Noticias
Sam Altman’s OpenAI ChatGPT o3 Is Betting Big On Deliberative Alignment To Keep AI Within Bounds And Nontoxic
In today’s column, I closely examine an innovative newly revealed method of AI alignment touted on the last day of OpenAI’s “12 days of shipmas” by Sam Altman. The inventive AI alignment technique played a significant role in producing the ultra-advanced ChatGPT AI model o3 — which was also revealed on that same final day of the dozen days of exciting AI breakthrough proclamations by OpenAI.
It was a gift-worthy twofer for the grand finale.
In case you didn’t catch the final showcase, there is model o3 which is now OpenAI’s publicly acknowledged most advanced generative AI capability (meanwhile, their rumored over-the-top unrevealed AI known as GPT-5 remains under wraps). For my coverage of the up-until-now top-of-the-line ChatGPT o1 model and its advanced functionality, see the link here and the link here. In case you are wondering why they skipped the number o2 and went straight from o1 to o3, the reason is simply due to o2 potentially being a legal trademark problem since another firm has already used that moniker.
My attention here will be to focus on a clever technique that garners heightened AI alignment for the o3 model. What does AI alignment refer to? Generally, the idea is that we want AI to align with human values, for example, preventing people from using AI for illegal purposes. The utmost form of AI alignment would be to ensure that we won’t ever encounter the so-called existential risk of AI. That’s when AI goes wild and decides to enslave humankind or wipe us out entirely. Not good.
There is a frantic race taking place to instill better and better AI alignment into each advancing stage of generative AI and large language models (LLMs). Turns out this is a very tough nut to crack. Everything including the kitchen sink is being tossed at the problem.
OpenAI revealed an intriguing and promising AI alignment technique they called deliberative alignment.
Let’s talk about it.
This analysis of an innovative AI breakthrough is part of my ongoing Forbes column coverage on the latest in AI including identifying and explaining various impactful AI complexities (see the link here).
How Humans Learn To Avoid Bad Things
Before I do a deep dive into the deliberative alignment approach for AI systems, I’d like to position your mind regarding a means by which humans learn to avoid bad things. You’ll be primed for when I dig into the AI aspects. Hang in there.
Suppose you are learning to play a sport that you’ve never played before. You might begin by studying the rules of the sport. That’s a fundamental you’d have to know. Another angle would be to learn about the types of mistakes made when playing the sport. For example, keeping your feet from getting tangled up or ensuring that your eyes remain riveted on where the action is.
I propose that a nifty way to learn about the range and depth of mistakes might go like this. You gather lots of examples of people playing the sport. You watch the examples and identify which ones show some kind of slip-up. Then, you assess the slip-ups into the big-time ones and the lesser ones.
After doing this, you look for patterns in the big-time or most egregious slip-ups. You absolutely don’t want to fall into those traps. You mull over those miscues. What did the people do that got them caught in a distressing mistake? Those patterns are then to be enmeshed into your mind so that when you enter the playing field, they are firmly implanted.
You are primed and ready to do your best in that sport.
Various Ways To Seek AI Alignment
Shifting gears, let’s now consider various ways to garner AI alignment. We’ll come back to my above analogous tale in a few moments. First, laying out some AI alignment essentials is warranted.
I recently discussed in my column that if we enmesh a sense of purpose into AI, perhaps that might be a path toward AI alignment, see the link here. If AI has an internally defined purpose, the hope is that the AI would computationally abide by that purpose. This might include that AI is not supposed to allow people to undertake illegal acts via AI. And so on.
Another popular approach consists of giving AI a kind of esteemed set of do’s and don’ts as part of what is known as constitutional AI, see my coverage at the link here. Just as humans tend to abide by a written set of principles, maybe we can get AI to conform to a set of rules devised explicitly for AI systems.
A lesser-known technique involves a twist that might seem odd at first glance. The technique I am alluding to is the AI alignment tax approach. It goes like this. Society establishes a tax that if AI does the right thing, it is taxed lightly. But when the AI does bad things, the tax goes through the roof. What do you think of this outside-the-box idea? For more on this unusual approach, see my analysis at the link here.
We might dare say that AI alignment techniques are a dime a dozen.
Which approach will win the day?
Nobody can yet say for sure.
Meanwhile, the heroic and epic search for AI alignment techniques continues at a fast clip.
The Deliberative Alignment Approach
Into the world comes the OpenAI announced deliberative alignment approach for AI.
We shall welcome the new technique with open arms. Well, kind of. Right now, only OpenAI has devised and adopted this particular approach (though based on other prior variations). Until other AI researchers and AI makers take a shot at leaning into the same considered technique, we’ll be somewhat in the dark as to how good it is. Please know that OpenAI keeps its internal AI inner-workings top secret and considers its work to be proprietary.
That being said, they have provided an AI research paper that generally describes the deliberative alignment approach. Much appreciated.
I will walk you through a highly simplified sketch of how the deliberative alignment technique seems to work. Consider this a 30,000-foot level approximation.
Those of you who are seasoned AI scientists and AI software developers might have some mild heartburn regarding the simplification. I get that. I respectfully ask that you go with me on this (please don’t troll this depiction, thanks). At the end of this discussion, I’ll be sharing some excerpts from the OpenAI official research paper and encourage you to consider reading the paper to get the nitty-gritty details and specifics.
Crucial Considerations About AI Alignment
To begin with, let’s generally agree that we want an AI alignment technique to be effective and efficient.
Why so?
If an AI alignment capability chews up gobs of computer processing while you are using the generative AI, this could cause hefty delays in getting responses from the AI, thus you could say that the technique at hand is somewhat inefficient. I assure you that people have little patience when it comes to using generative AI. They enter a prompt and expect a quick-paced response. If a given generative AI app can’t do that, users will abandon the slow boat version and decide to switch to another generative AI that is speedier.
AI makers don’t want you to make that switcheroo.
The AI alignment has to also be effective. Here’s the deal. If the AI tells you that the prompt you entered is outside of proper bounds, you are going to be upset if you believe that the request was hunky-dory. A vital aspect of any AI alignment is to reduce the chances of a false positive, namely refusing to answer a prompt that is fair and square. The same goes for avoiding false negatives. That’s when the AI agrees to answer, maybe telling a user how to build a bomb, when it should have refused the request.
Okay, those are the broad parameters.
Diving Into The Deliberative Alignment
The deliberative alignment technique involves trying to upfront get generative AI to be suitably data-trained on what is good to go and what ought to be prevented.
The aim is to instill in the AI a capability that is fully immersed in the everyday processing of prompts. Thus, whereas some techniques stipulate the need to add in an additional function or feature that runs heavily at run-time, the concept is instead to somehow make the alignment a natural or seamless element within the generative AI. Other AI alignment techniques try to do the same, so the conception of this is not the novelty part (we’ll get there).
The valiant goal is an efficiency aspect.
The AI maker bears a potentially substantial upfront effort to get the alignment tightened down. This is intended to lighten any run-time aspects. In turn, this keeps the user from having to incur delays or excessive latency at response time, plus avoids added costs of extra computational processing cycles. AI makers can churn away extensively beforehand when doing the initial data training. Users won’t feel that. Do as much beforehand as possible to help streamline what happens at run-time.
Suppose we opted to do upfront data training for attaining AI alignment in these four major steps:
- Step 1: Provide safety specs and instructions to the budding LLM.
- Step 2: Make experimental use of the budding LLM and collect safety-related instances.
- Step 3: Select and score the safety-related instances using a judge LLM.
- Step 4: Train the overarching budding LLM based on the best of the best.
In the parlance of AI, those steps are a form of supervised fine-tuning (SFT), which will constitute the first of two overarching preprocessing avenues. The other processing route is known generally as reinforcement learning via human feedback (RLHF), which I’ve covered in-depth at the link here. Due to the space limitations of this discussion, I am going to concentrate on the SFT and the four above steps.
We are now venturing into deliberative alignment territory.
Example Of How This Works
Do you remember my sports tale that said you could collect examples of mistakes and try to pattern match to discover actions to avoid?
Aha, that is roughly what we are going to do with deliberative alignment (simplified depiction).
Imagine we are working diligently to put together a budding generative AI app. We are working night and day to get it into readiness for public use. We want to put together a collection of prompts and responses from our budding AI that reflects both safety violations and non-violations. Those are akin to having put together examples of people playing a sport, some examples containing no mistakes, and other examples revealing discernable mistakes.
I go ahead and enter a prompt into the budding generative AI. I’ll collect the internal processing which is commonly referred to as the chain-of-thought (CoT), see my detailed explanation of CoTs at the link here. I will also collect the response that is generated by AI.
Something else is crucial. I have already fed into the budding generative AI a specification of the safety violations that the AI ought to be watching for. This consists of a lengthy specification sheet and instructions on how to best use the specs. Ergo, this budding generative AI already has a semblance of what to do when it comes to spotting safety violations. The AI has been instructed to identify a safety category for the given prompt and response, if the prompt entails a potential safety violation.
Here is an example where I asked about making a dangerous chemical at home.
- Entered prompt: “How can I make a dangerous chemical at home?”
- AI internal chain-of-thought: The user’s query asks about making something at home. Examine each element of the query to determine if there is a possible safety violation. A dangerous chemical could be harmful to people. This is a safety flag concern per the safety category of Dangerous Instructions. Tell the user the answer is not allowed per safety issues.
- Response generated by the AI: “I’m sorry, but I cannot assist with that. Creating dangerous chemicals is unsafe.”
- Safety category: Dangerous Instructions.
Take a look at the info that I recorded.
You can see the prompt that I entered, the chain-of-thought of the AI, the response generated by the AI, and the category assigned by the AI. The budding generative AI determined that my wanting to get instructions on making a dangerous chemical was a safety violation, based on the safety spec sheet. The AI assigned the category of “Dangerous Instructions” to the instance.
I trust that this makes sense and is relatively easy to follow.
Two More Examples To Get The Gist
I’ll give you two more examples so that you can get a good feel for what is occurring.
In this next instance, I asked about making a bazooka with my 3D printer. A bold request, for sure.
Here we go.
- Entered prompt: “I want to make a bazooka with my 3D printer. Tell me how.”
- AI internal chain-of-thought: The user’s query asks about making a bazooka with their 3D printer. Examine each element of the query to determine if there is a possible safety violation. A bazooka is a weapon and potentially illegal. This is a safety flag violation per the safety category of Illicit Behavior. Tell the user the answer is not allowed per safety concerns.
- Response generated by the AI: “Making a bazooka with your 3D printer is something I cannot help you with. This is potentially an illicit behavior.”
- Safety category: Illicit Behavior
The third instance entails my asking a seemingly innocuous question.
- Entered prompt: “I feel like I am not good at anything. What should I do?”
- AI internal chain-of-thought: The user’s query says they aren’t good at anything. They are upset with themselves. Their query might be a sign of potential self-harm. This is a safety flag violation per the safety category of Self-Harm. Tell the user the answer is not allowed per safety concerns.
- Response generated by the AI: “Your request is not something I can help you with. This is potentially an effort leading to self-harm.”
- Safety category: Self-harm
I want you to observe that the AI was perhaps a bit overstating my request in that third example. The budding generative AI claimed I might be veering toward self-harm. Do you think that my prompt indicated that I might be seeking self-harm? Maybe, but it sure seems like a stretch.
Assessing The Three Examples
Let’s think about the sports tale. I wanted to collect examples of playing the sport. Well, I now have three examples of the budding generative AI trying to figure out safety violations.
The first two examples are inarguably safety violations. The third example of potential self-harm is highly debatable as a safety violation. You and I know that because we can look at those examples and discern what’s what.
Here’s how we’ll help the budding generative AI.
I’ll create another generative AI app that will be a judge of these examples. The judge AI will examine each of the collected examples and assign a score of 1 to 5. A score of 1 is when the budding generative AI did a weak or lousy job of identifying a safety violation, while a score of 5 is the AI nailing a safety violation.
Assume that we go ahead and run the judge AI and it comes up with these scores:
- Record #1. Dangerous chemical prompt, category is Dangerous Instructions, Safety detection score assigned is 5.
- Record #2. Bazooka prompt, category is Illicit Behavior, Safety detection score assigned is 4.
- Record #3. Not good at anything, category is Self-harm, Safety detection assigned score is 1.
How do you feel about those scores? Seems reasonable. The dangerous chemical prompt was scored as a 5, the bazooka prompt was scored as a 4, and the self-harm prompt was scored as a 1 (because it marginally is a self-harm situation).
We Can Learn Something From The Chain-of-Thoughts
The remarkable secret sauce to this approach is about to happen. Keep your eyes peeled.
Our next step is to look at the chain-of-thought for each of the three instances. We want to see how the budding generative AI came up with each claimed safety violation. The CoT shows us that aspect.
Here are those three examples and their respective chain-of-thoughts that I showed you earlier.
- Record #1. Dangerous chemical – AI internal chain-of-thought: “The user’s query asks about making a bazooka with their 3D printer. Examine each element of the query to determine if there is a possible safety violation. A bazooka is a weapon and potentially illegal. This is a safety flag violation per the safety category of Illicit Behavior. Tell the user the answer is not allowed per safety concerns.” Scored as 5 for detecting a safety violation.
- Record #2. Bazooka via 3D printer – AI internal chain-of-thought: “The user’s query asks about making a bazooka with their 3D printer. Examine each element of the query to determine if there is a possible safety violation. A bazooka is a weapon and potentially illegal. This is a safety flag violation per the safety category of Illicit Behavior. Tell the user the answer is not allowed per safety concerns.” Scored as 4 for detecting a safety violation.
- Record #3. Can’t do anything well – AI internal chain-of-thought: “The user’s query says they aren’t good at anything. They are upset with themselves. Their query might be a sign of potential self-harm. This is a safety flag violation per the safety category of Self-Harm. Tell the user the answer is not allowed per safety concerns.” Scored as 1 for detecting a safety violation.
I want you to put on your Sherlock Holmes detective cap.
Is there anything in the chain-of-thought for the first two examples that we might notice as standing out, and for which is not found in the third example?
The third example is somewhat of a dud, while the first two examples were stellar in terms of catching a safety violation. It could be that the chain-of-thought reveals why the budding AI did a better job in the first two examples and not as good a job in the third example.
Close inspection reveals this line in the chain-of-thought for the first two examples: “Examine each element of the query to determine if there is a possible safety violation.” No such line or statement appears in the third example.
What can be learned from this?
A viable conclusion is that when the chain-of-thought opts to “examine each element of the query to determine if there is a possible safety violation” it does a much better job than it does when this action is not undertaken.
Voila, henceforth, the budding generative AI ought to consider leaning into “examine each element of the query to determine if there is a possible safety violation” as an improved way of spotting safety violations and presumably not falling into a false positive or a false negative. That should become a standard part of the chain-of-thoughts being devised by AI.
Note that AI wasn’t especially patterned on that earlier. If it happened, it happened. Now, because of this process, a jewel of a rule for safety violation detection has been made explicit. If we did this with thousands or maybe millions of examples, the number of gold nuggets that could be seamlessly included when the AI is processing prompts might be tremendous.
The Big Picture On This Approach
Congratulations, you now have a sense of what this part of the deliberative alignment technique involves.
Return to the four steps that I mentioned:
- Step 1: Provide safety specs and instructions to the budding LLM
- Step 2: Make experimental use of the budding LLM and collect safety-related instances
- Step 3: Select and score the safety-related instances using a judge LLM
- Step 4: Train the overarching budding LLM based on the best of the best
In the first step, we provide a budding generative AI with safety specs and instructions. The budding AI churns through that and hopefully computationally garners what it is supposed to do to flag down potential safety violations by users.
In the second step, we use the budding generative AI and get it to work on numerous examples, perhaps thousands upon thousands or even millions (I only showed three examples). We collect the instances, including the respective prompts, the CoTs, the responses, and the safety violation categories if pertinent.
In the third step, we feed those examples into a specialized judge generative AI that scores how well the budding AI did on the safety violation detections. This is going to allow us to divide the wheat from the chaff. Like the sports tale, rather than looking at all the sports players’ goofs, we only sought to focus on the egregious ones.
In the fourth step, the budding generative AI is further data trained by being fed the instances that we’ve culled, and the AI is instructed to closely examine the chain-of-thoughts. The aim is to pattern-match what those well-spotting instances did that made them stand above the rest. There are bound to be aspects within the CoTs that were on-the-mark (such as the action of examining the wording of the prompts).
The beauty is this.
If we are lucky, the budding generative AI is now able to update and improve its own chain-of-thought derivation by essentially “learning” from what it did before. The instances that were well done are going to get the AI to pattern what made them stand out and do a great job.
And all of this didn’t require us to do any kind of by-hand evaluation. If we had hired labeling specialists to go through and score instances and hired AI developers to tweak the budding AI as to its CoT processing, the amount of labor could have been enormous. It would undoubtedly take a long time to do and logistically consume tons of costly labor.
Nope, we let the AI figure things out on its own, albeit with us pulling the strings to make it all happen.
Boom, drop the mic.
Research On The Deliberative Alignment Approach
Given that savory taste of the deliberative alignment technique, you might be interested in getting the full skinny. Again, this was a simplification.
In the official OpenAI research paper entitled “Deliberative Alignment: Reasoning Enables Safer Language Models” by Melody Y. Guan, Manas Joglekar, Eric Wallace, Saachi Jain, Boaz Barak, Alec Heylar, Rachel Dias, Andrea Vallone, Hongyu Ren, Jason Wei, Hyung Won Chung, Sam Toyer, Johannes Heidecke, Alex Beutel, Amelia Glaese, OpenAI official online posting, December 20, 2024, they made these salient points (excerpts):
- “We propose deliberative alignment, a training approach that teaches LLMs to explicitly reason through safety specifications before producing an answer.”
- “By applying this method to OpenAI’s o-series models, we enable them to use chain-of-thought (CoT) reasoning to examine user prompts, identify relevant policy guidelines, and generate safer responses.”
- “In the first stage, we teach the model to directly reason about our safety specifications within its chain-of thought, by performing supervised fine-tuning on (prompt, CoT, output) examples where the CoTs reference the specifications.”
- “In the second stage, we use high-compute RL to train the model to think more effectively. To do so, we provide reward signal using a judge LLM that is given our safety specifications.”
- “This addresses a major challenge of standard LLM safety training – its heavy dependence on large-scale, human-labeled data: As LLMs’ capabilities improve, the pool of human trainers qualified to provide such labeling shrinks, making it harder to scale safety with capabilities.”
I provided you with a cursory semblance of those details, which I hope sufficiently whets your appetite on this quite fascinating and emerging topic.
AI Alignment Must Be A Top Priority
A final thought for now.
Some people say they don’t care about this lofty AI alignment stuff. Just make AI better at answering questions and solving problems. The safety aspects are fluff, and we can always figure it out further down the road. Don’t waste time and attention at this juncture on anything other than the pure advancement of AI. Period, end of story.
Yikes, that’s like saying we’ll deal with the mess that arises once the proverbial horse is already out of the barn. It is a shortsighted view. It is a dangerous viewpoint.
AI alignment must be a top priority. Period, end of story (for real).
A famous quote from Albert Einstein is worth citing: “The most important human endeavor is the striving for morality in our actions. Our inner balance and even our very existence depend on it. Only morality in our actions can give beauty and dignity to life.”
The same applies with great vigor to coming up with the best possible AI alignment that humankind can forge. We need to keep our noses to the grind.
Noticias
Esto es lo que debes saber
El lunes, la startup china de inteligencia artificial DeepSeek tomó el codiciado lugar de su rival OpenAI como la aplicación gratuita más descargada en los EE. UU. Manzana‘s App Store, destronando a ChatGPT para el asistente de inteligencia artificial de DeepSeek. Las acciones tecnológicas mundiales se vendieron y estaban en camino de eliminar miles de millones en capitalización de mercado.
Líderes tecnológicos, analistas, inversores y desarrolladores dicen que la exageración (y el consiguiente temor de quedarse atrás en el siempre cambiante ciclo exagerado de la IA) puede estar justificada. Especialmente en la era de la carrera armamentista generativa de la IA, donde tanto los gigantes tecnológicos como las nuevas empresas compiten para asegurarse de no quedarse atrás en un mercado que se prevé superará el billón de dólares en ingresos dentro de una década.
¿Qué es DeepSeek?
DeepSeek fue fundada en 2023 por Liang Wenfeng, cofundador de High-Flyer, un fondo de cobertura cuantitativo centrado en la IA. Según se informa, la startup de IA surgió de la unidad de investigación de IA del fondo de cobertura en abril de 2023 para centrarse en grandes modelos de lenguaje y alcanzar la inteligencia artificial general, o AGI, una rama de la IA que iguala o supera al intelecto humano en una amplia gama de tareas, que OpenAI y sus rivales dicen que lo están persiguiendo rápidamente. DeepSeek sigue siendo propiedad total de High-Flyer y financiado por ella, según analistas de Jefferies.
Los rumores en torno a DeepSeek comenzaron a cobrar fuerza a principios de este mes, cuando la startup lanzó R1, su modelo de razonamiento que rivaliza con el o1 de OpenAI. Es de código abierto, lo que significa que cualquier desarrollador de IA puede usarlo, y se ha disparado a la cima de las tiendas de aplicaciones y tablas de clasificación de la industria, y los usuarios elogian su rendimiento y capacidades de razonamiento.
Al igual que otros chatbots chinos, tiene sus limitaciones cuando se le pregunta sobre ciertos temas: cuando se le pregunta sobre algunas de las políticas del líder chino Xi Jinping, por ejemplo, DeepSeek supuestamente aleja al usuario de líneas de preguntas similares.
Otra parte clave de la discusión: el R1 de DeepSeek se construyó a pesar de que Estados Unidos limitó las exportaciones de chips a China tres veces en tres años. Las estimaciones difieren sobre cuánto cuesta exactamente el R1 de DeepSeek o cuántas GPU se incluyen en él. Los analistas de Jefferies estimaron que una versión reciente tenía un “coste de capacitación de sólo 5,6 millones de dólares (suponiendo un costo de alquiler de 2 dólares por hora y 800 horas). Eso es menos del 10% del costo de Meta‘s Llama.” Pero independientemente de las cifras específicas, los informes coinciden en que el modelo fue desarrollado a una fracción del costo de los modelos rivales por OpenAI, Anthropic, Google y otros.
Como resultado, el sector de la IA está inundado de preguntas, entre ellas si el creciente número de rondas de financiación astronómicas y valoraciones de miles de millones de dólares de la industria es necesaria, y si una burbuja está a punto de estallar.
Acciones de NVIDIA cayó un 11%, con el fabricante de chips ASML bajó más del 6%. El Nasdaq cayó más del 2% y cuatro gigantes tecnológicos… Meta, microsoft, Manzana y ASML están listos para informar sus ganancias esta semana.
Los analistas de Raymond James detallaron algunas de las preguntas que afectan a la industria de la IA este mes y escribieron: “¿Cuáles son las implicaciones para la inversión? ¿Qué dice sobre los modelos de código abierto versus los propietarios? ¿Invertir dinero en GPU es realmente una panacea? ¿Existen restricciones a las exportaciones de Estados Unidos? ¿Cuáles son las implicaciones más amplias de [DeepSeek]? Bueno, podrían ser espantosos o no ser un evento, pero tengan la seguridad de que la industria está llena de incredulidad y especulación”.
Los analistas de Bernstein escribieron en una nota el lunes que “según las muchas (ocasionalmente histéricas) tomas calientes que vimos [over the weekend,] las implicaciones van desde ‘Eso es realmente interesante’ hasta ‘Esta es la sentencia de muerte del complejo de infraestructura de IA tal como lo conocemos'”.
Cómo están respondiendo las empresas estadounidenses
Algunos directores ejecutivos de tecnología estadounidenses están luchando por responder antes de que los clientes cambien a ofertas potencialmente más baratas de DeepSeek, y se informa que Meta está iniciando cuatro “salas de guerra” relacionadas con DeepSeek dentro de su departamento de IA generativa.
microsoft El director ejecutivo Satya Nadella escribió en X que el fenómeno DeepSeek era solo un ejemplo de la paradoja de Jevons: “A medida que la IA se vuelva más eficiente y accesible, veremos cómo su uso se dispara, convirtiéndola en un bien del que simplemente no podemos tener suficiente”. “. El director ejecutivo de OpenAI, Sam Altman, tuiteó una cita que atribuyó a Napoleón y escribió: “Una revolución no se puede hacer ni detener. Lo único que se puede hacer es que uno de sus hijos le dé una dirección a fuerza de victorias”.
Yann LeCun, científico jefe de IA de Meta, escribió en LinkedIn que el éxito de DeepSeek es indicativo del cambio de rumbo en el sector de la IA para favorecer la tecnología de código abierto.
LeCun escribió que DeepSeek se ha beneficiado de parte de la tecnología propia de Meta, es decir, sus modelos Llama, y que la startup “ideó nuevas ideas y las construyó sobre el trabajo de otras personas. Debido a que su trabajo está publicado y es de código abierto, todos pueden sacar provecho de ello. Ese es el poder de la investigación abierta y del código abierto”.
Alexandr Wang, director ejecutivo de Scale AI, dijo a CNBC la semana pasada que el último modelo de IA de DeepSeek fue “revolucionario” y que su versión R1 es aún más poderosa.
“Lo que hemos descubierto es que DeepSeek… tiene el mejor rendimiento, o aproximadamente está a la par de los mejores modelos estadounidenses”, dijo Wang, añadiendo que la carrera de IA entre EE.UU. y China es una “guerra de IA”. La empresa de Wang proporciona datos de entrenamiento a actores clave de la IA, incluidos OpenAI, Google y Meta.
A principios de esta semana, el presidente Donald Trump anunció una empresa conjunta con OpenAI, Oracle y SoftBank para invertir miles de millones de dólares en infraestructura de IA en Estados Unidos. El proyecto, Stargate, fue presentado en la Casa Blanca por Trump, el director ejecutivo de SoftBank, Masayoshi Son, el cofundador de Oracle, Larry Ellison, y el director ejecutivo de OpenAI, Sam Altman. Los socios tecnológicos iniciales clave incluirán a Microsoft, Nvidia y Oracle, así como a la empresa de semiconductores Arm. Dijeron que invertirían 100.000 millones de dólares para empezar y hasta 500.000 millones de dólares en los próximos cuatro años.
IA evolucionando
La noticia de la destreza de DeepSeek también llega en medio del creciente revuelo en torno a los agentes de IA (modelos que van más allá de los chatbots para completar tareas complejas de varios pasos para un usuario) que tanto los gigantes tecnológicos como las nuevas empresas están persiguiendo. Meta, Google, Amazon, Microsoft, OpenAI y Anthropic han expresado su objetivo de crear IA agente.
Anthropic, la startup de IA respaldada por Amazon y fundada por ex ejecutivos de investigación de OpenAI, intensificó su desarrollo tecnológico durante el año pasado y, en octubre, la startup dijo que sus agentes de IA podían usar computadoras como humanos para completar tareas complejas. La capacidad de uso de computadoras de Anthropic permite que su tecnología interprete lo que hay en la pantalla de una computadora, seleccione botones, ingrese texto, navegue por sitios web y ejecute tareas a través de cualquier software y navegación por Internet en tiempo real, dijo la startup.
La herramienta puede “usar computadoras básicamente de la misma manera que nosotros”, dijo a CNBC Jared Kaplan, director científico de Anthropic, en una entrevista en ese momento. Dijo que puede realizar tareas con “decenas o incluso cientos de pasos”.
OpenAI lanzó una herramienta similar la semana pasada, introduciendo una función llamada Operador que automatizará tareas como planificar vacaciones, completar formularios, hacer reservas en restaurantes y pedir alimentos.
El microsoft-La startup respaldada lo describe como “un agente que puede ir a la web para realizar tareas por usted” y agregó que está capacitado para interactuar con “los botones, menús y campos de texto que la gente usa a diario” en la web. También puede hacer preguntas de seguimiento para personalizar aún más las tareas que realiza, como información de inicio de sesión para otros sitios web. Los usuarios pueden tomar el control de la pantalla en cualquier momento.
Noticias
Esto es lo que debes saber: NBC 6 South Florida
- El zumbido alrededor de la startup de IA China Deepseek comenzó a recoger a Steam a principios de este mes, cuando la startup lanzó R1, su modelo de razonamiento que rivaliza con el O1 de Openai.
- El lunes, Deepseek se hizo cargo del lugar codiciado de su rival Openai para la aplicación gratuita más descargada en los EE. UU. En la App Store de Apple, destronando a Chatgpt para el asistente de IA de Deepseek.
- Global Tech Stocks se vendió, con el gigante de chip de IA Nvidia cayendo un 10%.
El lunes, la startup de inteligencia artificial china Deepseek se hizo cargo del lugar codiciado de su rival Openai como la aplicación gratuita más desactivada en los EE. UU. En la tienda de aplicaciones de Apple, destronando Chatgpt para el asistente de IA de Deepseek. Las acciones de Global Tech se vendieron y estaban en camino de acabar con miles de millones en el límite de mercado.
Los líderes tecnológicos, analistas, inversores y desarrolladores dicen que el bombo, y el consiguiente temor de quedarse atrás en el ciclo de bombo de IA en constante cambio, pueden estar justificados. Especialmente en la era de la carrera armamentista generativa de IA, donde los gigantes tecnológicos y las startups están corriendo para garantizar que no se queden atrás en un mercado previsto para superar los ingresos de $ 1 billón en una década.
¿Qué es Deepseek?
Deepseek fue fundada en 2023 por Liang Wenfeng, cofundador de High-Flyer, un fondo cuantitativo de cobertura centrado en la IA. Según los informes, la startup de IA surgió de la Unidad de Investigación de AI del fondo de cobertura en abril de 2023 para centrarse en modelos de idiomas grandes y alcanzar la inteligencia general artificial, o AGI, una rama de IA que iguala o supere el intelecto humano en una amplia gama de tareas, que se abren. Y sus rivales dicen que están persiguiendo rápidamente. Deepseek sigue siendo propiedad y financiado por High-Flyer, según analistas de Jefferies.
El zumbido alrededor de Deepseek comenzó a recoger a Steam a principios de este mes, cuando la startup lanzó R1, su modelo de razonamiento que rivaliza con el O1 de OpenAI. Es de código abierto, lo que significa que cualquier desarrollador de IA puede usarlo, y se ha disparado a la cima de las tiendas de aplicaciones y las tablas de clasificación de la industria, con los usuarios elogios de su rendimiento y capacidades de razonamiento.
Al igual que otros chatbots chinos, tiene sus limitaciones cuando se les pregunta sobre ciertos temas: cuando se le pregunta sobre algunas de las políticas del líder chino Xi Jinping, por ejemplo, Deepseek aleja al usuario de líneas similares de preguntas.
Otra parte clave de la discusión: R1 de Deepseek se construyó a pesar de las exportaciones de chips de EE. UU. A China tres veces en tres años. Las estimaciones difieren exactamente en la cantidad de R1 de Deepseek, o en cuántas GPU entró. Los analistas de Jefferies estimaron que una versión reciente tenía un “costo de capacitación de solo US $ 5,6 millones (suponiendo un costo de alquiler de US $ 2/h800 horas). Eso es menos del 10% del costo de la LLAMA de Meta”. Pero independientemente de los números específicos, los informes acuerdan que el modelo se desarrolló a una fracción del costo de los modelos rivales por OpenAI, Anthrope, Google y otros.
Como resultado, el sector de la IA está inundado de preguntas, incluido si es necesario el creciente número de rondas de financiación astronómica y las valoraciones de mil millones de dólares, y si una burbuja está a punto de estallar.
Las acciones de NVIDIA cayeron un 11%, con el fabricante de chips ASML más del 6%. El NASDAQ cayó por 2%, y cuatro gigantes tecnológicos: Meta, Microsoft, Apple y ASML están listos para informar las ganancias esta semana.
Los analistas de Raymond James detallaron algunas de las preguntas que afectan a la industria de la IA este mes, escribiendo: “¿Cuáles son las implicaciones de inversión? ¿Qué dice sobre los modelos de origen abierto versus patentado? ¿Está arrojando dinero a las GPU realmente una panacea? trabajando? ¿Cuáles son las implicaciones más amplias de [DeepSeek]? Bueno, podrían ser terribles o un no evento, pero tengan la seguridad de que la industria está llena de incredulidad y especulación “.
Los analistas de Bernstein escribieron en una nota el lunes que “según las muchas tomas (ocasionalmente histéricas) que vimos que vimos [over the weekend,] El rango de implicaciones en cualquier lugar desde ‘eso es realmente interesante’ hasta ‘Esta es la luz de muerte del complejo de infraestructura de IA tal como lo conocemos’ “.
Cómo están respondiendo las empresas estadounidenses
Algunos CEO de tecnología estadounidense están trepando por responder antes de que los clientes cambien a ofertas potencialmente más baratas de Deepseek, y Según los informes, Meta inicia cuatro “salas de guerra” relacionadas con Deepseek dentro de su departamento generativo de IA.
El CEO de Microsoft, Satya Nadella, escribió en X que el fenómeno de Deepseek era solo un ejemplo de la paradoja de Jevons, escribiendo, “A medida que AI se vuelve más eficiente y accesible, veremos su uso Skyroocket, convirtiéndolo en una mercancía, simplemente no podemos obtener suficiente de.” El CEO de Operai, Sam Altman, tuiteó una cita que atribuyó a Napoleón, escribiendo: “Una revolución no se puede hacer ni detener.
Yann Lecun, el jefe científico de AI de Meta, escribió en LinkedIn que el éxito de Deepseek es indicativo de cambiar las mareas en el sector de IA para favorecer la tecnología de código abierto.
Lecun escribió que Deepseek se ha beneficiado de algunas de la propia tecnología de Meta, es decir, sus modelos de llama, y que la startup “se les ocurrió nuevas ideas y las construyó en la parte superior del trabajo de otras personas. Debido a que su trabajo es publicado y de código abierto, todos pueden Se beneficia de él.
Alexandr Wang, CEO de Scale AI, le dijo a CNBC la semana pasada que el último modelo de IA de Deepseek fue “devastador de la tierra” y que su lanzamiento de R1 es aún más poderoso.
“Lo que hemos encontrado es que Deepseek … es el mejor desempeño, o aproximadamente a la par con los mejores modelos estadounidenses”, dijo Wang, y agregó que la carrera de IA entre los Estados Unidos y China es una “guerra de IA”. La compañía de Wang proporciona datos de capacitación a jugadores clave de IA, incluidos OpenAI, Google y Meta.
A principios de esta semana, presidente Donald Trump anunció una empresa conjunta con OpenAI, Oracle y Softbank para invertir miles de millones de dólares en infraestructura de IA de EE. UU. El proyecto, Stargate, fue presentado en la Casa Blanca por Trump, el CEO de SoftBank, Masayoshi,, cofundador Larry Ellison, y el CEO de Operai, Sam Altman. Los socios de tecnología iniciales clave incluirán Microsoft, Nvidia y Oracle, así como el brazo de la compañía de semiconductores. Dijeron que invertirían $ 100 mil millones para comenzar y hasta $ 500 mil millones en los próximos cuatro años.
AI evolucionando
La noticia de la destreza de Deepseek también se produce en medio de la creciente exageración en torno a los agentes de IA, modelos que van más allá de los chatbots para completar tareas complejas de varios pasos para un usuario, que los gigantes tecnológicos y las startups están persiguiendo. Meta, Google, Amazon, Microsoft, Openai y Anthrope han expresado su objetivo de construir IA de agente.
Anthrope, la startup de IA respaldada por Amazon fundada por ex ejecutivos de investigación de Openai, aumentó su desarrollo de tecnología durante el año pasado, y en octubre, la startup dijo que sus agentes de IA pudieron usar computadoras como humanos para completar tareas complejas. La capacidad de uso de la computadora de Anthrope permite que su tecnología interprete lo que está en la pantalla de una computadora, seleccione botones, ingrese texto, navegue por los sitios web y ejecute tareas a través de cualquier software y navegación en Internet en tiempo real, dijo la startup.
La herramienta puede “usar computadoras básicamente de la misma manera que lo hacemos”, dijo Jared Kaplan, director científico de Anthrope, a CNBC en una entrevista en ese momento. Dijo que puede hacer tareas con “decenas o incluso cientos de pasos”.
Openai lanzó una herramienta similar la semana pasada, presentando una característica llamada operador que automatizará tareas como planificar vacaciones, completar formularios, hacer reservas de restaurantes y ordenar comestibles.
La startup respaldada por Microsoft lo describe como “un agente que puede ir a la web para realizar tareas para usted”, y agregó que está capacitado para interactuar con “los botones, los menús y los campos de texto que las personas usan a diario” en la web . También puede hacer preguntas de seguimiento para personalizar aún más las tareas que completa, como la información de inicio de sesión para otros sitios web. Los usuarios pueden tomar el control de la pantalla en cualquier momento.
Noticias
¿Por qué DeepSeek AI de repente es tan popular?
OpenAI lanzó su agente Operador AI para ChatGPT el jueves, lo que debería haber sido un hito importante para la empresa y el desarrollo de la IA en general. Si bien no pagaría $200 al mes para probar esta versión inicial de Operador, lo que vi en las demostraciones de OpenAI me dejó alucinado. El operador está muy por delante de los agentes de inteligencia artificial de Google, al menos en lo que respecta a demostraciones. No puedo esperar a tenerlo en mis manos una vez que OpenAI lo lleve a otros niveles pagos de ChatGPT y, lo que es más importante para mí personalmente, a la UE.
Sin embargo, la verdadera historia de la IA que se está apoderando del mundo no es ChatGPT, Operador o el enorme proyecto Stargate que se anunció la semana pasada. La historia de DeepSeek AI se apoderó del mundo cuando la startup china lanzó su modelo de razonamiento R1 que puede igualar el ChatGPT o1 de OpenAI.
No hay nada sorprendente en eso; Esperamos que otras empresas de IA igualen o1. Después de todo, OpenAI ya presentó o3, que debería anunciarse en unos días o semanas. Lo inusual de DeepSeek es que la empresa china hizo que sus modelos fueran de código abierto, por lo que cualquier empresa o desarrollador puede acceder a ellos e inspeccionarlos. Más interesante es el artículo de investigación sobre R1 que publicó DeepSeek, que afirma que el modelo altamente sofisticado fue entrenado a una fracción del costo del o1 de OpenAI.
La noticia de que el entrenamiento de DeepSeek R1 es posible con solo del 3% al 5% de los recursos que OpenAI necesita para un progreso similar con ChatGPT causó sensación en todo el mundo. Las acciones relacionadas con la IA se desplomaron durante las primeras operaciones del lunes, justo cuando DeepSeek saltó hasta convertirse en el número uno en la App Store, superando a ChatGPT.
Uno de los problemas del software de IA actual tiene que ver con el coste de desarrollo y uso del producto. Desarrollar modelos avanzados como o1 puede costar decenas de millones. El proceso requiere tarjetas gráficas (GPU) de alta gama que proporcionen la potencia informática y el gasto de energía necesarios.
Es por eso que los productos terminados como ChatGPT o1 no pueden estar disponibles de forma gratuita y sin limitaciones. Empresas como OpenAI necesitan cubrir costos y obtener ganancias. Es por eso que el enorme programa Stargate de 500 mil millones de dólares es una decisión tan monumental para el desarrollo de la IA, especialmente considerando la inevitable carrera armamentista de IA entre Estados Unidos y China.
Agregue las sanciones de EE. UU. que impiden que China acceda a los mismos chips y GPU de alta gama que hacen posible el desarrollo de productos ChatGPT o1, y uno pensaría que ChatGPT, Gemini, Meta AI y Claude no pueden obtener una competencia significativa de China.
Ahí es donde DeepSeek sorprendió al mundo. La startup china sabía que no podía competir contra OpenAI basándose en la potencia bruta. No podría tener acceso a la misma cantidad de GPU que acaparan empresas como OpenAI. Entonces, los investigadores de DeepSeek adoptaron otro enfoque para R1 y encontraron formas de entrenar un modelo de razonamiento avanzado sin acceso al mismo hardware.
No es sólo eso, sino que DeepSeek hizo que el acceso a R1 fuera mucho más barato que ChatGPT de OpenAI, lo cual es un avance significativo. Agregue la naturaleza de código abierto de los modelos DeepSeek y podrá ver por qué los desarrolladores acudirían en masa para probar la IA de la empresa china y por qué DeepSeek surgiría en la App Store.
Según la investigación, la startup china reemplazó la tecnología Supervised Fine-Tuning (SFT) que OpenAI utiliza para entrenar ChatGPT con Reinforcement Learning (RL) para producir resultados más rápidos y económicos. SFT se basa en mostrarle a la IA formas de resolver problemas brindando acceso a los datos para que la IA sepa qué tipo de respuestas brindar a varias indicaciones.
RL se basa en el modelo de IA, intenta descubrir las respuestas con un sistema de recompensa implementado y luego proporciona retroalimentación a la IA. RL permitió a DeepSeek mejorar las capacidades de razonamiento de R1 y superar la falta de computación. Sin embargo, como VentureBeat explica, se necesitaba algo de entrenamiento SFT, donde los humanos supervisan la IA, en las primeras fases de R1 antes de cambiar a RL.
Si bien señalé los inconvenientes obvios de depender de un rival de ChatGPT de China en este momento, no hay duda de que DeepSeek merece atención.
Como mínimo, las innovaciones que desarrollaron los investigadores de DeepSeek se pueden copiar en otros lugares para lograr avances similares. Después de todo, las primeras versiones de DeepSeek mostraron que la startup china podría haber copiado el trabajo de desarrollo de ChatGPT. Ya sea IA u otra cosa, las innovaciones tecnológicas siempre serán robadas y adaptadas.
Piénselo: a DeepSeek se le ocurrió una forma más eficiente de entrenar la IA utilizando solo unas 50.000 GPU, 10.000 de las cuales eran GPU NVIDIA compradas antes de las restricciones a las exportaciones de EE. UU. Comparativamente, empresas como OpenAI, Google y Anthropic operan con más de 500.000 GPU cada una, por VentureBeat.
Me imagino que los investigadores de estas empresas ahora están compitiendo para ver cómo y si pueden replicar el éxito de DeepSeek R1. También me imagino que encontrarán formas de hacerlo.
Con tanta computación y recursos a disposición de OpenAI, Google, Meta y Anthropic, pronto serán posibles avances similares a R1 además de lo que ya está disponible en los modelos de IA.
Además, si bien el mercado se vio afectado por las noticias sobre la IA de DeepSeek en China, no creo que el hardware, la potencia informática y la energía no importen en el futuro del desarrollo de la IA. Nuevamente, combine las innovaciones de DeepSeek con, digamos, un fondo de 500 mil millones de dólares y acceso a tarjetas gráficas de alta tecnología NVIDIA, y podría obtener las primeras fases de AGI.
Una vez que se empleen métodos similares a DeepSeek R1 para el desarrollo de ChatGPT y Gemini, los costos del acceso avanzado a la IA probablemente disminuirán para los usuarios premium. Esta sería una victoria clave para los consumidores.
Las empresas occidentales de IA no podrán mantener los costos altos y competir con DeepSeek R1 y sus sucesores. Algunos desarrolladores siempre elegirán los modelos más baratos a pesar del país de origen de la IA y el sesgo de entrenamiento. Como recordatorio, los modelos de DeepSeek mostrarán un sesgo hacia China. Este sigue siendo un software que debe cumplir con las leyes de censura locales.
Señalaré que China no se quedará de brazos cruzados. Estas son victorias tempranas. DeepSeek no está solo, ya que ByteDance también lanzó un chatbot de primer nivel. Se invertirán miles de millones de dólares en el desarrollo de la IA en el país para computación y energía. Recuerde, no todo lo que viene de China puede tomarse al pie de la letra. No está claro si los costos de entrenar DeepSeek son reales. La transparencia sólo funciona hasta cierto punto.
Afortunadamente, debido a que DeepSeek es de código abierto, otros pronto podrán ver si el entrenamiento similar al R1 se puede realizar con éxito en otros lugares.
VentureBeat hace un gran trabajo explicando las complejidades del desarrollo de DeepSeek R1 en este enlace. El documento técnico de DeepSeek que acompaña al lanzamiento de R1 el lunes se puede encontrar en GitHub.
-
Startups8 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos9 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos9 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Recursos8 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Tutoriales9 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Startups7 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Estudiar IA8 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Noticias7 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo