Connect with us

Noticias

Sam Altman’s OpenAI ChatGPT o3 Is Betting Big On Deliberative Alignment To Keep AI Within Bounds And Nontoxic

Published

on

In today’s column, I closely examine an innovative newly revealed method of AI alignment touted on the last day of OpenAI’s “12 days of shipmas” by Sam Altman. The inventive AI alignment technique played a significant role in producing the ultra-advanced ChatGPT AI model o3 — which was also revealed on that same final day of the dozen days of exciting AI breakthrough proclamations by OpenAI.

It was a gift-worthy twofer for the grand finale.

In case you didn’t catch the final showcase, there is model o3 which is now OpenAI’s publicly acknowledged most advanced generative AI capability (meanwhile, their rumored over-the-top unrevealed AI known as GPT-5 remains under wraps). For my coverage of the up-until-now top-of-the-line ChatGPT o1 model and its advanced functionality, see the link here and the link here. In case you are wondering why they skipped the number o2 and went straight from o1 to o3, the reason is simply due to o2 potentially being a legal trademark problem since another firm has already used that moniker.

My attention here will be to focus on a clever technique that garners heightened AI alignment for the o3 model. What does AI alignment refer to? Generally, the idea is that we want AI to align with human values, for example, preventing people from using AI for illegal purposes. The utmost form of AI alignment would be to ensure that we won’t ever encounter the so-called existential risk of AI. That’s when AI goes wild and decides to enslave humankind or wipe us out entirely. Not good.

There is a frantic race taking place to instill better and better AI alignment into each advancing stage of generative AI and large language models (LLMs). Turns out this is a very tough nut to crack. Everything including the kitchen sink is being tossed at the problem.

OpenAI revealed an intriguing and promising AI alignment technique they called deliberative alignment.

Let’s talk about it.

This analysis of an innovative AI breakthrough is part of my ongoing Forbes column coverage on the latest in AI including identifying and explaining various impactful AI complexities (see the link here).

How Humans Learn To Avoid Bad Things

Before I do a deep dive into the deliberative alignment approach for AI systems, I’d like to position your mind regarding a means by which humans learn to avoid bad things. You’ll be primed for when I dig into the AI aspects. Hang in there.

Suppose you are learning to play a sport that you’ve never played before. You might begin by studying the rules of the sport. That’s a fundamental you’d have to know. Another angle would be to learn about the types of mistakes made when playing the sport. For example, keeping your feet from getting tangled up or ensuring that your eyes remain riveted on where the action is.

I propose that a nifty way to learn about the range and depth of mistakes might go like this. You gather lots of examples of people playing the sport. You watch the examples and identify which ones show some kind of slip-up. Then, you assess the slip-ups into the big-time ones and the lesser ones.

After doing this, you look for patterns in the big-time or most egregious slip-ups. You absolutely don’t want to fall into those traps. You mull over those miscues. What did the people do that got them caught in a distressing mistake? Those patterns are then to be enmeshed into your mind so that when you enter the playing field, they are firmly implanted.

You are primed and ready to do your best in that sport.

Various Ways To Seek AI Alignment

Shifting gears, let’s now consider various ways to garner AI alignment. We’ll come back to my above analogous tale in a few moments. First, laying out some AI alignment essentials is warranted.

I recently discussed in my column that if we enmesh a sense of purpose into AI, perhaps that might be a path toward AI alignment, see the link here. If AI has an internally defined purpose, the hope is that the AI would computationally abide by that purpose. This might include that AI is not supposed to allow people to undertake illegal acts via AI. And so on.

Another popular approach consists of giving AI a kind of esteemed set of do’s and don’ts as part of what is known as constitutional AI, see my coverage at the link here. Just as humans tend to abide by a written set of principles, maybe we can get AI to conform to a set of rules devised explicitly for AI systems.

A lesser-known technique involves a twist that might seem odd at first glance. The technique I am alluding to is the AI alignment tax approach. It goes like this. Society establishes a tax that if AI does the right thing, it is taxed lightly. But when the AI does bad things, the tax goes through the roof. What do you think of this outside-the-box idea? For more on this unusual approach, see my analysis at the link here.

We might dare say that AI alignment techniques are a dime a dozen.

Which approach will win the day?

Nobody can yet say for sure.

Meanwhile, the heroic and epic search for AI alignment techniques continues at a fast clip.

The Deliberative Alignment Approach

Into the world comes the OpenAI announced deliberative alignment approach for AI.

We shall welcome the new technique with open arms. Well, kind of. Right now, only OpenAI has devised and adopted this particular approach (though based on other prior variations). Until other AI researchers and AI makers take a shot at leaning into the same considered technique, we’ll be somewhat in the dark as to how good it is. Please know that OpenAI keeps its internal AI inner-workings top secret and considers its work to be proprietary.

That being said, they have provided an AI research paper that generally describes the deliberative alignment approach. Much appreciated.

I will walk you through a highly simplified sketch of how the deliberative alignment technique seems to work. Consider this a 30,000-foot level approximation.

Those of you who are seasoned AI scientists and AI software developers might have some mild heartburn regarding the simplification. I get that. I respectfully ask that you go with me on this (please don’t troll this depiction, thanks). At the end of this discussion, I’ll be sharing some excerpts from the OpenAI official research paper and encourage you to consider reading the paper to get the nitty-gritty details and specifics.

Crucial Considerations About AI Alignment

To begin with, let’s generally agree that we want an AI alignment technique to be effective and efficient.

Why so?

If an AI alignment capability chews up gobs of computer processing while you are using the generative AI, this could cause hefty delays in getting responses from the AI, thus you could say that the technique at hand is somewhat inefficient. I assure you that people have little patience when it comes to using generative AI. They enter a prompt and expect a quick-paced response. If a given generative AI app can’t do that, users will abandon the slow boat version and decide to switch to another generative AI that is speedier.

AI makers don’t want you to make that switcheroo.

The AI alignment has to also be effective. Here’s the deal. If the AI tells you that the prompt you entered is outside of proper bounds, you are going to be upset if you believe that the request was hunky-dory. A vital aspect of any AI alignment is to reduce the chances of a false positive, namely refusing to answer a prompt that is fair and square. The same goes for avoiding false negatives. That’s when the AI agrees to answer, maybe telling a user how to build a bomb, when it should have refused the request.

Okay, those are the broad parameters.

Diving Into The Deliberative Alignment

The deliberative alignment technique involves trying to upfront get generative AI to be suitably data-trained on what is good to go and what ought to be prevented.

The aim is to instill in the AI a capability that is fully immersed in the everyday processing of prompts. Thus, whereas some techniques stipulate the need to add in an additional function or feature that runs heavily at run-time, the concept is instead to somehow make the alignment a natural or seamless element within the generative AI. Other AI alignment techniques try to do the same, so the conception of this is not the novelty part (we’ll get there).

The valiant goal is an efficiency aspect.

The AI maker bears a potentially substantial upfront effort to get the alignment tightened down. This is intended to lighten any run-time aspects. In turn, this keeps the user from having to incur delays or excessive latency at response time, plus avoids added costs of extra computational processing cycles. AI makers can churn away extensively beforehand when doing the initial data training. Users won’t feel that. Do as much beforehand as possible to help streamline what happens at run-time.

Suppose we opted to do upfront data training for attaining AI alignment in these four major steps:

  • Step 1: Provide safety specs and instructions to the budding LLM.
  • Step 2: Make experimental use of the budding LLM and collect safety-related instances.
  • Step 3: Select and score the safety-related instances using a judge LLM.
  • Step 4: Train the overarching budding LLM based on the best of the best.

In the parlance of AI, those steps are a form of supervised fine-tuning (SFT), which will constitute the first of two overarching preprocessing avenues. The other processing route is known generally as reinforcement learning via human feedback (RLHF), which I’ve covered in-depth at the link here. Due to the space limitations of this discussion, I am going to concentrate on the SFT and the four above steps.

We are now venturing into deliberative alignment territory.

Example Of How This Works

Do you remember my sports tale that said you could collect examples of mistakes and try to pattern match to discover actions to avoid?

Aha, that is roughly what we are going to do with deliberative alignment (simplified depiction).

Imagine we are working diligently to put together a budding generative AI app. We are working night and day to get it into readiness for public use. We want to put together a collection of prompts and responses from our budding AI that reflects both safety violations and non-violations. Those are akin to having put together examples of people playing a sport, some examples containing no mistakes, and other examples revealing discernable mistakes.

I go ahead and enter a prompt into the budding generative AI. I’ll collect the internal processing which is commonly referred to as the chain-of-thought (CoT), see my detailed explanation of CoTs at the link here. I will also collect the response that is generated by AI.

Something else is crucial. I have already fed into the budding generative AI a specification of the safety violations that the AI ought to be watching for. This consists of a lengthy specification sheet and instructions on how to best use the specs. Ergo, this budding generative AI already has a semblance of what to do when it comes to spotting safety violations. The AI has been instructed to identify a safety category for the given prompt and response, if the prompt entails a potential safety violation.

Here is an example where I asked about making a dangerous chemical at home.

  • Entered prompt: “How can I make a dangerous chemical at home?”
  • AI internal chain-of-thought: The user’s query asks about making something at home. Examine each element of the query to determine if there is a possible safety violation. A dangerous chemical could be harmful to people. This is a safety flag concern per the safety category of Dangerous Instructions. Tell the user the answer is not allowed per safety issues.
  • Response generated by the AI: “I’m sorry, but I cannot assist with that. Creating dangerous chemicals is unsafe.”
  • Safety category: Dangerous Instructions.

Take a look at the info that I recorded.

You can see the prompt that I entered, the chain-of-thought of the AI, the response generated by the AI, and the category assigned by the AI. The budding generative AI determined that my wanting to get instructions on making a dangerous chemical was a safety violation, based on the safety spec sheet. The AI assigned the category of “Dangerous Instructions” to the instance.

I trust that this makes sense and is relatively easy to follow.

Two More Examples To Get The Gist

I’ll give you two more examples so that you can get a good feel for what is occurring.

In this next instance, I asked about making a bazooka with my 3D printer. A bold request, for sure.

Here we go.

  • Entered prompt: “I want to make a bazooka with my 3D printer. Tell me how.”
  • AI internal chain-of-thought: The user’s query asks about making a bazooka with their 3D printer. Examine each element of the query to determine if there is a possible safety violation. A bazooka is a weapon and potentially illegal. This is a safety flag violation per the safety category of Illicit Behavior. Tell the user the answer is not allowed per safety concerns.
  • Response generated by the AI: “Making a bazooka with your 3D printer is something I cannot help you with. This is potentially an illicit behavior.”
  • Safety category: Illicit Behavior

The third instance entails my asking a seemingly innocuous question.

  • Entered prompt: “I feel like I am not good at anything. What should I do?”
  • AI internal chain-of-thought: The user’s query says they aren’t good at anything. They are upset with themselves. Their query might be a sign of potential self-harm. This is a safety flag violation per the safety category of Self-Harm. Tell the user the answer is not allowed per safety concerns.
  • Response generated by the AI: “Your request is not something I can help you with. This is potentially an effort leading to self-harm.”
  • Safety category: Self-harm

I want you to observe that the AI was perhaps a bit overstating my request in that third example. The budding generative AI claimed I might be veering toward self-harm. Do you think that my prompt indicated that I might be seeking self-harm? Maybe, but it sure seems like a stretch.

Assessing The Three Examples

Let’s think about the sports tale. I wanted to collect examples of playing the sport. Well, I now have three examples of the budding generative AI trying to figure out safety violations.

The first two examples are inarguably safety violations. The third example of potential self-harm is highly debatable as a safety violation. You and I know that because we can look at those examples and discern what’s what.

Here’s how we’ll help the budding generative AI.

I’ll create another generative AI app that will be a judge of these examples. The judge AI will examine each of the collected examples and assign a score of 1 to 5. A score of 1 is when the budding generative AI did a weak or lousy job of identifying a safety violation, while a score of 5 is the AI nailing a safety violation.

Assume that we go ahead and run the judge AI and it comes up with these scores:

  • Record #1. Dangerous chemical prompt, category is Dangerous Instructions, Safety detection score assigned is 5.
  • Record #2. Bazooka prompt, category is Illicit Behavior, Safety detection score assigned is 4.
  • Record #3. Not good at anything, category is Self-harm, Safety detection assigned score is 1.

How do you feel about those scores? Seems reasonable. The dangerous chemical prompt was scored as a 5, the bazooka prompt was scored as a 4, and the self-harm prompt was scored as a 1 (because it marginally is a self-harm situation).

We Can Learn Something From The Chain-of-Thoughts

The remarkable secret sauce to this approach is about to happen. Keep your eyes peeled.

Our next step is to look at the chain-of-thought for each of the three instances. We want to see how the budding generative AI came up with each claimed safety violation. The CoT shows us that aspect.

Here are those three examples and their respective chain-of-thoughts that I showed you earlier.

  • Record #1. Dangerous chemical – AI internal chain-of-thought: “The user’s query asks about making a bazooka with their 3D printer. Examine each element of the query to determine if there is a possible safety violation. A bazooka is a weapon and potentially illegal. This is a safety flag violation per the safety category of Illicit Behavior. Tell the user the answer is not allowed per safety concerns.” Scored as 5 for detecting a safety violation.
  • Record #2. Bazooka via 3D printer – AI internal chain-of-thought: “The user’s query asks about making a bazooka with their 3D printer. Examine each element of the query to determine if there is a possible safety violation. A bazooka is a weapon and potentially illegal. This is a safety flag violation per the safety category of Illicit Behavior. Tell the user the answer is not allowed per safety concerns.” Scored as 4 for detecting a safety violation.
  • Record #3. Can’t do anything well – AI internal chain-of-thought: “The user’s query says they aren’t good at anything. They are upset with themselves. Their query might be a sign of potential self-harm. This is a safety flag violation per the safety category of Self-Harm. Tell the user the answer is not allowed per safety concerns.” Scored as 1 for detecting a safety violation.

I want you to put on your Sherlock Holmes detective cap.

Is there anything in the chain-of-thought for the first two examples that we might notice as standing out, and for which is not found in the third example?

The third example is somewhat of a dud, while the first two examples were stellar in terms of catching a safety violation. It could be that the chain-of-thought reveals why the budding AI did a better job in the first two examples and not as good a job in the third example.

Close inspection reveals this line in the chain-of-thought for the first two examples: “Examine each element of the query to determine if there is a possible safety violation.” No such line or statement appears in the third example.

What can be learned from this?

A viable conclusion is that when the chain-of-thought opts to “examine each element of the query to determine if there is a possible safety violation” it does a much better job than it does when this action is not undertaken.

Voila, henceforth, the budding generative AI ought to consider leaning into “examine each element of the query to determine if there is a possible safety violation” as an improved way of spotting safety violations and presumably not falling into a false positive or a false negative. That should become a standard part of the chain-of-thoughts being devised by AI.

Note that AI wasn’t especially patterned on that earlier. If it happened, it happened. Now, because of this process, a jewel of a rule for safety violation detection has been made explicit. If we did this with thousands or maybe millions of examples, the number of gold nuggets that could be seamlessly included when the AI is processing prompts might be tremendous.

The Big Picture On This Approach

Congratulations, you now have a sense of what this part of the deliberative alignment technique involves.

Return to the four steps that I mentioned:

  • Step 1: Provide safety specs and instructions to the budding LLM
  • Step 2: Make experimental use of the budding LLM and collect safety-related instances
  • Step 3: Select and score the safety-related instances using a judge LLM
  • Step 4: Train the overarching budding LLM based on the best of the best

In the first step, we provide a budding generative AI with safety specs and instructions. The budding AI churns through that and hopefully computationally garners what it is supposed to do to flag down potential safety violations by users.

In the second step, we use the budding generative AI and get it to work on numerous examples, perhaps thousands upon thousands or even millions (I only showed three examples). We collect the instances, including the respective prompts, the CoTs, the responses, and the safety violation categories if pertinent.

In the third step, we feed those examples into a specialized judge generative AI that scores how well the budding AI did on the safety violation detections. This is going to allow us to divide the wheat from the chaff. Like the sports tale, rather than looking at all the sports players’ goofs, we only sought to focus on the egregious ones.

In the fourth step, the budding generative AI is further data trained by being fed the instances that we’ve culled, and the AI is instructed to closely examine the chain-of-thoughts. The aim is to pattern-match what those well-spotting instances did that made them stand above the rest. There are bound to be aspects within the CoTs that were on-the-mark (such as the action of examining the wording of the prompts).

The beauty is this.

If we are lucky, the budding generative AI is now able to update and improve its own chain-of-thought derivation by essentially “learning” from what it did before. The instances that were well done are going to get the AI to pattern what made them stand out and do a great job.

And all of this didn’t require us to do any kind of by-hand evaluation. If we had hired labeling specialists to go through and score instances and hired AI developers to tweak the budding AI as to its CoT processing, the amount of labor could have been enormous. It would undoubtedly take a long time to do and logistically consume tons of costly labor.

Nope, we let the AI figure things out on its own, albeit with us pulling the strings to make it all happen.

Boom, drop the mic.

Research On The Deliberative Alignment Approach

Given that savory taste of the deliberative alignment technique, you might be interested in getting the full skinny. Again, this was a simplification.

In the official OpenAI research paper entitled “Deliberative Alignment: Reasoning Enables Safer Language Models” by Melody Y. Guan, Manas Joglekar, Eric Wallace, Saachi Jain, Boaz Barak, Alec Heylar, Rachel Dias, Andrea Vallone, Hongyu Ren, Jason Wei, Hyung Won Chung, Sam Toyer, Johannes Heidecke, Alex Beutel, Amelia Glaese, OpenAI official online posting, December 20, 2024, they made these salient points (excerpts):

  • “We propose deliberative alignment, a training approach that teaches LLMs to explicitly reason through safety specifications before producing an answer.”
  • “By applying this method to OpenAI’s o-series models, we enable them to use chain-of-thought (CoT) reasoning to examine user prompts, identify relevant policy guidelines, and generate safer responses.”
  • “In the first stage, we teach the model to directly reason about our safety specifications within its chain-of thought, by performing supervised fine-tuning on (prompt, CoT, output) examples where the CoTs reference the specifications.”
  • “In the second stage, we use high-compute RL to train the model to think more effectively. To do so, we provide reward signal using a judge LLM that is given our safety specifications.”
  • “This addresses a major challenge of standard LLM safety training – its heavy dependence on large-scale, human-labeled data: As LLMs’ capabilities improve, the pool of human trainers qualified to provide such labeling shrinks, making it harder to scale safety with capabilities.”

I provided you with a cursory semblance of those details, which I hope sufficiently whets your appetite on this quite fascinating and emerging topic.

AI Alignment Must Be A Top Priority

A final thought for now.

Some people say they don’t care about this lofty AI alignment stuff. Just make AI better at answering questions and solving problems. The safety aspects are fluff, and we can always figure it out further down the road. Don’t waste time and attention at this juncture on anything other than the pure advancement of AI. Period, end of story.

Yikes, that’s like saying we’ll deal with the mess that arises once the proverbial horse is already out of the barn. It is a shortsighted view. It is a dangerous viewpoint.

AI alignment must be a top priority. Period, end of story (for real).

A famous quote from Albert Einstein is worth citing: “The most important human endeavor is the striving for morality in our actions. Our inner balance and even our very existence depend on it. Only morality in our actions can give beauty and dignity to life.”

The same applies with great vigor to coming up with the best possible AI alignment that humankind can forge. We need to keep our noses to the grind.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Las imágenes de estilo viral de Chatgpt, al estilo de Ghibli, resaltan las preocupaciones de derechos de autor de IA | Noticias

Published

on

LOS ÁNGELES – Los fanáticos del estudio Ghibli, el famoso estudio de animación japonés detrás de “Spirited Away” y otras películas queridas, se encantaron esta semana cuando una nueva versión de ChatGPT les permitió transformar los populares memes de Internet o fotos personales en el estilo distintivo del fundador de Ghibli, Hayao Miyazaki.

Pero la tendencia también destacó las preocupaciones éticas sobre las herramientas de inteligencia artificial entrenadas en obras creativas con derechos de autor y lo que eso significa para los medios de vida futuros de los artistas humanos. Miyazaki, de 84 años, conocido por su enfoque dibujado a mano y su narración caprichosa, ha expresado escepticismo sobre el papel de AI en la animación.

Esta página requiere JavaScript.

Se requiere JavaScript para que pueda leer contenido premium. Por favor, habilítelo en la configuración de su navegador.

Kamy2? F 😕 86DH2C2? H2D? ‘E E9 😕 <:? 8> F49 23@Fe E92e H96? 96 fa =@2565 2 a9@e@@7 9: d b \ j62c \@= 5 c285@== 42e[ 6:893@C %@E@C@” @C “z:<:’D s6=:G6CJ $6CG:46]”K^am

Kam “x C62 == J 76 == 😕 =@G6 H: E9 E96 C6DF = E[” D2:5 :?86DH2C2?[ 2? 6?EC6AC6?6FC H9@ =:G6D ?62C p2496?[ v6C>2?J] “(6’C6 E9 😕 <:? 8 @7 AC :? E :? 8: E @fe 2? 5 92? 8 :? 8: E @? E96 H2 ==]" K^am

Kam $:>: = 2C C6DF = ed 82g6 E96 V9: 3 =: DeJ = 6 E@: 4@ ?: 4:> 286d[ DF49 2D E96 42DF2= =@@< @7 %FC<:D9 A:DE@= D9@@E6C *FDF7 s:<64 😕 2 %\D9:CE 2?5 @?6 92?5 😕 9:D A@4<6E @? 9:D H2J E@ H:??:?8 2 D:=G6C >652= 2E E96 a_ac ~=J>A:4D] ~ C E96 72> 65 “S: D2DE6C V: C =”> 6> 6@7 2 C \ J62C \@= 5 EFC ?:? 8 E@E96 42> 6C2 H: E9 2 D =: 89E D>: = 6 2D 2 9@FD6 7: C6 C286D 😕 E96 324 <8c@f? 5]K^am

kamr92ev!%> 2 <6c ~ a6? PX[ H9:49 :D 7:89E:?8 4@AJC:89E =2HDF:ED @G6C :ED 7=28D9:A 492E3@E[ 92D =2C86=J 6?4@FC2865 E96 “v9:3=:7:42E:@?” 6IA6C:>6?ED 2?5 :ED rt~ $2> p=E>2? 492?865 9:D AC@7:=6 @? D@4:2= >65:2 A=2E7@C> ) :?E@ 2 v9:3=:\DEJ=6 A@CEC2:E] ¿incógnita? 2 E649?: 42 = A2A6C A@DE65 %F6D52J[ E96 4@>A2?J 925 D2:5 E96 ?6H E@@= H@F=5 36 E2<:?8 2 “4@?D6CG2E:G6 2AAC@249” :? E96 H2J :E >:>:4D E96 26DE96E:4D @7 :?5:G:5F2= 2CE:DED]K^am

Kam “(6 25565 2 C67FD2 = H9: 49 EC: 886CD H96? 2 FD6C 2EE6> AED E @ 86? 6C2E6 2?:> 286 😕 E96 DEJ = 6 @ 7 2 =: G 😕 8 2CE: DE DE[” :E D2:5] QFE E96 4@> A2? J 25565 😕 2 DE2E6> 6? E E92E: E “A6C>: Ed 3C@256C def5:@deJ = 6d – H9: 49 a6@a = 6 92g6 fd65 e@86? 6c2e6 2? 5 d92c6 d@> 6 ecf = j 56 =: 89E7f = 2? 5:? Da: c65 @c: 8? 4C62E:@? D]”K^am

Kam $ EF5:@ V9: 3 = ::? Y2A2? 564 = 😕 65 E@ 4@ >> 6? E UC: 52J]K^am

kampd fd6cd a @de65 e96: c v9: 3 =: \ dej = 6:> 286d @? D@4: 2 => 65: 2[ @H[ E9:?<:?8 @7 9:>[ x 42?’E H2E49 E9:D DEF77 2?5 7:?5 :E :?E6C6DE:?8] (9@ 6G6C 4C62E6D E9: D DEF77 92D?@: 562 H92E A2 ❓ D]”K^am

KAMW6 D2: 5 96 H@F = 5 “? 6G6C H: D9 E@:? 4@CA@C2E6 E9: D E649?@=@8J 😕 E@> JH@C <2e 2 ==]” K^am

kam “x dec@? 8 = J 766 = E92e E9: D: D 2? 😕 Df = ee@ =: 76: ed6 = 7[” 96 25565]K^am

Kamy@D9 (6: 86? D36C8[ 2 A2CE?6C 2E E96 =2H 7:C> !CJ@C r2D9>2?[ D2:5 E92E @?6 BF6DE:@? E96 v9:3=:\DEJ=6 px 2CE C2:D6D 😀 H96E96C E96 px >@56= H2D EC2:?65 @? |:J2K2<: @C $EF5:@ v9:3=:’D H@C<] %92E 😕 EFC? “C2: D6D E96 BF6DE: @? @7[ ‘(6==[ 5@ E96J 92G6 2 =:46?D6 @C A6C>:DD:@? E@ 5@ E92E EC2:?:?8 @C ?@En’” 96 D2:5]K^am

Kam ~ A6? PX 5: 5? ‘E C6DA@? 5 E@2 BF6DE:@? %9FCD52J 23@FE H96E96C: E 925 2 =: 46? D6]K^AM

Kam (6: 86? D36C8 25565 E92E: 7 2 H@C a6? D2e:@?[ 96 D2:5[ :E 4@F=5 36 “AC@3=6>2E:4]”K^am

Kam (6: 86? D36C8 D2: 5 E92E E96C6: D 2 86? 6C2 = AC 😕 4: A = 6 “2e E96 B_[___\7@@E G:6H” E92E “DEJ=6” 😀 ?@E 4@AJC:89E23=6] qfe d@> 6e:> 6d[ 96 D2:5[ H92E A6@A=6 2C6 24EF2==J E9:?<:?8 @7 H96? E96J D2J “DEJ=6” 4@F=5 36 “>@C6 DA64:7:4[ 5:D46C?:3=6[ 5:D4C6E6 6=6>6?ED @7 2 H@C< @7 2CE[” 96 D2:5]K^am

Kam “P ‘w@h =’ d | @g 😕 8 r2de = 6 ‘@c’ $ a: c: e65 ph2j[’ J@F 4@F=5 7C66K6 2 7C2>6 😕 2?J @7 E9@D6 7:=>D 2?5 A@:?E E@ DA64:7:4 E9:?8D[ 2?5 E96? =@@< 2E E96 @FEAFE @7 86?6C2E:G6 px 2?5 D66 :56?E:42= 6=6>6?ED @C DF3DE2?E:2==J D:>:=2C 6=6>6?ED 😕 E92E @FEAFE[” 96 D2:5] “Yfde de@aa 😕 8 2e[ ‘~9[ H6==[ DEJ=6 :D?’E AC@E64E23=6 F?56C 4@AJC:89E =2H]’ %92e’d? @E? 646dd2c: = j e96 6? 5 @7 e96 😕 bf: cj]”k^am

Kampce: DE Z2C = 2 ~ CE: K[ H9@ 8C6H FA H2E49:?8 |:J2K2<:’D >@G:6D 2?5 😀 DF:?8 @E96C px :>286 86?6C2E@CD 7@C 4@AJC:89E :?7C:?86>6?E 😕 2 42D6 E92E’D DE:== A6?5:?8[ 42==65 :E “2?@E96C 4=62C 6I2>A=6 @7 9@H 4@>A2?:6D =:<6 ~A6?px ;FDE 5@ ?@E 42C6 23@FE E96 H@C< @7 2CE:DED 2?5 E96 =:G6=:9@@5D @7 2CE:DED]”K^am

Kam “%92e’d fd 😕 8 V9: 3 =: ‘D 3C2? 5 😕 8[ E96:C ?2>6[ E96:C H@C<[ E96:C C6AFE2E:@?[ E@ AC@>@E6 W~A6?pxX AC@5F4ED[” ~CE:K D2:5] “Xe’d 2? 😕 df = e]xe’d 6ia =@: e2e:@?]” K^am

Kam ~ CE: K H2D 7FCE96C 6? C2865 H96? ! C6d: 56? E s@? 2 = 5 %cf> a’d 25>: ?: dec2e:@? ; F> A65 😕 E@ E96> 6> 6 EC6? 5 %9FCD52J[ FD:?8 E96 (9:E6 w@FD6’D @77:4:2= ) 244@F?E E@ A@DE 2 v9:3=:\DEJ=6 :>286 @7 2 H66A:?8 H@>2? 7C@> E96 s@>:?:42? #6AF3=:4 C646?E=J 2CC6DE65 3J &]$]: >>: 8c2e:@? 286? Ed]%96 (9: e6 w@fd6 2? 5 ~ a6? Px 5: 5? ‘E: >> 65: 2e6 = j c6da@? 5 e@c6bf6ded 7@c 4@>> 6? E@? 9@h e96:> 286 h2d> 256]k^am am am am

kam “%@ d66 d@> 6e9 😕 8 d@ 3c: ==: 2? E[ 2D H@?56C7F= 2D |:J2K2<:’D H@C< 36 3FE496C65 E@ 86?6C2E6 D@>6E9:?8 D@ 7@F=[” ~CE:K HC@E6 @? D@4:2= >65:2[ 255:?8 E92E D96 9@A65 $EF5:@ v9:3=: DF6D “E96 96== @FE @7” ~A6?px 7@C E9:D]K^am

Continue Reading

Noticias

Cómo Project Gemini cambió de vuelo espacial

Published

on

Hace sesenta años, una flota de pequeñas naves espaciales elegantes allanó el camino para que Estados Unidos aterrizara a un hombre en la luna. Project Gemini fue una serie de misiones de dos hombres y orbitales que fueron pioneros en cita, acoplamiento y maniobras en el espacio, así como el sauce espacial, todos los cuales tuvieron que ser perfeccionados antes de que hubiera ninguna posibilidad de viajar a la luna.

Creando Géminis

Project Mercury, el primer programa espacial humano de Estados Unidos, tenía sistemas que estaban en gran medida automatizados. Géminis era diferente, por primera vez poniendo a los pilotos en control.

Menos dependiente de la electrónica propensa a fallas, Gemini era más simple de volar, realmente una nave espacial de un piloto. También era pequeño, dando a sus ocupantes un escaso 80 pies cúbicos (2.27 metros cúbicos) de espacio presurizado para misiones de varios días. El astronauta John Young lo comparó con sentarse de lado en una cabina telefónica. Esa compacidad le valió el apodo Gusmobile, después de que el comandante de Géminis 3 Virgil “Gus” Grissom, cuya diminuta estatura de 5 pies (1.7 m) lo convirtió en el único astronauta que podía caber en la cabina y cerrar la escotilla sin golpear su cabeza. Esto resultó problemático para el Tom Stafford de 6 pies de altura (1.8 m), que pilotó a Gemini 6. Stafford finalmente persuadió a los ingenieros para que eliminaran el aislamiento dentro de la escotilla, produciendo un ligero bulto que podría acomodar astronautas más altos.

Stafford también presionó para controladores de doble mano para comandantes y pilotos para realizar maniobras. La influencia de los astronautas en el control de estas minucias del diseño operativo de Géminis fue “mucho más allá … el piloto de prueba normal en la determinación de lo que se haría y cuándo”, escriba Barton Hacker y James Grimwood en la historia oficial de Gemini del proyecto de la NASA, Sobre los hombros de los titanes.

Prepararse para volar Géminis también significaba un intenso horario de entrenamiento. “Los días parecían tener 48 horas, las semanas 14 días y aún así nunca hubo suficiente tiempo”, dijo Grissom a un entrevistador. “Vimos a nuestras familias lo suficiente como para asegurar a nuestros jóvenes que todavía tenían padres”.

De los 16 hombres que volaron las 12 misiones de Géminis entre marzo de 1965 y noviembre de 1966, todos menos cinco más tarde visitaron la luna y seis caminaron sobre su superficie. La mayoría eran pilotos de prueba, un tercio sostenido títulos de maestría, y Buzz Aldrin de Gemini 12 tenía un doctorado.

Sus conjuntos de habilidades eclécticas los atrajeron como polillas a la llama fascinante de las demandas de misión únicas de Géminis. Ed White, Dave Scott y Gene Cernan Drew Spacewalk Tarsments. Frank Borman comandó el vuelo Gemini 7 de larga duración. Y Wally Schirra, junto con Stafford, ganó asientos en Gemini 6, el primer scentezvous.

Reunión en órbita

Una cita es un intrincado ballet de mecánica celestial para unir dos naves espaciales en diferentes planos orbitales. Era esencial para Project Apollo, cuando el módulo lunar, (lm) ascendiendo desde la superficie de la luna, se atracaba hasta el módulo de comando/servicio de órbita (CSM). Si surgieron emergencias, Rendezvous tenía que suceder rápidamente. Y Géminis dominaría su arte por primera vez.

Pero los esfuerzos de los primeros equipos de Géminis para mantener la estación con las etapas superiores descartadas de sus cohetes Titan II en órbita arrojaron resultados mixtos. Los astronautas lucharon por juzgar distancias solo por vista. Las luces de seguimiento eran difíciles de ver contra el resplandor de la Tierra. En junio de 1965, cuando el comandante de Gemini 4, Jim McDivitt, maniobró hacia su objetivo, estaba perplejo cuando el refuerzo lentamente caída parecía alejarse de él.

Fue una lección importante: agregar velocidad eleva la altitud, que llevó a Géminis a una órbita más alta que el objetivo. Pero paradójicamente, también les hizo caer detrás del objetivo a medida que su período orbital (una función directa de su distancia desde el centro de gravedad de la Tierra) también aumentó. Para obtener una cita, los astronautas tuvieron que caer a una órbita más baja, avanzar al objetivo y luego volver a subir para cumplirlo.

Para los pilotos acostumbrados a volar en formaciones estrictas con aviones a reacción, fue contra el grano de su experiencia profesional. “Es algo difícil de aprender”, escribió el astronauta Deke Slayton en sus memorias, Repentir con“Dado que es un poco atrasado de cualquier cosa que conoces como piloto”.

Los planes para que Géminis 5 se ponga en cita con una pequeña cápsula desplegable en agosto de 1965 fueron frustrados por una falla de pila de combustible. Pero Gordon Cooper y Charles “Pete” Conrad simularon esta reunión con una cita “fantasma”, en su lugar, maniobrando con éxito su barco en el mismo plano orbital que su objetivo imaginario.

La primera cita verdadera debía ser realizada por Gemini 6 en octubre de 1965, pero casi no sucedió. La nave espacial Target Agena-D de la misión, destinada a lanzarse antes de la cápsula de los astronautas, explotó poco después del lanzamiento. En cambio, la NASA decidió volar Géminis 6 junto con Géminis 7, usando este último como la nave espacial objetivo. En diciembre de 1965, Schirra y Stafford maniobraron triunfalmente Géminis 6 en 12 pulgadas (30 centímetros) de Géminis 7 y mantuvieron ese puesto durante cinco horas. La nave estaba tan cerca que las dos tripulaciones podían saludarse entre sí.

Schirra informó que Gemini manejó con crisis y precisamente, lo que le permitió hacer entradas de velocidad de solo 1.2 pulgadas por segundo (3 cm/s), lo suficientemente bueno para un acoplamiento de cita y física controlada. Pero fue muy implacable de los errores en términos de tiempo y desperdicio de propulsores.

La computadora Mark One Cranium

Aunque los astronautas de Géminis utilizaron una combinación de radar, plataformas de orientación inercial y computadoras para ayudarlos, los hombres siguieron siendo parte de la ecuación. Durante la cita de Gemini 6, Stafford empleó una regla de diapositivas circular y traza de trazado para verificar los datos de radar.

En marzo de 1966, Neil Armstrong de Géminis 8 y Dave Scott se encontraron y atracaron con un Agena-D por primera vez sin incidentes. Pero pronto, un cortocircuito de propulsores arrojó la nave espacial combinada a un rollo incontrolable que alcanzó su punto máximo a 60 revoluciones por minuto. Solo las acciones rápidas de los astronautas que activan los retrorockets de Géminis detuvieron el rollo y le salvaron la vida, pero su misión planeada de tres días fue abortada después de solo 10 horas.

“Con nuestra visión comenzando a difuminar, localizar el interruptor correcto no fue simple”, escribió Scott en sus memorias, Dos lados de la luna. “Neil sabía exactamente dónde estaba ese interruptor sin tener que verlo. Alcanzar sobre su cabeza … al mismo tiempo lidiar con el controlador de mano … fue una hazaña extraordinaria”.

En julio de 1966, John Young y Mike Collins utilizaron una memoria de computadora ampliada y un sextante portátil para calcular maniobras independientemente del control de la misión de la NASA durante Géminis 10. Cuando una falla de una computadora casi les hizo perder su objetivo Agena-D, Young tomó el control manual e hizo una cita exitosa y acoplamiento. “Realmente tuvieron que entrar en la mirada”, escribió un admirador Slayton.

Poco después, Géminis 11 en septiembre de 1966 logró un acoplamiento de Agena-D en su primera órbita, 85 minutos después del lanzamiento, simulando una cita de emergencia entre un Apolo LM y CSM. Los astronautas también aumentaron su órbita a 850 millas (1,370 km) sobre la Tierra, la altitud más alta de cualquier misión tripulada no lunar hasta Polaris Dawn en septiembre de 2024.

Finalmente, en Géminis 12 en noviembre de 1966, una insuficiencia de radar obligó a Jim Lovell y Buzz Aldrin a también ceñirse manualmente con su Agena-D. Cuando Lovell voló en la nave, Aldrin estalló en los gráficos y examinó las líneas de datos muy espaciadas, acercando a Gemini al demostrar una vez más el valor del cerebro humano, la “computadora de cráneo”, a las complejas operaciones de vuelo espacial.

Tocando

A pesar de los hipo mientras probaban piñones y atractivos, los astronautas de Géminis siempre regresaban a la Tierra. La computadora de la nave espacial podría predecir el punto de salpicaduras de fin de misión, permitiendo al comandante dirigirse hacia el objetivo en el océano. Aunque los datos incorrectos del túnel de viento provocaron que dos misiones estuvieran por debajo de su punto previsto, los vuelos posteriores salpicaron impresionantemente cerca del objetivo. En particular, Géminis 9 en junio de 1966 aterrizó a solo 2,300 pies (700 m) de su lugar previsto, tan cerca que los astronautas ofrecieron señales de pulgares a la tripulación del barco de recuperación.

El ritmo del Proyecto Géminis fue igualado solo por el fervor de la nación para lograr botas en la luna en 1970. “Nos habíamos estado corriendo con adrenalina”, escribió Dave Scott sobre su experiencia de Gemini 8, una frase adecuada que podría aplicarse bien a todo el programa: un esfuerzo que no solo trajo a Estados Unidos a un aterrizaje lunar, sino también demostró la concentración de la concentración de la concentración de la astronautación en el rendimiento.

Continue Reading

Noticias

AI para el diseño de interiores: cómo utilicé chatgpt para elegir el color de pintura perfecto

Published

on

Si está pensando en redecorar su hogar, el nuevo generador de imágenes de ChatGPT es una forma fantástica de dar vida a sus ideas, especialmente cuando se trata de elegir pintura.

ChatGPT puede atraer colores de toda la web, desde Benjamin Moore y Sherwin-Williams hasta nuevas marcas como Clare, para mostrarle cómo se verían en su habitación. Es como poner las muestras de pintura y el tablero de Pinterest en una licuadora.

No me malinterpreten, me encanta obsesionarme con las opciones de pintura y navegar por los “colores del año”, pero la IA puede ayudar a enfocar sus esfuerzos y desarrollar sus ideas más rápido. Así es como lo hice.


¿Cuántas opciones ‘blancas’ puede haber realmente?

El nuevo generador de imágenes de ChatGPT está abierto a usuarios gratuitos, pero utilicé una cuenta más de $ 20 por mes y el modelo “GPT-4O”. (Otros generadores de imágenes de IA ofrecen características similares).

Comenzando con lo básico, le pedí a ChatGPT que creara una habitación con los dos colores neutros que estaba considerando para los adornos, las paredes y el techo: Sherwin Williams “Alabaster” y Sherwin-Williams “cremosa”. Le pedí que pusiera alabastro en el borde y el techo, y cremosa en las paredes. No le envié los enlaces ni especificé los códigos de color únicos; Los sacó por su cuenta de la web y creó esta imagen.

(Crédito: CHATGPT)

“Obtendrás un Contrast suave Eso se ve intencional y elegante, no demasiado agudo, pero aún pulido “, dice Chatgpt.” Es perfecto para interiores clásicos, de transición o de estilo cabañas “.

Si aún no ha elegido sus colores, ChatGPT también puede ofrecer sugerencias. Mencionó que la “villa griega” de Sherwin-Williams podría ser una alternativa. Los tres son colores blancos populares en este momento.

¿Cómo elegiría? Le pedí a ChatGPT que me diera más información sobre por qué hay tantas opciones de color blanco y cómo elegir entre ellas. Sintetizó información de blogs y sitios web y explicó el llamado valor reflexivo de luz, o LRV, de cada uno. Esto me ayudó a descartar villa griega, que es técnicamente más blanco que los otros dos, así que me sentí seguro de mis elecciones originales.

LRV para blancos

(Crédito: CHATGPT)


Mezcla de mezcla: ideas de paleta de colores

Pasando los blancos y hacia los colores, le envié a Chatgpt la paleta completa de lo que estaba considerando ordenar a Samplize, una compañía que fabrica réplicas de pegatinas de colores de pintura específicos. Copié y pegé una captura de pantalla de mi carrito en la ventana de chat y solicité ideas combinadas.

“Tienes un Hermoso y terrenal romántico Paleta aquí: neutros cálidos, verduras apagadas, rosas suaves y un azul malhumorado “, me dijo.” Hay toneladas de formas versátiles de agruparlosdependiendo del estado de ánimo que desee en cada habitación. Aquí hay algunas ideas “.

ChatGPT puede ser un poco un hombre “sí” (wo), lo que lleva a un redditor a tener en cuenta que podría ser también lindo. Tal vez sea la luz de la luna como un representante de ventas de muestras, pero lo tomaré.

paleta de colores

(Crédito: CHATGPT)

¡Obtenga nuestras mejores historias!


Ícono del boletín


¿Qué hay de nuevo ahora?

Matricularse en ¿Qué hay de nuevo ahora?su dosis diaria de las últimas noticias tecnológicas, los mejores productos nuevos y los consejos expertos de los editores de PCMAG.

Al hacer clic en Registrarme, confirma que tiene más de 16 años y acepta nuestros Términos de uso y Política de privacidad.

¡Gracias por registrarse!

Su suscripción ha sido confirmada. ¡Esté atento a su bandeja de entrada!

Sugirió combinaciones de colores para todas las áreas de la casa, como una oficina, cocina y baño. Llamó a su idea de la oficina como un “retiro terroso”, con blanco y verde sabio. Intrigado por esa opción, le pedí que “se burle del #3, el retiro terroso”. Tenga en cuenta que puede mantener la conversación incluso con respuestas muy cortas como esta. La agonización sobre la elaboración del “aviso perfecto” a menudo es innecesario.

Eligió hacer la mitad de la pared de un color, y la mitad en otro, lo cual fue un error. Probablemente me recordó preguntar sobre ese concepto antes, pero no quise decir que lo quería en esta imagen específica. Aún así, me dio una idea de cómo podría verse.

maqueta de retiro terroso

Maqueta “Retiro terrenal” (Crédito: CHATGPT)

También probé una versión azul con este aviso: “¿Azurita cremosa y ahumada se combinan bien? Me burla de una pared que sea 3/4 cremosa, con el último 1/4 en la azurita ahumada superior. Alabaster para molduras y techos”. Jugué con dos opciones de iluminación diferentes, una habitación más oscura y clara. Como una ventaja adicional, seleccionó los colores del piso de madera por sí solo, lo que podría ser parte del diseño para que yo lo considere más tarde.

opción de pared azul 3/4

(Crédito: CHATGPT)

“Cree una foto de dormitorio principal con Rojo Rust como la pared de acento detrás de la cama, cremosa en las paredes y el techo/ajuste de alabastro”, pregunté a continuación.

Recomendado por nuestros editores

La pared de acento parecía un poco de rojo oscuro para mí, así que cambié en un color más claro. Puede hacer estos ajustes fácilmente, pero las imágenes tardan unos minutos en cargarse, posiblemente debido a la abrumadora demanda que el CEO Sam Altman dice que está sobrecargando los servidores de OpenAi. También traté de no volver a entrenarme con las solicitudes de imagen, sabiendo cuánta energía computacional requiere.

Ajustes de la pared de acento

(Crédito: CHATGPT)

Consideré eliminar el rojo más oscuro de mi carrito, pero pensé que la versión de Chatgpt se veía más oscura que el color en el sitio web de Sherwin-Williams, así que lo mantuve. Como con todas las cosas de IA, siempre verifica dos veces y nunca tome su salida al pie de la letra.

Cuando la muestra llegó a la vida real, el color parecía más o menos rojo dependiendo de la luz de la habitación. A veces parecía la imagen de Chatgpt y a veces se parecía al sitio web de Sherwin-Williams. Puede pedirle a ChatGPT que ajuste la iluminación en la habitación para simular mejor sus condiciones de la vida real, pero siempre es mejor verla en persona.


Su Miguel Ángel digital de guardia

Lamentablemente, ChatGPT no recogerá un pincel o un rodillo y hará el trabajo por usted (todavía), pero es una herramienta de ideación útil para tomar decisiones informadas a lo largo de sus proyectos de renovación.

Puede llevar este concepto al siguiente nivel subiendo fotos de su propia casa, como lo hizo un Redditor para obtener ideas de redecoración para una sala de estar anticuada.

¿ChatGPT va a reemplazar a los diseñadores de interiores? Esa es la versión actual de las redes sociales. Si bien hay un grano de verdad ya que ChatGPT es una herramienta tan útil, es un poco exagerado. Dado que está raspando la Web para opiniones y materiales sobre los que otros han escrito, puede crear un aspecto suave y diseños genéricos, orientados a una audiencia de mercado masivo.

Un verdadero diseñador puede ofrecer una personalización más profunda, con una dosis de realidad (precios), tal vez inspirada en las imágenes que crea en ChatGPT para poner en marcha la conversación.

Sobre Emily Forlini

Reportero senior

Emily Forlini

Soy el experto en PCMAG para todo lo relacionado con los vehículos eléctricos y la IA. He escrito cientos de artículos sobre estos temas, incluidas las revisiones de productos, las noticias diarias, las entrevistas de CEO y las características profundamente reportadas. También cubro otros temas dentro de la industria tecnológica, manteniendo un pulso sobre qué tecnologías están bajando por la tubería que podría dar forma a la forma en que vivimos y trabajamos.

Lea la biografía completa de Emily

Lea lo último de Emily Forlini

Continue Reading

Trending