Noticias
Tribunales bonaerenses adoptan ChatGPT para redactar sentencias
En mayo, el Ministerio Público de la Ciudad de Buenos Aires comenzó a utilizar IA generativa para predecir fallos en algunos casos de empleo público relacionados con demandas salariales.
Desde entonces, los funcionarios de justicia de la oficina de lo contencioso administrativo y tributario de la ciudad de Buenos Aires suben los documentos del caso al ChatGPT, que analiza patrones, ofrece una clasificación preliminar a partir de un catálogo de plantillas y redacta una decisión. Hasta ahora, ChatGPT se ha utilizado en 20 sentencias legales.
Según estudios recientes realizados por la oficina, el uso de IA generativa ha reducido el tiempo que lleva redactar una oración de una hora a aproximadamente 10 minutos.
“Nosotros, como profesionales, ya no somos los personajes principales. Nos hemos convertido en editores”, dijo Juan Corvalán, fiscal general adjunto en lo contencioso administrativo y tributario. Resto del mundo.
La introducción de herramientas de IA generativa ha mejorado la eficiencia en la oficina, pero también ha generado preocupaciones dentro del poder judicial y entre expertos legales independientes sobre posibles sesgos, el tratamiento de datos personales y la aparición de alucinaciones. Preocupaciones similares han resonado más allá de las fronteras de Argentina.
“Cualquier uso inconsistente, como compartir información sensible, podría tener un costo legal considerable”, dijo Lucas Barreiro, abogado especializado en protección de datos personales y miembro de Privaia, asociación civil dedicada a la defensa de los derechos humanos en la era digital. dijo Resto del mundo.
Los jueces de EE. UU. han expresado su escepticismo sobre el uso de la IA generativa en los tribunales, y el juez federal de Manhattan, Edgardo Ramos, dijo a principios de este año que “Se ha demostrado que ChatGPT es un recurso poco confiable”. En Colombia y los Países Bajos, el uso de ChatGPT por parte de los jueces fue criticado por expertos locales. Pero no todo el mundo está preocupado: un juez de un tribunal de apelaciones del Reino Unido que utilizó ChatGPT para redactar parte de una sentencia dijo que era “muy útil”.
Para Corvalán, el paso a la IA generativa es la culminación de una transformación de años dentro de la Fiscalía General de la Ciudad de Buenos Aires. En 2017, Corvalán reunió a un grupo de desarrolladores para entrenar un sistema impulsado por inteligencia artificial llamado PROMETEA, cuyo objetivo era automatizar tareas judiciales y acelerar los procedimientos de los casos. El equipo utilizó más de 300.000 fallos y expedientes de casos relacionados con protección de vivienda, bonificaciones de empleo público, ejecución de multas impagas y denegación de licencias de taxi a personas con antecedentes penales.
Los casos en los que se utilizaba no variaban mucho y las resoluciones tendían a estandarizarse. Aún se requería que el personal legal revisara las decisiones del programa. En poco tiempo, la productividad en la oficina aumentó casi un 300%, y los profesionales jurídicos podían procesar alrededor de 490 casos por mes, frente a unos 130.
“Nunca tuvo la intención de reemplazar a los humanos. Siempre hay supervisión. Más bien, es una forma de repensar nuestros trabajos”, afirmó Corvalán.
PROMETEA podría predecir resultados con un 90% de precisión en menos de 20 segundos, según un informe de la fiscalía de la ciudad. La implementación de PROMETEA fue un punto de inflexión, dijo Melisa Rabán, secretaria de la procuraduría general adjunta para asuntos contenciosos administrativos y tributarios.
“Llegaron casos más complejos y pudimos trabajar en ellos adecuadamente en lugar de realizar trabajos automatizables”, dijo Rabán Resto del mundo.
Pero la eficiencia del programa tuvo un costo: cada nueva categoría de delito para la que se implementó PROMETEA requirió capacitación adicional y desarrollo de algoritmos. A principios de este año, Corvalán comenzó a eliminar PROMETEA en favor de ChatGPT. Las 20 sentencias que ha redactado han sido revisadas por un abogado y aprobadas por el fiscal adjunto. El poder judicial ahora está ampliando el programa a otras unidades, incluida la oficina de adquisiciones, que gestiona las quejas de los ciudadanos.
“Este proyecto trata de democratizar la IA generativa”, dijo Sofia Tammaro, empleada de la fiscalía general adjunta y desarrolladora principal del proyecto. Resto del mundo. En Argentina, que se ha quedado atrás del mundo desarrollado en el acceso a avances tecnológicos de vanguardia, eso no es poca cosa.
A los expertos les preocupa que muchos usuarios no tengan la capacitación y la alfabetización digital necesarias para implementar la tecnología que cambia rápidamente, lo que podría generar prejuicios contra las comunidades subrepresentadas, entre otras cuestiones.
“Si bien algunos pueden mitigarse, otros surgirán, porque en el corazón mismo de los desarrolladores hay valoraciones subjetivas que permean el diseño del modelo”, afirmó Barreiro.
El equipo de Corvalán está tratando de frenar algunos de los riesgos asociados con los modelos de IA, incluida la prevalencia del robo y la piratería de datos. “Todavía estamos trabajando en un proceso de anonimización de los datos confidenciales encontrados en los casos”, dijo Tammaro.
Las alucinaciones también podrían plantear importantes riesgos legales. Los casos en los que los sistemas de IA generan información falsa o irrelevante ocurren alrededor del 17% de las veces en herramientas legales de generación de IA, según un estudio de Stanford de 2024. Para Corvalán, estos sólo pueden mitigarse mediante el uso de programas que tengan un menor margen de error, como PROMETEA, para casos sensibles, incluidos los relacionados con la violencia de género y doméstica.
“PROMETEA está integrada en nuestros procesos. Su huella nunca desaparecerá”, dijo Roberto Betancur, director de TI y modernización del Ministerio Público de Buenos Aires. Resto del mundo. “Nos dio una guía para entender cómo se toman las decisiones legales”.
Por ahora, PROMETEA se utiliza para fallos relacionados con el empleo público y para gestionar investigaciones que involucren material de abuso sexual infantil. Es probable que su uso disminuya con el tiempo.
“PROMETEA es como Blockbuster en un mundo donde Netflix está surgiendo. Estas transformaciones están sucediendo a escala global”, afirmó Corvalán.
Noticias
La herramienta Sora de OpenAI filtrada por un grupo de primeros evaluadores agraviados
La fuga de Sora de OpenAI: las implicaciones de la tecnología, la ética y la promoción
Se ha estado gestando una tormenta en el panorama de la IA luego de la filtración no autorizada del innovador modelo Sora de OpenAI, un generador de texto a video que ha estado causando sensación por su capacidad para crear videos cortos y de alta fidelidad con una estabilidad temporal notable. En el centro de la controversia hay un conflicto multifacético que involucra avances tecnológicos, preocupaciones éticas y defensa artística. La filtración se publicó en Hugging Face y supuestamente fue realizada por personas involucradas en la fase de prueba (usando el nombre de usuario “PR-Puppets”) y plantea preguntas apremiantes sobre la relación entre innovación, trabajo y responsabilidad corporativa. El modelo filtrado, publicado junto con una carta abierta dirigida a los “Señores Supremos de la IA Corporativa”, supuestamente puede producir videoclips de 10 segundos con una resolución de hasta 1080p.
¿Qué es Sora?
Sora representa un salto significativo en las capacidades de IA generativa, funcionando como un modelo de difusión para transformar indicaciones de texto en videos de hasta un minuto. Aprovechando técnicas de varios modelos, Sora ofrece una alineación precisa del texto al visual y una coherencia temporal mejorada. La visión de OpenAI para Sora es ambiciosa y la posiciona como un paso fundamental hacia el logro de la Inteligencia General Artificial (AGI). A pesar de estas aspiraciones, la tecnología no está exenta de limitaciones; Los desafíos para replicar la física compleja y garantizar la seguridad del contenido siguen siendo áreas de mejora.
Como se describe en la plataforma de discusión Hugging Face, Sora es “una muestra fascinante de destreza técnica”. La capacidad del modelo para producir “narrativas visualmente coherentes” en forma de vídeo ha sido elogiada como un logro histórico en la IA generativa.
La filtración y sus supuestas motivaciones
La filtración del modelo de Sora parece deberse a la insatisfacción entre los evaluadores y contribuyentes, particularmente aquellos en las industrias creativas. Los críticos alegan que OpenAI (actualmente valorada en más de 150 mil millones de dólares) explotó su trabajo al depender de contribuciones no remuneradas o mal compensadas para perfeccionar el modelo. Estos evaluadores, incluidos artistas visuales y cineastas, brindaron valiosos comentarios y aportes creativos, solo para supuestamente verse excluidos del reconocimiento o compensación equitativa.
“No se trataba sólo de trabajo no remunerado: se trataba de respeto”, señaló un colaborador anónimo citado en el comentario de Hugging Face. “OpenAI trató nuestros aportes como materia prima, no como experiencia creativa. No es colaboración; es extracción”.
Este acto de rebelión sirve como protesta contra la mercantilización más amplia de la experiencia creativa en el desarrollo de la IA. La filtración se enmarcó estratégicamente para resaltar el supuesto desprecio de OpenAI por el valor económico del trabajo artístico, haciéndose eco de sentimientos de descontento que ya prevalecen en el discurso ético de la IA.
El grupo declaró que, después de tres horas, “OpenAI cerró temporalmente el acceso temprano de Sora para todos los artistas”.
Complicaciones éticas y legales
La controversia de Sora también reaviva los debates sobre derechos de autor y propiedad intelectual. OpenAI se ha enfrentado anteriormente a un escrutinio por su uso de material protegido por derechos de autor con fines de formación, alegando el uso legítimo como defensa. Aunque OpenAI ha declarado que los datos de entrenamiento de Sora incluyen conjuntos de datos públicos y con licencia, la compañía se ha mostrado reticente a dar detalles específicos, dejando espacio para el escepticismo. Esta opacidad, combinada con demandas en curso de creadores y editores, subraya las tensiones entre el avance tecnológico y los derechos de propiedad intelectual.
Las preocupaciones de seguridad con respecto a los modelos de IA generativa como Sora han llevado a OpenAI a implementar salvaguardas, incluidos clasificadores de detección y mecanismos de aplicación de políticas de contenido. Sin embargo, es posible que tales medidas no sean suficientes para abordar el posible uso indebido del modelo filtrado. Los comentaristas de Hugging Face señalaron que “una filtración de esta magnitud socava los esfuerzos de OpenAI para hacer cumplir las salvaguardias éticas. Pone el poder sin control en manos de cualquiera que tenga acceso”.
Implicaciones más amplias para la IA y las industrias creativas
La filtración de Sora es emblemática de una lucha de poder más amplia en la era de la IA. Por un lado, OpenAI se posiciona como pionero en la intersección de innovación y utilidad, y Sora representa una herramienta para democratizar la creación de videos. Por otro lado, la filtración ha puesto de relieve cuestiones sistémicas, como la infravaloración del trabajo creativo y los dilemas éticos que rodean la dependencia de la IA de la creatividad humana.
Como afirmó otro colaborador de Hugging Face: “La IA no existe en el vacío. Se construye sobre los hombros de creativos que a menudo no quedan acreditados. La filtración de Sora es una llamada de atención: la innovación sin ética es explotación”.
Para los profesionales creativos, la filtración es un arma de doble filo. Si bien saca a la luz las desigualdades del sistema actual, también corre el riesgo de socavar la confianza en las colaboraciones entre artistas y desarrolladores de tecnología. En el futuro, el incidente exige repensar la forma en que las corporaciones se relacionan con las comunidades creativas, enfatizando la transparencia, la compensación justa y el respeto por la propiedad intelectual.
Un ajuste de cuentas para la IA
Las consecuencias de la filtración de Sora ofrecen lecciones críticas para el futuro de la IA generativa. A medida que la tecnología continúa desdibujando los límites entre la creatividad y la computación, la necesidad de marcos éticos se vuelve cada vez más apremiante. El manejo de la situación por parte de OpenAI probablemente sentará un precedente sobre cómo las organizaciones navegan por la compleja interacción de innovación, ética y promoción.
En última instancia, la controversia de Sora es un microcosmos de los desafíos más amplios que enfrenta la industria de la IA: cómo equilibrar la búsqueda del progreso con el imperativo de honrar y proteger el trabajo humano que lo sustenta. Como concluyó sucintamente un observador en Hugging Face: “Esto es más que una filtración; es un ajuste de cuentas”.
Noticias
Cómo GenAI cambió el trabajo tecnológico
Hace dos años, el 30 de noviembre, ChatGPT irrumpió en escena, generando una fascinación global por la IA generativa y transformándola en una innovación que deben observar tanto los consumidores como los profesionales de la tecnología. Desde entonces, ChatGPT se ha expandido y las ruedas de la regulación de la IA han comenzado a girar.
TechRepublic preguntó a los profesionales de la tecnología cómo ha evolucionado su trabajo con ChatGPT, tanto personalmente como dentro de la industria tecnológica en general.
Nuevas funciones introducidas en 2024
Durante el último año, OpenAI ha:
- Se amplió ChatGPT a nuevos formatos como la búsqueda de ChatGPT y Canvas, el último de los cuales está diseñado, en parte, para ubicarse junto a una aplicación de codificación.
- Presentados GPT-4o y OpenAI o1, nuevos modelos insignia.
- Se asoció con Apple para admitir algunas funciones de la IA integrada de Apple.
- Anunciado ChatGPT recordará conversaciones anteriores.
- Se lanzó la búsqueda ChatGPT, lo que marca la apuesta de OpenAI para reemplazar la Búsqueda de Google como el portal de facto al resto de Internet.
- Implementó el modo de voz avanzado para usuarios seleccionados en octubre, permitiéndoles hablar con la IA en voz alta.
El 3 de octubre, OpenAI lanzó Canvas, lo que marcó un experimento importante en el uso de ChatGPT.
“Hacer que la IA sea más útil y accesible requiere repensar cómo interactuamos con ella”, escribió el equipo de OpenAI en octubre con motivo del anuncio de Canvas. “Canvas es un nuevo enfoque y la primera actualización importante de la interfaz visual de ChatGPT desde su lanzamiento hace dos años”.
Cómo ha mejorado ChatGPT en 2024
Graham Glass, director ejecutivo de la plataforma de creación de cursos de inteligencia artificial Cypher Learning, señaló cómo ChatGPT ofrece acceso a modelos más sofisticados ahora que en 2023.
“En primer lugar, ChatGPT sigue mejorando”, dijo en una entrevista con TechRepublic. “Y se ha vuelto más sofisticado, lo que abre oportunidades adicionales para aprovechar esa tecnología”.
El año pasado, Glass aprovechó ChatGPT para generar ideas sobre diseños y arquitecturas de software. Preguntar a la tecnología sobre las mejores prácticas o compensaciones de diseño le brinda “el corpus de todos los diseños que todos han hecho sobre ese tema en particular”, dijo.
“Se ha vuelto más inteligente”, añadió Curt Raffi, director de productos de Acrolinx, una empresa que utiliza IA para probar contenido para documentos técnicos y otros trabajos de redacción intensa. Señaló el rendimiento mejorado de GPT-4o, así como de OpenAI o1.
Raffi también explicó que la gente se siente más cómoda usando ChatGPT. Trabaja con ingenieros que han mejorado en la activación de ChatGPT de maneras que expresan una lógica empresarial específica.
VER: La primera reunión de la Red Internacional de Institutos de Seguridad de IA, celebrada esta semana, tiene como objetivo gestionar los riesgos de la IA avanzada.
A Glass le gusta que la búsqueda ChatGPT proporcione información actual y la considera un ahorro de tiempo para tareas como comparaciones de productos. También utiliza el modo de voz avanzado para charlar con la IA en voz alta.
En general, las incorporaciones de ChatGPT durante el último año han brindado más opciones para las personas que desean utilizar la IA generativa para trabajos técnicos.
“La forma más significativa en que los asistentes de IA generativa han cambiado la programación y el desarrollo durante el último año es permitir que personas con diferentes niveles de programación participen en el desarrollo de software para ofrecer soluciones a problemas del mundo real”, dijo Houbing Herbert Song, miembro del Instituto. de Ingenieros Eléctricos y Electrónicos, dijo en un correo electrónico a TechRepublic.
¿Qué no puede hacer ChatGPT en 2024?
La IA no es inmune a los errores. Para Glass, codificar con ChatGPT a menudo implica un diálogo de ida y vuelta, incluido “recordarle” a la IA detalles que pudo haber pasado por alto.
“Aunque creo que es mucho más fiable en lo que respecta al diseño [in 2024]todavía comete muchos errores de codificación”, dijo Glass.
Por ejemplo, Glass dijo sobre una tarea reciente que ChatGPT necesitó 10 indicaciones para crear una función en JavaScript correctamente. Esto aún le ahorró tiempo, pero demuestra que ChatGPT aún es limitado. Atribuyó esto en parte a que ChatGPT fue entrenado en un corpus de código finito, aunque enorme.
Filev señaló que ChatGPT se ha vuelto tan confiable que las personas no se dan cuenta fácilmente cuando comete errores.
“Se está volviendo tan bueno que comencé a bajar la guardia, y no sé si eso es algo bueno o malo”, dijo Filev.
Para muchas tareas, comenzó a buscar fuentes físicas en la Búsqueda de Google o Perplexity AI antes de usar ChatGPT. Estos podrían ser mejores lugares para encontrar fuentes confiables, dijo, mientras que ChatGPT es mejor para intercambiar ideas.
Las regulaciones podrían afectar ChatGPT
El año pasado también reveló las limitaciones y la posible regulación de ChatGPT. Raffi dijo que su equipo está abordando cuidadosamente el código generado por IA después de un caso judicial entre los desarrolladores y GitHub Copilot. Los desarrolladores alegaron que GitHub Copilot violó los derechos de propiedad intelectual al utilizar código fuente abierto.
Raffi señaló que el uso comercial de dicho código en los mercados sigue siendo algo incierto, lo que hace que las aplicaciones de IA en la codificación sean un proceso cauteloso y exploratorio.
“Nuestra propiedad intelectual está en nuestro código, y si de repente estuviéramos abiertos o expuestos a demandas, podríamos erosionar el valor de nuestra empresa”, dijo Raffi.
Cómo ChatGPT ha afectado a los desarrolladores que inician su carrera
Durante el año pasado, otro avance clave fue el impacto de ChatGPT en los desarrolladores que inician su carrera.
“Debido a que esto mejora en gran medida la eficiencia para que los desarrolladores se concentren en el diseño y la innovación de orden superior, quizás lo más importante es que el papel de un desarrollador cambia drásticamente de creadores a supervisores de código generado por IA”, dijo Dheerendra Panwar, miembro senior de IEEE, en un correo electrónico a TechRepublic. “Lo que nos lleva a una pregunta muy importante: ¿estamos simplificando el arte de la codificación?”
En algunos casos, es posible que los desarrolladores junior no sean contratados en absoluto, ya que algunas tareas que normalmente se les asignan ahora están a cargo de la IA.
“Estos cambios parecen ser beneficiosos para los programadores senior, ya que amplían su función e importancia”, escribió en un correo electrónico Jen Stave, directora ejecutiva del Instituto de Diseño de Datos Digitales de la Universidad de Harvard. “Debido a que los desarrolladores junior a menudo carecen de la experiencia para detectar problemas como alucinaciones de IA o resultados inexactos, este papel increíblemente importante recae en los programadores senior que ahora necesitan ampliar su responsabilidad para mitigar riesgos como los errores de código inducidos por la IA”.
En otros casos, los desarrolladores junior pueden ser más competentes en ingeniería rápida que los senior.
“Para los programadores jóvenes, la historia es más compleja”, escribió Stave. “La IA generativa reduce su dependencia de la resolución colaborativa de problemas, fomentando un trabajo más autónomo. Si bien esta independencia puede acelerar la productividad, eso puede no ser algo bueno para los humanos que tienden a obtener beneficios para la salud mental de la interacción y colaboración humana”.
Andrew Filev, fundador y director ejecutivo de Zencoder, una startup de herramientas de desarrollo de software de inteligencia artificial, explicó que impulsar ChatGPT puede parecer un conjunto de habilidades distinto. Sin embargo, le recordó cómo el uso de la Búsqueda de Google alguna vez fue una habilidad incluida en los currículums. Quizás 2024 fue el año en que ChatGPT comenzó a afectar la forma en que los profesionales de la tecnología piensan sobre el portal al resto de Internet.
“Se está convirtiendo cada vez más en una parte integral de mi día a día”, dijo Filev sobre ChatGPT. “Me da un impulso de productividad, pero no me define de una forma u otra, ¿verdad?”
La búsqueda ChatGPT y Canvas ofrecen nuevos factores de forma
Los esfuerzos de OpenAI por convertirse en un nuevo portal para el resto de Internet se pueden ver más claramente en la búsqueda de ChatGPT y en Canvas.
Raffi dijo que la búsqueda ChatGPT no se mantuvo muy bien frente a la Búsqueda de Google, carecía de contexto y proporcionaba “resultados bastante malos”. Sin embargo, utiliza Canvas con frecuencia.
“Está cambiando la forma en que pensamos sobre la IA y ChatGPT”, dijo. “Se trata de introducir una capa de aplicación y hacerte pensar en las API de IA como el back-end y más en la lógica empresarial detrás de todo. Resume muchas de las complejidades confusas de muchos editores”.
Dado que Canvas almacena recuerdos, puede hacer referencia a cambios anteriores en el código. Raffi lo llamó una combinación de capa de aplicación, back-end y capa de lógica empresarial.
Habrá muchos cambios en los próximos años.
2024 demostró que la IA no puede hacerlo todo y que la tasa de casos de uso transformadores podría estar desacelerando. Por otro lado, las empresas de inteligencia artificial están entrenando modelos para digerir cada vez más datos, incluida la mejora de los modelos subyacentes a ChatGPT. La forma en que los profesionales interactúan con ChatGPT ha cambiado desde 2023 y probablemente será diferente dentro de un año.
“Sí, habrá cambios”, dijo Filev. Comparó el auge de la IA con el paso de las tarjetas perforadas a la programación de software. “Pero creo que los desarrolladores están acostumbrados a los cambios”.
“La tecnología avanza y nosotros nos mantenemos al día, y creo que nos permite hacer mucho más y mejor”, añadió. “Y ChatGPT es uno de los buenos ejemplos de tecnologías que nos ayudan”.
Noticias
¿Qué es la IA generativa? Todo lo que hay que saber sobre la tecnología detrás de ChatGPT y Gemini
La inteligencia artificial está en todas partes, te des cuenta o no. Está detrás de los chatbots con los que hablas en línea, las listas de reproducción que transmites y los anuncios personalizados que de alguna manera saben exactamente lo que anhelas. Ahora está adquiriendo una personalidad más pública: piense en Meta AI, que aparece en aplicaciones como Facebook, Messenger y WhatsApp; o Gemini de Google, que trabaja en segundo plano en todas las plataformas de la empresa; o Apple Intelligence, que acaba de iniciar un lento despliegue.
La IA tiene una larga historia, que se remonta a una conferencia en Dartmouth en 1956 en la que se discutió por primera vez la inteligencia artificial como algo. Los hitos en el camino incluyen ELIZA, esencialmente el primer chatbot, desarrollado en 1964 por el científico informático del MIT Joseph Weizenbaum, y 2004, cuando apareció por primera vez el autocompletado de Google.
Luego llegó el 2022 y el ascenso de ChatGPT a la fama. Los desarrollos de IA generativa y los lanzamientos de productos se han acelerado rápidamente desde entonces, incluidos Google Bard (ahora Gemini), Microsoft Copilot, IBM Watsonx.ai y los modelos Llama de código abierto de Meta.
Analicemos qué es la IA generativa, en qué se diferencia de la inteligencia artificial “normal” y si la IA generativa puede estar a la altura de las expectativas.
IA generativa en pocas palabras
En esencia, la IA generativa se refiere a sistemas de inteligencia artificial que están diseñados para producir contenido nuevo basado en patrones y datos que han aprendido. En lugar de simplemente analizar números o predecir tendencias, estos sistemas generan resultados creativos como texto, imágenes, música, videos y código de software.
Algunas de las herramientas de IA generativa más populares del mercado incluyen ChatGPT, Dall-E, Midjourney, Adobe Firefly, Claude y Stable Diffusion.
La principal de sus capacidades es que ChatGPT puede crear conversaciones o ensayos parecidos a los humanos basándose en unas pocas indicaciones sencillas. Dall-E y Midjourney crean obras de arte detalladas a partir de una breve descripción, mientras que Adobe Firefly se centra en la edición y el diseño de imágenes.
La IA que no es IA generativa
Sin embargo, no toda la IA es generativa. Mientras que la IA genérica se centra en la creación de contenido nuevo, la IA tradicional sobresale en el análisis de datos y la realización de predicciones. Esto incluye tecnologías como el reconocimiento de imágenes y el texto predictivo. También se utiliza para soluciones novedosas en ciencia, diagnóstico médico, pronóstico del tiempo, detección de fraude y análisis financieros para pronósticos e informes. La IA que venció a los grandes campeones humanos en el ajedrez y en el juego de mesa Go no fue una IA generativa.
Puede que estos sistemas no sean tan llamativos como la IA de generación, pero la inteligencia artificial clásica es una gran parte de la tecnología en la que confiamos todos los días.
Cómo funciona la IA generativa
Detrás de la magia de la IA generativa se encuentran grandes modelos de lenguaje y técnicas avanzadas de aprendizaje automático. Estos sistemas se basan en cantidades masivas de datos, como bibliotecas enteras de libros, millones de imágenes, años de música grabada y datos extraídos de Internet.
Los desarrolladores de IA, desde gigantes tecnológicos hasta nuevas empresas, son muy conscientes de que la IA es tan buena como los datos que la alimentan. Si se alimenta de datos de mala calidad, la IA puede producir resultados sesgados. Es algo a lo que ni siquiera los actores más importantes en el campo, como Google, han sido inmunes.
La IA aprende patrones, relaciones y estructuras dentro de estos datos durante el entrenamiento. Luego, cuando se le solicita, aplica ese conocimiento para generar algo nuevo. Por ejemplo, si le pides a una herramienta de inteligencia artificial que escriba un poema sobre el océano, no se trata simplemente de extraer versos preescritos de una base de datos. En cambio, utiliza lo que aprendió sobre poesía, océanos y estructura del lenguaje para crear una pieza completamente original.
Es impresionante, pero no es perfecto. A veces los resultados pueden parecer un poco extraños. Tal vez la IA malinterprete su solicitud o se vuelva demasiado creativa de una manera que no esperaba. Puede proporcionar con confianza información completamente falsa y depende de usted verificarla. Esas peculiaridades, a menudo llamadas alucinaciones, son parte de lo que hace que la IA generativa sea fascinante y frustrante.
Las capacidades de la IA generativa están creciendo. Ahora puede comprender múltiples tipos de datos combinando tecnologías como el aprendizaje automático, el procesamiento del lenguaje natural y la visión por computadora. El resultado se llama IA multimodal que puede integrar alguna combinación de texto, imágenes, video y voz dentro de un solo marco, ofreciendo respuestas más precisas y relevantes contextualmente. El modo de voz avanzado de ChatGPT es un ejemplo, al igual que el Proyecto Astra de Google.
La generación de IA conlleva desafíos
No faltan herramientas de IA generativa, cada una con su estilo único. Estas herramientas han despertado la creatividad, pero también han planteado muchas preguntas además de prejuicios y alucinaciones, como, ¿quién posee los derechos sobre el contenido generado por IA? O qué material es un juego limpio o está prohibido para que las empresas de inteligencia artificial lo utilicen para entrenar sus modelos de lenguaje; consulte, por ejemplo, la demanda del New York Times contra OpenAI y Microsoft.
Otras preocupaciones (asuntos no menores) involucran la privacidad, el desplazamiento laboral, la responsabilidad en la IA y los deepfakes generados por la IA. Otro problema es el impacto en el medio ambiente porque el entrenamiento de grandes modelos de IA utiliza mucha energía, lo que genera grandes huellas de carbono.
El rápido ascenso de la IA gen. en los últimos años ha acelerado las preocupaciones sobre los riesgos de la IA en general. Los gobiernos están intensificando las regulaciones sobre IA para garantizar un desarrollo responsable y ético, en particular la Ley de IA de la Unión Europea.
IA generativa en la vida cotidiana
Muchas personas han interactuado con chatbots en el servicio de atención al cliente o han utilizado asistentes virtuales como Siri, Alexa y Google Assistant, que ahora están a punto de convertirse en herramientas poderosas de IA de generación. Eso, junto con las aplicaciones para ChatGPT, Claude y otras herramientas nuevas, está poniendo la IA en tus manos.
Mientras tanto, según la Encuesta global de IA 2024 de McKinsey, el 65% de los encuestados dijeron que sus organizaciones utilizan regularmente IA generativa, casi el doble de la cifra reportada apenas 10 meses antes. Industrias como la atención médica y las finanzas están utilizando IA de generación para optimizar las operaciones comerciales y automatizar tareas mundanas.
La IA generativa no es sólo para técnicos o personas creativas. Una vez que aprendas a darle indicaciones, tiene el potencial de hacer gran parte del trabajo preliminar por ti en una variedad de tareas diarias. Digamos que estás planeando un viaje. En lugar de desplazarse por las páginas de resultados de búsqueda, le pide a un chatbot que planifique su itinerario. En cuestión de segundos, tendrá un plan detallado adaptado a sus preferencias. (Ese es lo ideal. Verifique siempre sus recomendaciones). El propietario de una pequeña empresa que necesita una campaña de marketing pero no tiene un equipo de diseño puede usar IA generativa para crear imágenes llamativas e incluso pedirle que sugiera un texto del anuncio.
La IA generativa llegó para quedarse
No ha habido un avance tecnológico que haya causado tal auge desde Internet y, más tarde, el iPhone. A pesar de sus desafíos, la IA generativa es innegablemente transformadora. Está haciendo que la creatividad sea más accesible, ayudando a las empresas a optimizar los flujos de trabajo e incluso inspirando formas completamente nuevas de pensar y resolver problemas.
Pero quizás lo más interesante sea su potencial, y apenas estamos arañando la superficie de lo que estas herramientas pueden hacer.
-
Recursos7 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos7 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Startups6 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos6 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Eventos7 meses ago
La nueva era de la inteligencia artificial por el Washington Post – Mayo 2024
-
Estudiar IA6 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Noticias4 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo
-
Tutoriales7 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes