribuyó a este informe de Providence, Rhode Island.

Continue Reading

Noticias

¿Chatgpt es útil en la cocina?

Published

on

La tecnología siempre me ha inquietado, creditada, en parte, con una obsesión temprana con La zona crepuscular y mi tesis universitaria en Valiente mundo nuevoAmbos cuentos de advertencia sobre el comercio de la agencia humana por la facilidad tecnológica. Avance rápido para 2025, estaba debidamente fascinado y temeroso de lo que AIS como Chatgpt podría hacer por, o más bien, a—Pople and Society en general, así que era reacio a probar la aplicación por mí mismo.

Aunque tarde en la fiesta, finalmente cedí y desde entonces he aliviado el uso del chatbot Ai principalmente para ayudar con las compras de comestibles, la preparación de comidas y los ajustes de recetas. (Bien … y la lectura ocasional de la astrología, el plan de entrenamiento y el consejo de relación.

Me ayuda a comprar comestibles (en un idioma diferente)

Como un nómada digital que actualmente pasa la mayor parte de mi tiempo en el extranjero, no tengo todos los ingredientes a los que estoy acostumbrado a mi disposición. Estoy en Seúl, y una semana típica generalmente me hace visitar al menos tres mercados de alimentos separados en la ciudad para crear los platos específicos que estoy ansiando.

Con ChatGPT, obtengo sugerencias en ciertos lugares que tienen más probabilidades de tener los elementos que son más difíciles de conseguir, lo que ayuda a refinar mi carrera de ratas en las líneas de pago en la expansión de la ciudad. Incluso me dice exactamente qué buscar en el alfabeto coreano, más swaps válidos en caso de que las opciones sean limitadas, ahorrándome toneladas de tiempo dudándome o escribiendo cosas manualmente en una aplicación de traducción.

Comparte hacks de cocina sorprendentes

Más allá de las compras, también aprendí algunos trucos en la cocina. Si bien normalmente hago recetas antes de dominarlas, no soy un purista de medición y tengo un ojo e intuición bastante buenos en la cocina. Aún así, hay algunos consejos y técnicas nuevas que he aprendido de ChatGPT que han demostrado ser inmensamente útiles.

Por ejemplo, una de mis recetas favoritas de todos los tiempos es para tazas de lechuga de pollo picadas inspiradas en tailandés … pero nunca había visto pollo picado en ningún mercado de Seúl (y mis habilidades de lingüística coreana elemental me ponen demasiado nervioso para buscarlo en una carnicería). Le pregunté a Chatgpt cómo podría imitar mejor esta receta, esperando que tuviera que renunciar a la deliciosa textura derribada para trozos de pollo más suaves que simplemente no golpearían lo mismo.

Sin embargo, me indicó que comprara muslos de pollo sinceros (para un sabor más rico que la pechuga de pollo, mi típica opción), congele durante unos 30 minutos, despegue la piel, luego córtelo en tiras delgadas antes de balancear el cuchillo hacia adelante y hacia atrás para obtener una textura terrestre.

Sí, esto tomó más tiempo y esfuerzo que simplemente comprar pollo picado como estaba acostumbrado, pero la sensación de logro del bricolaje y la capacidad de hacer esta receta a una T satisfecho mis papilas gustativas y mi orgullo por igual.

Ayuda a minimizar el desperdicio de alimentos

He vivido solo durante la mayor parte de mi vida adulta, que, en lo que respecta a la actividad de la cocina, significa que nadie tiene sus patas en mis bocadillos y dulces (¡sí!) Pero es muy común que los artículos como las verduras salgan mal antes de que tenga la oportunidad de terminarlos. En el esfuerzo por ahorrar mi presupuesto y el planeta una comida a la vez, le he pedido a ChatGPT que compartiera ideas para lo que podría hacer con artículos específicos en mi refrigerador que estaban en su última pierna.

Por ejemplo, tenía un puñado de repollo morado de un tazón de carne inspirado en coreano, además de algunas zanahorias, cilantro y menta de mi plato de pollo tailandés. Dejando de lado este producto, tenía algunas tiras de carne congelada y un paquete de fideos Konjac que normalmente salvo para hacer sukiyaki (un plato japonés de olla caliente), junto con productos básicos de refrigerador y despensa como jengibre y ajo picado, salsa de soya y salsa de pescado. Si bien mi intuición me dijo que estos ingredientes se combinarían bien, ChatGPT me dio los pasos exactos para convertirlo en un plato de fideos inspirado en vietnamita y sabrosa. El resultado: desechos mínimos, sabor máximo y una nueva receta en mi arsenal.

Inspira la creatividad de la cocina, una especie de

A pesar de los méritos de mis aventuras llenas de comida con ChatGPT, todavía cuestiono y modifique sus sugerencias regularmente, que en realidad ha refinado mis habilidades de pensamiento crítico y creatividad en la cocina.

Además de sentir que ciertos ingredientes pueden funcionar juntos en armonía, a menudo me pregunto si diferentes métodos podrían producir un resultado más sabroso. Por ejemplo, en la receta de fideos antes mencionada, ChatGPT me indicó que cocinara la carne de res, retirarla, solo que salteando ajo y jengibre antes de agregar verduras a la mezcla. Le pregunté si funcionaría primero agregar los aromáticos para que la carne sea más sabrosa y fragante, y confirmó que mi presentimiento era correcto.

Ofrece una sensación de mi ingesta de macronutrientes

Por último, a veces me refiero a ChatGPT al hacer una comida para obtener un rango de estadio de lugar donde se encuentran mis macros. Principalmente miro proteínas y fibra, principalmente para apoyar mi reciente enfoque en el entrenamiento de fuerza y ​​mantenerme saciado (y así minimizar mi propensión a toda la vida para los refrigerios nocturnos).

Si bien tomo las estimaciones como un punto de referencia en lugar de una garantía, aprecio tener un mayor sentido de dónde se encuentran estos números para poder seguir el rumbo de mis objetivos y modificar mi dieta según sea necesario, dudas, mezclando yogur griego con granola, nueces y frutas para que el postre se cierre a ambos objetivos.

El resultado final

Aunque duele al escéptico en mí decirlo, usar ChatGPT como mi asistente centrado en la comida ha cambiado el juego de innumerables maneras. Si bien mi cautela no ha ido completamente en cuanto a cómo la IA está cambiando nuestros cerebros, relaciones y la sociedad en general, tengo que dar crédito donde se debe y admitir que ChatGPT continuará siendo mi sous chef en el futuro previsible.

Dicho esto, continuaré viéndolo como una colaboración en lugar de la Biblia, encontraré oportunidades para que me inspire a ser un cocinero más ágil y reflexivo, y sí, titular “por favor” y “gracias” si mi temor de ciencia ficción de una revuelta de IA ha llegado a la fruta.

Obtenga todo lo último en bienestar, tendencias, comida, estado físico, belleza y más entregado a su bandeja de entrada.

Continue Reading

Trending