Noticias
We asked OpenAI’s o1 about the top AI trends in 2025 — here’s a look into our conversation
Published
3 meses agoon

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More
AI is already reshaping industries and society on a global scale. IDC predicts that AI will contribute $19.9 trillion to the global economy by 2030, comprising 3.5% of GDP. This momentum is exemplified by the recent announcement of “Project Stargate,” a partnership to invest up to $100 billion in new AI-focused data center capacity. This is all indicative of the tremendous activity going on with AI development. On a single day, AI made headlines for discovering proteins to counteract cobra venom, creating a Star Trek-style universal translator and paving the way for true AI assistants.
These and other developments highlight individual achievements, as well as their interconnected progress. This flywheel of innovation is where breakthroughs in one domain amplify advancements in others, compounding AI’s transformative potential.
Separating signal from noise
Even for someone who follows AI developments closely, the rapid technological breakthroughs and diffusion across industries and applications is dizzying, making it highly challenging to not only know and understand what is going on, but understand the relative importance of developments. It is challenging to separate the signal from noise.
In the past, I might have turned to an AI industry analyst to help explain the dynamics and meaning of recent and projected developments. This time, I decided instead to see if AI itself might be able to help me. This led me to a conversation with OpenAI’s o1 model. The 4o model might have worked as effectively, but I expected that a reasoning model such as o1 might be more effective.
I asked o1 what it thought were the top AI trends and why. I started by asking for the top 10 to 15, but over the course of our collaborative dialog, this expanded to 25. Yes, there really are that many, which is a testament to AI’s value as a general-purpose technology.
After about 30 seconds of inference-time “thinking,” o1 responded with a list of trends in AI development and use, ranked according to their potential significance and impact on business and society. I asked several qualifying questions and made a few suggestions that led to slight changes in the evaluation method and rankings.
Methodology
Rankings of the various AI trends are determined by a blended heuristic that balances multiple factors including both quantitative indicators (near-term commercial viability) and qualitative judgments (disruptive potential and near-term societal impact) further described as follows:
- Current commercial viability: The trend’s market presence and adoption.
- Long term disruptive potential: How a trend could significantly reshape industries and create new markets.
- Societal impact: Weighing the immediate and near-term effects on society, including accessibility, ethics and daily life.
In addition to the overall AI trend rankings, each trend receives a long-term social transformation score (STS), ranging from incremental improvements (6) to civilization-altering breakthroughs (10). The STS reflects the trend’s maximum potential impact if fully realized, offering an absolute measure of transformational significance.

The development of this ranking process reflects the potential of human-AI collaboration. o1 provided a foundation for identifying and ranking trends, while my human oversight helped ensure that the insights were contextualized and relevant. The result shows how humans and AI can work together to navigate complexity.
Top AI trends in 2025
For tech leaders, developers and enthusiasts alike, these trends signal both immense opportunity and significant challenges in navigating the many changes brought by AI. Highly-ranked trends typically have broad current adoption, high commercial viability or significant near-term disruptive effects.

Honorable mention list: AI trends 11 – 25
One can quibble whether number 11 or any of the following should be in the top 10, but keep in mind that these are relative rankings and include a certain amount of subjectivity (whether from o1 or from me), based on our iterative conversation. I suppose this is not too different from the conversations that take place within any research organization when completing their reports ranking the comparative merits of trends. In general, this next set of trends has significant potential but are either: 1) not yet as widespread and/or 2) have a potential payoff that is still several or more years away.
While these trends did not make the top 10, they showcase the expanding influence of AI across healthcare, sustainability and other critical domains.

Digital humans show the innovation flywheel in action
One use case that highlights the convergence of these trends is digital humans, which exemplify how foundational and emerging AI technologies come together to drive transformative innovation. These AI-powered avatars create lifelike, engaging interactions and span roles such as digital coworkers, tutors, personal assistants, entertainers and companions. Their development shows how interconnected AI trends create transformative innovations.

For example, these lifelike avatars are developed using the capabilities of generative AI (trend 1) for natural conversation, explainable AI (2) to build trust through transparency and agentic AI (3) for autonomous decision-making. With synthetic data generation, digital humans are trained on diverse, privacy-preserving datasets, ensuring they adapt to cultural and contextual nuances. Meanwhile, edge AI (5) enables near real-time responsiveness and multi-modal AI (17) enhances interactions by integrating text, audio and visual elements.
By using the technologies described by these trends, digital humans exemplify how advancements in one domain can accelerate progress in others, transforming industries and redefining human-AI collaboration. As digital humans continue to evolve, they not only exemplify the flywheel of innovation, but also underscore the transformative potential of AI to redefine how humans interact with technology.
Why are AGI and ASI so far down the list?
The future is, indeed, hard to predict. Many expect artificial general intelligence (AGI) to be achieved soon. OpenAI CEO Sam Altman said recently: “We are now confident we know how to build AGI as we have traditionally understood it.” However, that is different from saying that AGI is imminent. It also does not mean that all agree on the definition of AGI. For OpenAI, this means “a highly autonomous system that outperforms humans at most economically valuable work.”
Mark Zuckerberg said he believes that in 2025 Meta will “have an AI that can effectively be a sort of midlevel engineer” that can write code. That is clearly economically viable work and could be used to claim the arrival of AGI. Perhaps, but even Altman is now saying that AGI is not arriving soon.

Google Deepmind co-founder and CEO Demis Hassabis said recently on the Big Technology podcast that AGI is likely “a handful of years away.” He added, however, that there is a 50% chance another one or two significant breakthroughs on the order of the transformer model that led to generative AI will still be needed to fully achieve AGI.
Superintelligence, too, could eventually be achieved in the next 5 to 10 years. Altman and Elon Musk have said as much, although the consensus expert opinion is closer to 2040 — and some believe it will never be achieved. Amara’s Law reminds us that we tend to overestimate the effect of any technology in the short run and underestimate the effect eventually. If achieved, the impact of superintelligence would be enormous — but at present, this “if” precludes this from the top 10 list.
Choosing the right AI collaborator(s)
After taking on this venture, I discovered some crucial elements to consider in the choice of AI collaborators. While o1 offered valuable insights into leading AI trends, its cutoff date for training data was October 2023, and it lacks web browsing capabilities. This became clear when it initially suggested No. 12 for agentic AI, a trend that has advanced rapidly in the last several months. Rerunning the analysis with the 4o model, which includes web browsing, led to a more proper ranking of agentic AI at No. 3.
Per ChatGPT: “Apologies for any confusion earlier. Given the rapid advancements and the significant attention agentic AI is receiving in 2025, it would be appropriate to rank it at No. 3 on the list of top AI trends. This adjustment reflects its growing impact and aligns with recent analyses highlighting its importance.”
In much the same way, I had a conversation with o1 about the placement of AI in education, healthcare and life sciences. However, 4o suggested that their order in the ranking be reversed, that healthcare should be No. 11, and education No. 12.

I agreed with the rationale and switched the order. These examples show both the challenges and benefits of working with the latest AI chatbots, and both the necessity and value of human and machine collaboration.
Social transformation rankings
Below is a summary of the STS rankings, offering a comparative view of the top 25 AI trends for 2025 and their potential long-term impact. These rankings highlight how AI trends vary in their potential to reshape society, from near-term enablers like generative AI and agentic AI, to longer-term innovations such as quantum AI and brain-computer interfaces.

Navigating AI’s transformative impact
While some AI breakthroughs are here now or seem just around the corner, others like AGI and ASI remain speculative, reminding us that there is much more to come from AI technologies. Yet it is already clear that AI, in all its manifestations, is reshaping human affairs in ways likely to become even more profound over time. These changes will extend to daily life and could even challenge our understanding of what it means to be human.
As AI continues to redefine industries and society, we are only at the beginning of a dramatic technological renaissance. These trends, ranging from generative models to humanoid robots powered by AI, highlight both the promise and complexity of integrating AI into our lives.
What is particularly striking about these 25 trends is not just their individual significance, but the interconnectedness of their progress. This flywheel of AI innovation will continue to amplify progress, creating a self-reinforcing cycle of breakthroughs that redefine industries and society. As these trends evolve, revisiting this analysis in six to 12 months could reveal changes in the rankings and how the flywheel of innovation continues to accelerate progress across industries.
Leaders, developers and society must monitor these advancements and ensure they are directed toward fair outcomes, striking a balance between innovation and responsibility. The next five years will define AI’s trajectory — whether it becomes a tool for societal benefit or a source of disruption. The choice is ours.
Gary Grossman is EVP of technology practice at Edelman and global lead of the Edelman AI Center of Excellence.
DataDecisionMakers
Welcome to the VentureBeat community!
DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.
If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.
You might even consider contributing an article of your own!
Read More From DataDecisionMakers
You may like
Noticias
Cómo se compara la nueva búsqueda web de Claude Ai con Gemini y Chatgpt
Published
5 horas agoon
9 mayo, 2025
Los bots de IA quieren ayudarlo con sus búsquedas en la web, así como con todo lo demás, y Claude es el último asistente de inteligencia artificial para obtener la capacidad de buscar información en línea, ya sea que sean los últimos titulares de noticias o los últimos precios de los dispositivos.
“Con la búsqueda web, Claude tiene acceso a los últimos eventos e información, lo que aumenta su precisión en las tareas que se benefician de los datos más recientes”, dice el desarrollador Anthrope. La función está disponible ahora en todos los planes pagados, y “llegará pronto” para los usuarios gratuitos.
Web Search es un tipo diferente de desafío para los modelos de IA, probando su capacidad de examinar y evaluar el contenido publicado en la web, en lugar de integrarse en sus datos de capacitación. Así es como se avanza Claude, y se compara con Google Gemini y Chatgpt.
Uso de la búsqueda web en Claude
Habilitar la función de búsqueda web.
Crédito: Lifehacker
Para dar acceso web a Claude, haga clic en el botón Sliders en el cuadro de solicitud y habilite el Búsqueda web Interruptor de palanca. El bot de AI se referirá a la web en general a medida que lo considera apropiado para su consulta, pero si desea asegurarse de que use información en línea como parte de su respuesta, incluya algo como “Buscar en la web” en su aviso.
Cuando se invoca una búsqueda en la web, Claude le notificará como parte de la respuesta, y generalmente tarda un poco más en regresar con una respuesta. Cuando aparece la respuesta, obtienes pequeños botones de citas al final de ciertas oraciones, para que sepa de dónde proviene la información. Haga clic en cualquier cita para saltar a ese sitio web en una nueva pestaña.
Puede ejecutar casi cualquier consulta que pueda escribir en Google, cubriendo todo, desde pronósticos meteorológicos y puntajes deportivos hasta inmersiones profundas en el historial de la música y ayudar a solucionar problemas de computadora. Como de costumbre, puede hacer un seguimiento con más preguntas sobre los resultados que Claude le ha dado.
Es fácil ver el potencial para que la IA voltee la forma en que buscamos en la web, en cómo ofrece una experiencia más natural y matizada que la lista estándar de enlaces en Google. Sin embargo, no está exento de problemas, no menos si estos bots de IA se pueden confiar y de dónde van a obtener su información si los seres humanos reales ya no tienen incentivos para publicar en la web.
Obtener la noticia del día

Elegir las noticias tecnológicas actuales.
Crédito: Lifehacker
Me encargué de que Claude me trajera los titulares de noticias tecnológicas del día, y de hecho realizó dos búsquedas web para asegurarse de que lo obtuviera todo. Leí las noticias de tecnología todos los días, y Claude hizo un buen trabajo, aquí: las historias eran en su mayoría nuevas, y en su mayoría relevantes, aunque los enlaces de citas tendían a ir a las páginas delanteras de los sitios de noticias, en lugar de artículos individuales.
Gemini estaba a la par de Claude, aunque logró vincularse a artículos específicos, no solo los centros de noticias. Casi cada resultado fue de los últimos días, tomado de una fuente de buena reputación, y relativamente significativa en el mundo de las noticias tecnológicas, aunque hubo algunas fallas: un nuevo teléfono Samsung en India, por ejemplo, que realmente no me importa.
A Chatgpt, y el Bot Operai fue probablemente el peor del lote cuando se trataba de devolver los resultados que me importaban de los sitios que son los más respetados en el espacio de noticias tecnológicas (aunque se podría argumentar que es una decisión subjetiva). Todavía estaba bien, pero preferí los resultados que obtuve de Claude y Gemini.
Cuando se le pidió que devolviera las últimas noticias de Lifehacker, Claude no pudo hacerlo, y ChatGPT acaba de enumerar los titulares de la página de inicio actual sin enlaces. Gemini en realidad me dio las últimas historias, completa con enlaces, así que funciona mejor aquí, aunque la mejor opción es probablemente solo para abrir Lifehacker en su navegador.
Verificación de hechos en línea

Claude sabe sus películas … o más bien, sabe consultar Wikipedia.
Crédito: Lifehacker
En la comprobación de hechos: probé a Claude con una pregunta de película a la que ya conozco la respuesta. ¿Cuántos Oscar fueron ganados por Uno voló sobre el nido del cuco? Obtuvo la respuesta correcta y el año correcto, y dio el contexto de que es solo la tercera película de la historia en obtener los cinco grandes premios de la Academia: Mejor director, Mejor Actor, Mejor Actriz, Mejor Película y el mejor guión adaptado (ver si puedes adivinar cuáles son las otras dos películas).
Gemini también obtuvo las respuestas y el contexto de la gran victoria. Sus fuentes cubrieron una variedad más amplia de sitios e incluso YouTube, mientras que Claude se pegó a Wikipedia y al sitio oficial de los Oscar. Dio una respuesta más corta y más breve que Claude, y no incluía información de antecedentes sobre tomas de taquilla.
¿Qué piensas hasta ahora?
En cuanto a CHATGPT, nuevamente logró armar una respuesta precisa, con el contexto útil sobre el éxito de los cinco grandes y las otras películas que han manejado la hazaña. Al igual que Claude, se pegó principalmente a Wikipedia, pero hizo algo que no Claude ni Gemini lo hicieron: incluía un video de YouTube de la presentación de Oscar mejor imagen.
Este tipo de búsquedas en la web no son particularmente exigentes. Las preguntas más complejas pueden plantear más problemas, especialmente si las respuestas no están disponibles y la IA se siente tentado a inventarlos. Intenté engañar a estos bots de IA para que pensara que Daniel Day-Lewis ganó dos Oscar al mejor actor en años consecutivos, pero los tres identificaron correctamente que esto nunca sucedió.

Claude no es muy útil para comprar en la web.
Crédito: Lifehacker
Las compras en línea podrían ser transformadas por AI. Si bien las personas reales siempre serán mejores que los bots para elegir las compras correctas, la IA puede raspar rápidamente y resumir las opiniones de los seres humanos reales y empaquetarlos en una interfaz limpia y amigable mientras toma un corte de las ventas. Es como tener un asistente inteligente con usted, sin necesidad de vadear a través de masas de información o resultados de búsqueda.
Le pedí a Claude que recomendara un regalo extravagante para mí, basado en deportes o películas, y buscó obedientemente páginas que enumeran los extravagantes deportes y regalos de películas. Le fue bien elegir algunas ideas, pero creo que esta es una consulta que podría haber corrido a través de Google sin preocuparme de la IA.
Géminis dio una respuesta más personalizada y de cambio. No proporcionó ningún enlace web en este caso, tal vez porque Google quiere mantenerlo en su principal motor de búsqueda para este tipo de consultas: a diferencia de Claude o ChatGPT, Google ya gana mucho dinero que los usuarios hacen clic en comprar enlaces de sus resultados de búsqueda de compras.
ChatGPT dio los resultados más útiles aquí, tal vez gracias a su reciente actualización de compras. Las fuentes que enumeró fueron similares a las que usaron Claude, pero proporcionó algunas selecciones superiores distintas, junto con precios y enlaces para comprarlos en la web. Más adelante, esta podría ser una de las formas en que Operai recupera parte de su dinero.
La búsqueda web claramente sigue siendo un trabajo en progreso para todas estas herramientas de IA. En algunos casos, funciona mejor que una búsqueda tradicional de Google, pero no siempre, y siempre existe el problema de cuán lejos puede confiar en estas respuestas seguras y pulidas sin verificar las fuentes originales de las que obtienen su información.
Divulgación: la empresa matriz de Lifehacker, Ziff Davis, presentó una demanda contra Operai en abril, alegando que infringió los derechos de autor de Ziff Davis en la capacitación y la operación de sus sistemas de IA.
Noticias
¿Puede ChatGPT pasar la prueba de Turing? Lo que dice la investigación.
Published
10 horas agoon
9 mayo, 2025
Los chatbots de inteligencia artificiales como ChatGPT se están volviendo mucho más inteligentes, mucho más naturales y mucho más … como humanos. Tiene sentido: los humanos son los que crean los modelos de idiomas grandes que sustentan los sistemas de chatbots de IA, después de todo. Pero a medida que estas herramientas mejoran en “razonamiento” e imitan el discurso humano, ¿son lo suficientemente inteligentes como para aprobar la prueba de Turing?
Durante décadas, la prueba de Turing se ha mantenido como un punto de referencia clave en la inteligencia de máquinas. Ahora, los investigadores en realidad están poniendo a prueba LLM como ChatGPT. Si ChatGPT puede pasar, el logro sería un hito importante en el desarrollo de IA.
Entonces, ¿puede ChatGPT pasar la prueba de Turing? Según algunos investigadores, sí. Sin embargo, los resultados no son completamente definitivos. La prueba de Turing no es un simple pase/falla, lo que significa que los resultados no son realmente en blanco y negro. Además, incluso si ChatGPT podría pasar la prueba de Turing, eso puede no decirnos realmente cuán “humano” es realmente un LLM.
Vamos a desglosarlo.
¿Cuál es la prueba de Turing?
El concepto de la prueba de Turing es realmente bastante simple.
La prueba fue originalmente propuesta por el matemático británico Alan Turing, el padre de la informática moderna y un héroe para los nerds de todo el mundo. En 1949 o 1950, propuso el juego de imitación, una prueba de inteligencia de máquinas que desde entonces ha sido nombrada por él. La prueba de Turing implica que un juez humano tenga una conversación con un humano y una máquina sin saber cuál es cuál (o quién es quién, si crees en AGI). Si el juez no puede decir cuál es la máquina y cuál es la humana, la máquina pasa la prueba de Turing. En un contexto de investigación, la prueba se realiza muchas veces con múltiples jueces.
Por supuesto, la prueba no puede determinar necesariamente si un modelo de lenguaje grande es realmente tan inteligente como un humano (o más inteligente), solo si es capaz de pasar por un humano.
¿Los LLM realmente piensan como nosotros?
Los modelos de lenguaje grande, por supuesto, no tienen cerebro, conciencia o modelo mundial. No son conscientes de su propia existencia. También carecen de opiniones o creencias verdaderas.
En cambio, los modelos de idiomas grandes se capacitan en conjuntos de datos masivos de información: libros, artículos de Internet, documentos, transcripciones. Cuando un usuario ingresa el texto, el modelo AI usa su “razonamiento” para determinar el significado y la intención más probables de la entrada. Luego, el modelo genera una respuesta.
En el nivel más básico, los LLM son motores de predicción de palabras. Utilizando sus vastas datos de entrenamiento, calculan las probabilidades para el primer “token” (generalmente una sola palabra) de la respuesta utilizando su vocabulario. Repiten este proceso hasta que se genera una respuesta completa. Esa es una simplificación excesiva, por supuesto, pero mantengámoslo simple: las LLM generan respuestas a la entrada en función de la probabilidad y las estadísticas. Entonces, la respuesta de un LLM se basa en las matemáticas, no en una comprensión real del mundo.
Velocidad de luz mashable
Entonces, no, LLM no en realidad pensar en cualquier sentido de la palabra.
¿Qué dicen los estudios sobre ChatGPT y la prueba de Turing?
Joseph Maldonado / Mashable Composite por Rene Ramos
Crédito: Mashable
Ha habido bastantes estudios para determinar si ChatGPT ha aprobado la prueba de Turing, y muchos de ellos han tenido hallazgos positivos. Es por eso que algunos informáticos argumentan que, sí, modelos de idiomas grandes como GPT-4 y GPT-4.5 ahora pueden pasar la famosa prueba de Turing.
La mayoría de las pruebas se centran en el modelo GPT-4 de Openai, el que usa la mayoría de los usuarios de ChatGPT. Usando ese modelo, un Estudio de UC San Diego descubrieron que en muchos casos, los jueces humanos no pudieron distinguir GPT-4 de un humano. En el estudio, se consideró que GPT-4 era un humano el 54% del tiempo. Sin embargo, esto aún se quedó atrás de los humanos reales, que se consideró humano el 67% del tiempo.
Luego, se lanzó GPT-4.5, y los investigadores de UC San Diego Realizó el estudio nuevamente. Esta vez, el modelo de lenguaje grande se identificó como humano el 73% del tiempo, superando a los humanos reales. La prueba también encontró que el Llama-3.1-405b de Meta Meta pudo aprobar la prueba.
Otros estudios fuera de UC San Diego también han dado calificaciones de aprobación de GPT. Un 2024 Estudio de la Universidad de Reading de GPT-4 El modelo había creado respuestas para evaluaciones para llevar a casa para cursos de pregrado. Los alumnos de prueba no se les informó sobre el experimento, y solo marcaron una de las 33 entradas. ChatGPT recibió calificaciones anteriores al promedio con las otras 32 entradas.
Entonces, ¿son estos estudios? definitivo? No exactamente. Algunos críticos (y hay muchos) dicen que estos estudios de investigación no son tan impresionantes como parecen. Es por eso que no estamos listos para decir definitivamente que ChatGPT pasa la prueba de Turing.
Podemos decir que si bien los LLM de generación anterior como GPT-4 a veces pasan la prueba de Turing, los grados de aprobación se están volviendo más comunes a medida que los LLM se avanzan más. Y a medida que salen modelos de vanguardia como GPT-4.5, nos dirigimos rápidamente hacia modelos que pueden pasar fácilmente la prueba de Turing cada vez.
Operai en sí ciertamente imagina un mundo en el que es imposible distinguir a los humanos de la IA. Es por eso que el CEO de Operai, Sam Altman, ha invertido en un proyecto de verificación humana con una máquina de escaneo de globo ocular llamada Orbe.
¿Qué dice Chatgpt en sí mismo?
Decidimos preguntarle a ChatGPT si podía pasar la prueba de Turing, y nos dijo que sí, con las mismas advertencias que ya hemos discutido. Cuando planteamos la pregunta, “¿Puede Chatgpt pasar la prueba de Turing?” al chatbot Ai (usando el modelo 4o), nos dijo: “Chatgpt poder Pase la prueba de Turing en algunos escenarios, pero no de manera confiable o universal. “El chatbot concluyó:” Podría pasar la prueba de Turing con un usuario promedio en condiciones casuales, pero un interrogador determinado y reflexivo casi siempre podría desenmascararla “.

Imagen generada por IA.
Crédito: OpenAI
Las limitaciones de la prueba de Turing
Algunos científicos informáticos ahora creen que la prueba de Turing está desactualizada, y que no es tan útil para juzgar modelos de idiomas grandes. Gary Marcus, psicólogo estadounidense, científico cognitivo, autor y pronóstico popular de IA, lo resumió mejor en una publicación de blog reciente, donde escribió: “Como yo (y muchos otros) he dicho por añosLa prueba de Turing es una prueba de credulidad humana, no una prueba de inteligencia “.
También vale la pena tener en cuenta que la prueba de Turing se trata más de la percepción de inteligencia en lugar de actual inteligencia. Esa es una distinción importante. Un modelo como ChatGPT 4O podría pasar simplemente imitando el discurso humano. No solo eso, sino si un modelo de idioma grande pasa o no la prueba variará según el tema y el probador. ChatGPT podría simular fácilmente una pequeña charla, pero podría tener dificultades con las conversaciones que requieren una verdadera inteligencia emocional. No solo eso, sino que los sistemas de IA modernos se usan para mucho más que chatear, especialmente cuando nos dirigimos hacia un mundo de IA agente.
Nada de eso es decir que la prueba de Turing es irrelevante. Es un punto de referencia histórico ordenado, y ciertamente es interesante que los modelos de idiomas grandes puedan pasarlo. Pero la prueba de Turing no es el punto de referencia estándar de oro de la inteligencia de la máquina. ¿Cómo sería un mejor punto de referencia? Esa es otra lata de gusanos que tendremos que ahorrar para otra historia.
Divulgación: Ziff Davis, empresa matriz de Mashable, presentó en abril una demanda contra OpenAI, alegando que infringió los derechos de autor de Ziff Davis en la capacitación y la operación de sus sistemas de IA.
Temas
Inteligencia artificial
Noticias
Openai, Microsoft le dice al Senado ‘Nadie puede ganar AI’
Published
10 horas agoon
9 mayo, 2025
Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información
La administración Trump retrocedió una orden ejecutiva del ex presidente Joe Biden que creó reglas sobre el desarrollo y el despliegue de IA. Desde entonces, el gobierno ha retrocedido de la regulación de la tecnología.
En una audiencia de más de tres horas en el Comité de Comercio, Ciencia y Transporte del Senado, ejecutivos como el CEO de Operai, Sam Altman, la CEO de AMD, Lisa Su, la cofundadora de CoreWeave y CEO Michael Intrator y Vicepresidente de Microsoft y Presidente Brad Smith instó a los políticos para aliviar el proceso de construcción de infraestructura en torno al desarrollo de AI.
Los ejecutivos dijeron a los formuladores de políticas que la aceleración de los permisos podría hacer que la construcción de nuevos centros de datos, las centros de energía para energizar los centros de datos e incluso los fabricantes de chips cruciales para apuntalar la pila tecnológica de IA y mantener al país competitivo contra China. También hablaron sobre la necesidad de trabajadores más calificados como electricistas, aliviando la inmigración del talento del software y alentando la “difusión de IA” o la adopción de modelos de IA generativos en los Estados Unidos y en todo el mundo.
Altman, recién visitando el proyecto Stargate de $ 500 mil millones de la compañía en Texas, dijo a los senadores que Estados Unidos está liderando el cargo en IA, pero necesita más infraestructura como las centrales eléctricas para alimentar su próxima fase.
“Creo que la próxima década será sobre abundante inteligencia y energía abundante. Asegurarse de que Estados Unidos lidere ambos, que podamos introducir estas revoluciones duales que cambiarán el mundo que vivimos de manera increíblemente positiva es crítico”, dijo Altman.
La audiencia se produjo cuando la administración Trump está determinando cuánta influencia tendrá el gobierno en el espacio de IA. El senador Ted Cruz de Texas, presidente del comité, dijo que propuso crear una caja de arena reguladora de IA.
Smith de Microsoft dijo en su testimonio escrito que las compañías de IA estadounidenses necesitan continuar innovando porque “es una carrera que ninguna compañía o país puede ganar por sí sola”.
Apoyando la pila de tecnología AI
Smith de Microsoft presentó la pila de tecnología AI, que según él muestra cuán importante es cada segmento del sector a la innovación.
“Todos estamos en esto juntos. Si Estados Unidos va a tener éxito en liderar el mundo en la IA, requiere infraestructura, requiere éxito a nivel de plataforma, requiere a las personas que crean aplicaciones”, dijo Smith.
Agregó: “La innovación irá más rápido con más infraestructura, permisos más rápidos y más electricistas”.
AMD reiteró que “mantener nuestro liderazgo en realidad requiere excelencia en cada capa de la pila”.
“Creo que los ecosistemas abiertos son realmente una piedra angular del liderazgo estadounidense, y eso permite que las ideas provengan de todas partes y cada parte del sector de la innovación”, dijo Su. “Está reduciendo las barreras para la entrada y el fortalecimiento de la seguridad, así como la creación de un mercado competitivo para ideas”.
Con los modelos de IA que necesitan más y más GPU para el entrenamiento, la necesidad de mejorar la producción de chips, construir más centros de datos y encontrar formas de alimentarlos se ha vuelto aún más crítico. La Ley de Chips y Ciencias, una ley de la era de Biden, estaba destinada a impulsar la producción de semiconductores en los Estados Unidos, pero hacer los chips necesarios para alimentar los modelos más poderosos del mundo a nivel local está demostrando ser lento y costoso.
En los últimos meses, compañías como Cerebras han anunciado planes para construir más centros de datos para ayudar a procesar la capacitación e inferencia de modelos.
Un descanso de las políticas actuales
La mayoría del Senado de los formuladores de políticas republicanas dejó en claro durante la audiencia que la administración Trump preferiría no regular el desarrollo de la IA, preferir un enfoque más impulsado por el mercado. Esta administración también ha presionado para un crecimiento más centrado en los Estados Unidos, exigiendo que las empresas usen productos estadounidenses y creen más empleos estadounidenses.
Sin embargo, los ejecutivos señalaron que para que la IA estadounidense siga siendo competitiva, las empresas necesitan acceso al talento internacional y, lo que es más importante, políticas de exportación claras para que los modelos fabricados en los EE. UU. Puedan ser atractivos para otros países.
“Necesitamos una adopción más rápida, a lo que las personas se refieren como difusión de IA. La capacidad de hacer que la IA trabaje en cada parte de la economía estadounidense para impulsar la productividad, para impulsar el crecimiento económico, permitir a las personas innovar en su trabajo”, dijo Smith. “Si Estados Unidos dirigirá el mundo, necesitamos conectarnos con el mundo. Nuestro liderazgo global se basa en nuestra capacidad para servir al mundo con el enfoque correcto y en nuestra capacidad para mantener la confianza del resto del mundo”.
Agregó que eliminar los límites cuantitativos para los países de nivel dos es esencial porque estas políticas “enviaron un mensaje a 120 naciones que no podían contar con nosotros para proporcionar la IA que desean y necesitan”.
Altman señaló: “Habrá excelentes chips y modelos entrenados en todo el mundo”, reiterando la posición de liderazgo de las compañías estadounidenses en el espacio.
Hay algunas buenas noticias en el área de la difusión de IA porque, si bien la audiencia estaba en curso, el Departamento de Comercio anunció que estaba modificando las reglas de la administración Biden que limitó qué países podrían recibir chips hechos por compañías estadounidenses. La regla entró en vigencia el 15 de mayo.
Si bien los ejecutivos dijeron que los estándares gubernamentales serían útiles, denunciaron cualquier movimiento para ver lanzamientos del modelo de “aprobación previa”, similares a la UE.
Ecosistema abierto
La IA generativa ocupa un espacio liminal en la regulación tecnológica. Por un lado, la falta comparativa de reglas ha permitido a empresas como OpenAI desarrollar tecnología sin mucho miedo a las repercusiones. Por otro lado, la IA, como Internet y las redes sociales antes, toca la vida de las personas profesionales y personalmente.
De alguna manera, los ejecutivos se alejaron de cómo la administración Trump ha posicionado el crecimiento de los Estados Unidos. La audiencia mostró que si bien las compañías de IA desean el apoyo del gobierno para acelerar el proceso de expansión de la infraestructura de IA, también deben estar más abiertos al resto del mundo. Requiere talento del extranjero. Necesita vender productos y plataformas a otros países.
El comentario de las redes sociales varió, y algunos señalaron que los ejecutivos, en particular Altman, tenían opiniones diferentes sobre la regulación antes.
2023 Sam Altman: le dice al Congreso que se debe crear una nueva agencia para requerir licencias para modelos de IA poderosos
2025 Sam Altman: dice el Congreso que requiere licencias para modelos de IA poderosos sería “desastroso”
– Tom Simonite (@tsimonite) 8 de mayo de 2025
Los ejecutivos de IA solían pedir una regulación. Ya no. https://t.co/hcdfsj2lcj
– Daniel Patrick Forrester (@DPForrester) 9 de mayo de 2025
Otros señalaron que otros países podrían ver dónde han fallado sus propias políticas de IA.
Esto es muy largo y parcialmente aburrido. Pero si trabaja en un país europeo o en la UE, esto debería ser una visita obligada.
Audiencia en el Senado sobre IA con Sam Altman, CEO de AMD, presidente Microsoft y fundador de CoreWeave.
Un gran tema recurrente: “¿Cómo nos aseguramos de las fallas …
– Jo Bhakdi (@Jobhakdi) 8 de mayo de 2025
Insights diarias sobre casos de uso comercial con VB diariamente
Si quieres impresionar a tu jefe, VB Daily te tiene cubierto. Le damos la cuenta interior de lo que las empresas están haciendo con la IA generativa, desde cambios regulatorios hasta implementaciones prácticas, por lo que puede compartir ideas para el ROI máximo.
Lea nuestra Política de privacidad
Gracias por suscribirse. Mira más boletines de VB aquí.
Ocurrió un error.

Related posts















































































































































































































































































































Trending
-
Startups12 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Tutoriales12 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Recursos12 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Startups10 meses ago
Startups de IA en EE.UU. que han recaudado más de $100M en 2024
-
Startups12 meses ago
Deepgram: Revolucionando el Reconocimiento de Voz con IA
-
Recursos12 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Recursos12 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Noticias10 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo