Connect with us

Noticias

Percepciones de los estudiantes de profesiones sanitarias sobre ChatGPT en la atención sanitaria y la educación: conocimientos de un estudio de métodos mixtos | Educación Médica BMC

Published

on

Características generales de la población de estudio (Tabla 1)

Tabla 1 Características generales de la población de estudio (Total norte= 217), por campo de estudio

La población de estudio (norte= 217) era predominantemente femenina (85,7%), con una edad promedio de 26,9 ± 5,7 años (rango 18-52 años). Un total de 190 (82,3%) estudiantes nacieron en Israel y más del 90% se identificaron como judíos, el 4,6% como musulmanes y el 0,5% como cristianos. Una proporción significativa (65,4%) de los participantes estaban casados ​​o convivían. Geográficamente, la distribución residencial de los estudiantes fue la siguiente: 43,9% en el centro de Israel, 18,9% en el norte de Israel, 14,1% en el sur y 10,7% en Jerusalén. Casi el 60% de los participantes estaban en el primer y segundo año de estudios y reportaron una media de rendimiento académico durante sus estudios de 7,6 (± 1,5), con puntuaciones que oscilaban entre 2 y 10 en una escala de 1 a 10.

Patrones de uso de ChatGPT entre la población de estudio

Entre los 217 estudiantes encuestados, 187 (86,2%) informaron estar familiarizados con ChatGPT y proporcionaron información sobre sus motivos de uso y hábitos de uso. En particular, los porcentajes fueron comparativamente altos en las diferentes disciplinas, con 60 (82,2%) estudiantes de enfermería, 57 (87,7%) de medicina y 70 (88,6%) estudiantes de otras profesiones de la salud. Los estudiantes informaron que su familiaridad con ChatGPT se desarrolló a través de amigos y familiares (78,1%), los medios (66,8%), la interacción con otros estudiantes (40,1%) y la exposición durante las clases con profesores (14,4%). Curiosamente, el 43,1% de los estudiantes informó que usaba ChatGPT con poca frecuencia, mientras que solo el 7,6% indicó el uso diario. [Mean 2.6 (SD = 1.1) on a scale of 1–6]. Sin embargo, casi una quinta parte afirmó sentirse absolutamente segura en el uso del chat, mientras que sólo el 10,7% afirmó no sentirse segura en absoluto. [Mean 3.9 (SD = 1.1) on a scale of 1–5].

Percepciones de ChatGPT

La Tabla 2 presenta las puntuaciones medias con respecto a las percepciones positivas y negativas de ChatGPT entre la población de estudio. Los datos revelan una actitud generalmente positiva hacia el uso de ChatGPT, con una puntuación media general de 4,04 (DE = 0,62) en una escala del 1 al 5, donde una puntuación más alta indica una percepción más favorable de los impactos positivos. En contraste, la puntuación media para los impactos negativos fue 3,49 (DE = 0,64) en la misma escala de 1 a 5, lo que refleja un nivel moderado de preocupación respecto de los efectos potencialmente negativos. Se empleó una prueba ANOVA unidireccional para evaluar las diferencias potenciales entre los grupos de estudiantes de enfermería, medicina y otras profesiones de la salud. El análisis no reveló diferencias estadísticamente significativas entre los grupos. Se realizaron análisis adicionales utilizando pruebas t para muestras independientes para examinar si había diferencias en las puntuaciones medias entre los estudiantes de primer año y los de años posteriores, así como entre aquellos que completaron la encuesta en marzo-abril o mayo-junio. Ninguna de estas comparaciones arrojó diferencias significativas.

Tabla 2 Puntuaciones medias con respecto a los impactos potenciales del uso de ChatGPT (Total norte= 187), por campo de estudio

Mejora de las habilidades académicas y de aprendizaje gracias al uso de ChatGPT

Las puntuaciones medias en esta área oscilaron entre 1,82 (DE = 1,21) y 3,26 (DE = 1,45), asignándose la puntuación más baja a las habilidades de gestión y la más alta a la curiosidad. La puntuación media general fue de 3,20 (DE = 0,63) en una escala de 1 a 5, lo que indica percepciones de un nivel moderado de mejora debido al uso de ChatGPT.

Preocupaciones sobre el uso de ChatGPT en la educación

Las preocupaciones sobre el uso de ChatGPT en la educación se calificaron de manera bastante variable, con las puntuaciones más bajas asignadas a las afirmaciones “Me temo que la tecnología ChatGPT nos está “espiando”” (Media = 2,46; DE = 1,27) y “Me temo”. que el uso de la tecnología ChatGPT no es ético’ (Media = 2,58; DE = 1,14). De manera similar, ‘Me temo que los profesores reprobarán a los estudiantes que usan la tecnología ChatGPT’ recibió una puntuación media de 3,72 (SD = 1,36), mientras que ‘Me temo que los profesores se opondrán al uso de la tecnología por parte de los estudiantes’ obtuvo una puntuación de 3,63 (SD = 1.34). El nivel más alto de preocupación se atribuyó a “Me temo que los profesores no están abiertos al uso de la tecnología ChatGPT por parte de los estudiantes” con una puntuación media de 3,816 (DE = 1,27).

Datos cualitativos

La mayoría de los estudiantes (norte= 128; El 68,5%) respondió a las tres preguntas abiertas. Utilizando el método de análisis comparativo constante, surgieron tres temas principales, cada uno de los cuales abarca dos hallazgos clave: uno destaca los beneficios y los aspectos positivos, y el otro aborda los desafíos y preocupaciones.

Tema 1: experiencia con ChatGPT

Beneficios y experiencias positivas.

La mayoría de los estudiantes consideran que ChatGPT es una herramienta útil y conveniente para acceder a información y conocimiento. Mencionaron constantemente: “Se considera una solución que ahorra tiempo, ya que ayuda a agilizar la investigación y recopilar materiales relevantes rápidamente”. También apreciaron la ayuda brindada para leer y resumir material académico, y valoraron la conveniencia de encontrar fuentes relevantes, especialmente para seminarios de investigación. Como señaló un estudiante de enfermería: “Veo ChatGPT como una plataforma para responder preguntas específicas y brindar orientación en diversos temas”. También reconocen el gran potencial de ChatGPT, especialmente las versiones avanzadas con interfaces y bases de datos mejoradas. Como mencionó un estudiante de terapia ocupacional: “La herramienta es una fuente de inspiración y fomenta el pensamiento creativo y la curiosidad”. Un estudiante de medicina señaló: “Estaba trabajando en el análisis de datos de pacientes en busca de tendencias en los resultados del tratamiento para proporcionar un plan de atención alternativa. ChatGPT me ayudó a generar rápidamente conclusiones iniciales sobre por qué el plan de atención alternativa es mejor”.

Desafíos y preocupaciones

A pesar de sus ventajas, algunos estudiantes expresaron escepticismo sobre la confiabilidad de ChatGPT. Varios participantes expresaron su preocupación por las prácticas de citación de ChatGPT y señalaron que la falta de fuentes adecuadas socava su confiabilidad. Como explicó un estudiante: “A veces proporciona información sin citar fuentes y eso me hace dudar en confiar completamente en él”. Además, otros estudiantes señalaron que ChatGPT a veces puede proporcionar información incorrecta o inventada, y uno de ellos afirmó: “Hay ocasiones en las que da respuestas que simplemente no tienen sentido o no son precisas en absoluto”. También se cuestionó la capacidad del software para comprender y responder preguntas específicas, como señaló otro estudiante: “A veces, tiene dificultades para responder preguntas clínicas específicas con precisión, lo que puede resultar frustrante”. Además, algunos estudiantes admitieron que no habían explorado completamente las capacidades de ChatGPT y estaban abiertos a una mayor experimentación, y un estudiante de enfermería mencionó: “Todavía estoy aprendiendo cómo usarlo de manera efectiva y tengo curiosidad por ver qué más puede hacer”. “.

Tema 2: impacto en la calidad de la atención sanitaria

Beneficios y efectos positivos.

La mayoría de los estudiantes expresaron optimismo sobre los efectos positivos que ChatGPT podría tener en la atención sanitaria. Anticiparon beneficios como “un diagnóstico más rápido, un mayor conocimiento de los pacientes y un acceso más eficiente a la información”. En particular, los estudiantes consideraron ChatGPT como una herramienta valiosa para identificar rutas de tratamiento adecuadas basadas en los datos de los pacientes. Un estudiante de medicina comentó: “Al usar ChatGPT, puedo generar rápidamente diagnósticos diferenciales basados ​​en los síntomas, lo que me ayuda a pensar en las posibilidades de manera más efectiva”. Un estudiante de terapia ocupacional añadió: “Es como tener una segunda opinión a mano en todo momento; puedo intercambiar ideas con ella y perfeccionar mi comprensión de la atención al paciente”.

Además, los estudiantes expresaron confianza en el potencial de ChatGPT para reducir los errores humanos y mejorar la calidad de la atención. Como dijo un estudiante: “Creo que la tecnología conducirá a diagnósticos más precisos y planes de tratamiento personalizados en la atención sanitaria”. Otro estudiante comentó: “Con la ayuda de ChatGPT, podemos verificar nuestro trabajo y minimizar los errores, especialmente en situaciones críticas”. Además, un tercer estudiante afirmó: “La integración de ChatGPT en la práctica clínica podría significar menos diagnósticos erróneos, ya que puede resaltar datos importantes que podríamos pasar por alto”.

Los estudiantes también anticiparon que ChatGPT proporcionaría un acceso eficiente a la información, lo que creen que podría mejorar su trabajo. Por ejemplo, un estudiante mencionó: “ChatGPT puede acelerar las tareas, proporcionar respuestas inmediatas y ayudar a organizar la información”. Otro estudiante señaló: “Tener acceso rápido a pautas basadas en evidencia a través de ChatGPT nos ahorra mucho tiempo al tomar decisiones clínicas”. Un tercer estudiante añadió: “Es como tener un asistente digital que puede obtener rápidamente estudios y datos relevantes, lo que me permite centrarme más en la interacción con el paciente”.

Además, algunos estudiantes percibieron ChatGPT como una herramienta para ampliar sus conocimientos y mejorar la toma de decisiones en la atención al paciente. Un participante señaló: “Usar ChatGPT me permite explorar varias opciones de tratamiento y comprender las implicaciones de cada elección”. Expresaron la idea de que “un paciente puede participar en la toma de decisiones”, como comentó otro estudiante: “Con la información de ChatGPT, puedo involucrar a los pacientes de manera más efectiva en sus planes de atención”.

Desafíos y preocupaciones

Surgieron preocupaciones sobre el riesgo de que una dependencia excesiva de la tecnología pudiera disminuir el toque personal esencial en las interacciones con los pacientes. Un estudiante advirtió: “Si confiamos demasiado en la tecnología, podríamos perder el toque personal que es crucial en la atención al paciente”. Otros expresaron temores de que una mayor dependencia de la tecnología podría conducir a interacciones más analíticas y robóticas con los pacientes. Como enfatizó un estudiante de enfermería: “Más allá de las capacidades de ChatGPT, todavía existe la necesidad de un juicio humano y una comprensión más integral del paciente”.

Surgieron más preocupaciones sobre el potencial de la tecnología para afectar negativamente la atención médica, como lo describió un estudiante: “una gran dependencia de la tecnología puede disminuir la calidad del tratamiento”. Otro estudiante advirtió: “Debemos tener cuidado de no permitir que ChatGPT reemplace el pensamiento crítico; de lo contrario, corremos el riesgo de simplificar demasiado los escenarios complejos de los pacientes”. Además, algunos estudiantes también expresaron su preocupación de que los pacientes pudieran evitar los servicios de atención médica tradicionales debido al fácil acceso a la información a través de ChatGPT. Un participante advirtió: “Los pacientes pueden empezar a pensar que pueden obtener todas sus respuestas en línea y no buscar ayuda profesional, lo que podría ser peligroso”.

Tema 3: integración en el currículo

Beneficios e impactos positivos

Los estudiantes abogaron por una capacitación formal sobre la incorporación efectiva de ChatGPT en sus estudios. Expresaron su creencia de que la integración de esta herramienta en los marcos educativos podría fomentar enfoques de aprendizaje innovadores. Muchos reconocieron su capacidad para optimizar las tareas y brindar acceso rápido a la información, lo que encontraron beneficioso para administrar sus cargas de trabajo. Un estudiante de enfermería mencionó: “Me ahorra horas cuando necesito encontrar estudios relevantes o resumir textos largos rápidamente”. Otro estudiante se hizo eco de esto y afirmó: “Con ChatGPT, puedo acceder fácilmente a múltiples fuentes de información sin tener que revisar interminables artículos”. Básicamente, ChatGPT se considera una fuente de orientación profesional, que ayuda a los estudiantes cuando no están seguros de sus próximos pasos en los estudios o la investigación. Como dijo un estudiante de fisioterapia: “Espero que contribuya a una toma de decisiones más informada y mejore mi conocimiento y comprensión en el campo”. Otro estudiante comentó: “Cuando estoy estancado en un tema, ChatGPT me ayuda a generar ideas y retomar el rumbo”.

Desafíos y preocupaciones

Algunos estudiantes expresaron reservas sobre una dependencia excesiva de ChatGPT, particularmente para reemplazar los métodos tradicionales de aprendizaje o investigación. Un estudiante afirmó: “Me preocupa que depender demasiado de ChatGPT pueda hacernos perezosos en nuestra investigación y aprendizaje. Aún así, debemos involucrarnos con el material nosotros mismos”. Otro estudiante señaló: “Si bien ChatGPT es útil, no debería ser nuestra única fuente. Necesitamos continuar desarrollando nuestras habilidades de investigación”.

Además, existen preocupaciones con respecto al uso ético de ChatGPT y sus limitaciones. Un estudiante comentó: “Creo que necesitamos directrices claras sobre cómo utilizar ChatGPT de forma ética, especialmente en entornos académicos”. Otro participante señaló: “Comprender las limitaciones de ChatGPT es importante; no puede reemplazar la profundidad del conocimiento que obtenemos de los métodos de aprendizaje tradicionales”.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Noticias

Un marco de descubrimiento de arquitectura neuronal de parámetros múltiples automatizados utilizando chatgpt en el backend

Published

on

  • Chua, M. et al. Abordar la incertidumbre de predicción en el aprendizaje automático para la atención médica. Nat. Biomed. Ing. 7711–718 (2023).

    Artículo PubMed Google Scholar

  • Bhardwaj, R. y Tripathi, I. Un algoritmo de ocultación de datos reversibles mejorados que utiliza una red neuronal profunda para E-Healthcare. J. Amb. Intell. Humaniz. Computación. 1410567–10585 (2023).

    Artículo Google Scholar

  • Nandy, S. et al. Un sistema inteligente de predicción de enfermedades cardíacas basado en la red neuronal artificial enjambre. Computación neuronal. Aplicación 3514723–14737 (2023).

    Artículo Google Scholar

  • Jaafar, N. y Lachiri, Z. Métodos de fusión multimodal con redes neuronales profundas y metainformación para la detección de agresión en vigilancia. Sistema de expertos. Aplicación 211118523 (2023).

    Artículo Google Scholar

  • Mahum, R. et al. Un marco robusto para generar resúmenes de video de vigilancia utilizando la combinación de momentos de Zernike y una transformación R y una red neuronal profunda. Multimed. Herramientas apl. 8213811–13835 (2023).

    Artículo Google Scholar

  • Jan, Z. et al. Inteligencia artificial para la industria 4.0: Revisión sistemática de aplicaciones, desafíos y oportunidades. Sistema de expertos. Aplicación 216119456 (2023).

    Artículo Google Scholar

  • Raja Santhi, A. y Muthuswamy, P. Industry 5.0 o Industry 4.0 s? Introducción a la industria 4.0 y un vistazo a las posibles tecnologías de la industria 5.0. Int. J. Interact. Des. Manuf. (Ijidem) 17947–979 (2023).

    Artículo Google Scholar

  • Shafiq, M. et al. Evaluación continua de control de calidad durante la fabricación utilizando algoritmo de aprendizaje supervisado para la industria 4.0. Int. J. Adv. Manuf. Technol. (2023).

  • Rajput, DS, Meena, G., Acharya, M. y Mohbey, KK Predicción de fallas utilizando red neuronal de convolución difusa en entorno IoT con fusión de datos de detección heterogénea. Medición Sensación 26100701 (2023).

    Artículo Google Scholar

  • Liyakat, KK S. Enfoque de aprendizaje automático utilizando redes neuronales artificiales para detectar nodos maliciosos en redes IoT. En Conferencia internacional sobre aprendizaje automático, IoT y Big Data 123–134 (Springer, 2023).

  • Thakkar, A. y Lohiya, R. Clasificación de ataque de datos de intrusión desequilibrados para la red IoT utilizando una red neuronal profunda basada en el aprendizaje. IEEE Internet Things J. 1011888–11895 (2023).

    Artículo Google Scholar

  • Openai, R. GPT-4 Informe técnico. Preprint en ARXIV: 2303.08774. Ver en el artículo213 (2023).

  • Wang, J. et al. EL-NAS: Eficiente búsqueda de arquitectura de dominio de atención cruzada para la clasificación de imágenes hiperespectrales. Sensación remota. 154688 (2023).

    Anuncios de artículos Google Scholar

  • Yang, T., He, Q. y Huang, L. OM-NAS: Clasificación de imagen de lesión de piel pigmentada basada en una búsqueda de arquitectura neural. Biomed. Optar. Expresar 142153–2165 (2023).

    Artículo CAS PubMed PubMed Central Google Scholar

  • Yang, Y., Wei, J., Yu, Z. y Zhang, R. Un marco de búsqueda de arquitectura neuronal confiable para la clasificación de imágenes de neumonía utilizando tecnología blockchain. J. Supercomput. 801694-1727 (2024).

  • Hassan, E. et al. Enmascarar modelos R-CNN. Nilo J. Commun. Computación. Sci. 317–27 (2022).

    Artículo Google Scholar

  • Dong, P. et al. RD-NAS: Mejora de la capacidad de clasificación SuperNet de un solo disparo a través de la destilación de clasificación de proxies de costo cero. En ICASSP 2023-2023 Conferencia internacional IEEE sobre acústica, procesamiento de habla y señales (ICASSP) 1–5 (IEEE, 2023).

  • Wang, J. et al. NAS-DYMC: red neuronal de convolucional múltiple dinámica basada en NAS para la detección de eventos de sonido. En ICASSP 2023-2023 Conferencia internacional IEEE sobre acústica, procesamiento de habla y señales (ICASSP) 1–5 (IEEE, 2023).

  • Li, J. et al. Graph Neural Network Architecture Busque para el diagnóstico de fallas de maquinaria giratoria basado en el aprendizaje de refuerzo. Mech. Syst. Proceso de señal. 202110701 (2023).

    Artículo Google Scholar

  • Yuan, W., Fu, C., Liu, R. y Fan, X. Ssob: Buscando una arquitectura orientada a la escena para la detección de objetos submarinos. VIS. Computación. 395199–5208 (2023).

    Artículo Google Scholar

  • Jia, X. et al. Detector de objetos rápido y preciso para la conducción autónoma basada en yolov5 mejorado. Sci. Reps. 131–13 (2023).

    Anuncios de Google Scholar

  • Mehta, R., Jurečková, O. y Stamp, M. Un enfoque de procesamiento del lenguaje natural para la clasificación de malware. J. Comput. Virol. Tech de piratería. 20173-184 (2024).

  • Girdhar, N., Coustaty, M. y Doucet, A. Benchmarking Nas para la separación de artículos en periódicos históricos. En Conferencia internacional sobre bibliotecas digitales asiáticas76–88 (Springer, 2023).

  • Real, E., Aggarwal, A., Huang, Y. y LE, QV Evolución regularizada para la búsqueda de arquitectura del clasificador de imágenes. En Actas de la Conferencia AAAI sobre inteligencia artificial volumen 33, 4780–4789 (2019).

  • Liu, C. et al. Búsqueda de arquitectura neuronal progresiva. En Actas de la Conferencia Europea sobre Visión Computadora (ECCV) 19–34 (2018).

  • Cai, H., Chen, T., Zhang, W., Yu, Y. y Wang, J. Búsqueda de arquitectura eficiente por transformación de red. En Actas de la Conferencia AAAI sobre inteligencia artificialvol. 32 (2018).

  • Pham, H., Guan, M., Zoph, B., Le, Q. y Dean, J. Búsqueda eficiente de arquitectura neuronal a través de parámetros compartiendo. En Conferencia internacional sobre aprendizaje automático 4095–4104 (PMLR, 2018).

  • Liu, H., Simonyan, K. y Yang, Y. Darts: búsqueda de arquitectura diferenciable. Preimpresión en ARXIV: 1806.09055 (2018).

  • Ying, C. et al. NAS-Bench-101: Hacia la búsqueda reproducible de arquitectura neuronal. En Conferencia internacional sobre aprendizaje automático 7105–7114 (PMLR, 2019).

  • Dong, X. y Yang, Y. Nas Bench-201-201: Extendiendo el alcance de la búsqueda de arquitectura neuronal reproducible. Preprint en ARXIV: 2001.00326 (2020).

  • Krizhevsky, A. y Hinton, G. Aprender múltiples capas de características de pequeñas imágenes (Tech. Rep, Toronto, ON, Canadá, 2009).

  • Chrabaszcz, P., Loshchilov, I. y Hutter, F. Una variante a la baja de Imagenet como alternativa a los conjuntos de datos CIFAR. Preprint en ARXIV: 1707.08819 (2017).

  • Ye, P. et al. \(\beta\)-Darts: regularización de beta para la búsqueda de arquitectura diferenciable. En 2022 Conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones (CVPR) 10864–10873 (IEEE, 2022).

  • Movahedi, S. et al. \ (\ lambda \) -Darts: mitigar el colapso del rendimiento al armonizar la selección de operaciones entre las células. Preprint en ARXIV: 2210.07998 (2022).

  • Zheng, M. et al. ¿Puede GPT-4 realizar la búsqueda de arquitectura neural? Preimpresión en ARXIV: 2304.10970 (2023).

  • Achiam, J. et al. Informe técnico GPT-4. Preimpresión en ARXIV: 2303.08774 (2023).

  • Wang, H. et al. Búsqueda de arquitectura neuronal gráfica con GPT-4. Preimpresión en ARXIV: 2310.01436 (2023).

  • Hassan, E., Bhatnagar, R. y Shams, M. Y. Avance de la investigación científica en ciencias de la computación por Chatgpt y Llama-A Review. En Conferencia internacional sobre fabricación inteligente y sostenibilidad energética 23–37 (Springer, 2023).

  • Helber, P., Bischke, B., Dengel, A. y Borth, D. Eurosat: un nuevo conjunto de datos y un punto de referencia de aprendizaje profundo para el uso de la tierra y la clasificación de la cobertura de la tierra. IEEE J. Sel. Arriba. Aplicación Tierra obs. Sensación remota. 12(7), 2217–2226 (2019).

    Anuncios de artículos Google Scholar

  • Rajaraman, S. et al. Redes neuronales convolucionales previamente entrenadas como extractores de características hacia la detección de parásitos de malaria mejorados en imágenes de frotis de sangre delgada. Peerj 6E4568 (2018).

    Artículo PubMed PubMed Central Google Scholar

  • Maas, A. et al. Vectores de palabras de aprendizaje para el análisis de sentimientos. En Actas de la 49ª Reunión Anual de la Asociación de Lingüística Computacional: Tecnologías de lenguaje humano 142–150 (2011).

  • Powerapi. Pyjoules: Biblioteca de medición de energía basada en Python para varios dominios, incluidas las GPU NVIDIA. https://github.com/powerapi-ng/pyjoulles (2024). Consultado: 2024-05-31.

  • Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M. y Sjödin, M. Deepmaker: un marco de optimización de objetivos múltiples para redes neuronales profundas en sistemas integrados. Microprocesos. Microsyst. 73102989 (2020).

    Artículo Google Scholar

  • Suganuma, M., Kobayashi, M., Shirakawa, S. y Nagao, T. Evolución de redes neuronales convolucionales profundas utilizando programación genética cartesiana. Evol. Computación. 28141–163 (2020).

    Artículo PubMed Google Scholar

  • Ren, J. et al. Eigen: enfoque genético de inspiración ecológica para la búsqueda de estructuras de redes neuronales desde cero. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 9059–9068 (2019).

  • Xie, L. y Yuille, A. Genetic CNN. En Actas de la Conferencia Internacional IEEE sobre visión por computadora 1379–1388 (2017).

  • Lu, Z. et al. Diseño evolutivo de criterio múltiple de redes neuronales convolucionales profundas. Preprint en ARXIV: 1912.01369 (2019).

  • Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B. y Xing, EP Búsqueda de arquitectura neural con optimización bayesiana y transporte óptimo. Adv. Inf. Neural. Proceso. Syst. 31 (2018).

  • Elsken, T., Metzen, J.-H. & Hutter, F. Búsqueda de arquitectura simple y eficiente para redes neuronales convolucionales. Preimpresión en ARXIV: 1711.04528 (2017).

  • Dong, X. y Yang, Y. Buscando una arquitectura neuronal robusta en cuatro horas de GPU. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 1761–1770 (2019).

  • Chu, X. et al. DARTS-: Salir de manera robusta del colapso de rendimiento sin indicadores. Preprint en ARXIV: 2009.01027 (2020).

  • Chen, X., Wang, R., Cheng, M., Tang, X. y Hsieh, C.-J. DRNAS: búsqueda de arquitectura neural de Dirichlet. Preprint en ARXIV: 2006.10355 (2020).

  • Hu, Y., Wang, X., Li, L. y Gu, Q. Mejora de NAS de un solo disparo con Supernet reducida y expansiva. Reconocimiento de patrones. 118108025 (2021).

    Artículo Google Scholar

  • Chu, X., Zhang, B. y Xu, R. Fairnas: Repensar la equidad de evaluación de la búsqueda de arquitectura neuronal compartiendo peso. En Actas de la conferencia internacional IEEE/CVF sobre visión por computadora 12239–12248 (2021).

  • Xiao, H., Wang, Z., Zhu, Z., Zhou, J. y Lu, J. Shapley-NAS: Descubrimiento de la contribución de la operación para la búsqueda de arquitectura neural. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 11892–11901 (2022).

  • Yu, K., Ranftl, R. y Salzmann, M. Regularización histórica: clasificación de entrenamiento guiado de Super Net en la búsqueda de arquitectura neural. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 13723–13732 (2021).

  • Cavagnero, N., Robbiano, L., Caputo, B. y Avera, G. Freerea: Búsqueda de arquitectura basada en la evolución libre de capacitación. En Actas de la conferencia de invierno IEEE/CVF sobre aplicaciones de visión por computadora 1493–1502 (2023).

  • Zheng, X. et al. Búsqueda de arquitectura neuronal con representación de información mutua. En Actas de la conferencia IEEE/CVF sobre visión por computadora y reconocimiento de patrones 11912–11921 (2022).

  • Strubell, E., Ganesh, A. y McCallum, A. Consideraciones de energía y política para el aprendizaje profundo en la PNL. Preprint en ARXIV: 1906.02243 (2019).

  • Zoph, B., Vasudevan, V., Shlens, J. y Le, Q. V. Aprender arquitecturas transferibles para el reconocimiento de imágenes escalables. En Actas de la conferencia IEEE sobre visión por computadora y reconocimiento de patrones 8697–8710 (2018).

  • Continue Reading

    Noticias

    El ex ejecutivo de Operai se une a la IA, el sector público y los líderes de ciberseguridad que encabezan Info-Tech Live 2025 en Las Vegas

    Published

    on

    A medida que Momentum continúa construyendo en las semanas previas a la muy esperada conferencia anual de la industria para CIO y líderes de TI, Info-Tech Research Group ha anunciado tres nuevos oradores destacados para Info-Tech Live 2025 en Las Vegas en junio. Los altavoces recién revelados incluyen Zack Kassex jefe del mercado de ir al mercado en Openai; Bob LeeCIO para Condado de Clark, Nevada; y David TyburskiVicepresidente de Seguridad de la Información y CISO en Wynn Resorts – Voces líderes en IA, innovación del sector público y ciberseguridad. Sus notas clave Ofrezca claridad, estrategia y ideas prácticas sobre los desafíos de TI más urgentes de hoy al proporcionar diversas perspectivas sobre cómo la tecnología está remodelando las industrias, las instituciones y el liderazgo en sí.

    Toronto, 14 de mayo de 2025 / PRNewswire/-Info-Tech Research Group, una firma líder mundial de investigación y asesoramiento de TI, ha anunciado tres oradores destacados adicionales para su próximo Info-Tech Live 2025 en Las Vegas Conferencia de TI. Los altavoces son Zack Kassex jefe del mercado de ir al mercado en Openai; Bob LeeCIO para Condado de Clark, Nevada; y David TyburskiVicepresidente de Seguridad de la Información y CISO en Wynn Resorts. Estos oradores compartirán su experiencia en innovación de IA, liderazgo del sector público y ciberseguridad empresarial en el escenario principal del evento insignia de la firma, que tiene lugar. 10-12 de junio, 2025en Bellagio en Las Vegas.

    Info-Tech Live 2025 reunirá a miles de CIO, CDO, CISO y líderes de TI durante tres días de notas clave, Insights de analistas y compromiso entre pares. La urgencia y la oportunidad que enfrentan los líderes tecnológicos hoy mientras navegan por la interrupción y la innovación se refleja en el tema de este año “Transformarlo. Transformar todo”.

    “Estos altavoces destacados para Info-Tech Live 2025 en Las Vegas Refleja las prioridades y presiones en evolución que enfrentan los líderes de TI hoy, en todas las industrias y mercados “, dice el director de investigación del grupo de investigación de información de información, Gord Harrison. “Desde redefinir cómo las organizaciones se involucran con la IA, hasta la transformación de la prestación de servicios públicos, hasta la defensa de la infraestructura digital en las industrias de alto riesgo, estos líderes aportan información crítica del futuro. Juntos, sus perspectivas ayudarán a los asistentes a ir más allá de la conciencia y tomar una acción estratégica y confidencial”.

    Recientemente anunciados oradores destacados para información-tech en vivo 2025 en Las Vegas:

    Las últimas incorporaciones a la lista de oradores 2025 de Info-Tech ofrecen a los asistentes una gran cantidad de experiencia en décadas de liderazgo práctico, consultoría e innovación. Sus sesiones proporcionarán nuevas perspectivas sobre los desafíos empresariales actuales, desde la navegación de tecnologías emergentes y las demandas de cumplimiento hasta las estrategias de transformación de escala y alinear las inversiones de TI con el crecimiento empresarial. Los oradores recién anunciados incluyen:

    • Zack Kass, Asesor global de IA, ex jefe de Go To-Mercado, OpenAI
      Zack Kass es un asesor futurista y global que ayuda a Fortune 1000 empresas y gobiernos a adaptarse al panorama de IA que cambia rápidamente. Como ex jefe del mercado de ir a OpenAI, ayudó a construir y liderar a los equipos responsables de traducir la investigación en aplicaciones del mundo real. Kass ahora trabaja para desmitificar la IA y dar forma a un futuro donde la tecnología sirve a las personas y la sociedad.
    • Bob LeeCIO para Condado de Clark, Nevada
      Bob Lee sirve como CIO para Condado de Clark, Nevadaapoyando a más de 2.4 millones de residentes, 90,000 empresas y más de 50 millones de visitantes anualmente. Con más de 25 años de experiencia en los sectores público y privado, Leek se centra en el cambio transformador, el liderazgo inclusivo y el uso de la tecnología para mejorar los resultados para las comunidades a las que sirve.
    • David TyburskiVP de seguridad de la información y director de seguridad de la información para Wynn Resorts
      David Tyburski Lidera la estrategia global de ciberseguridad de Wynn Resorts, supervisando la identidad y el acceso, la gestión de riesgos y la respuesta a los incidentes. Con más de 30 años en TI y seguridad, Tyburski también asesora sobre múltiples juntas de la industria y sirve en la Junta Asesora de Tecnología de la Información del Estado de Nevada.

    Info-tech en vivo 2025 en Las Vegas Proporcionará estrategias procesables e información de investigación en profundidad a los líderes y ejecutivos de TI en todas las industrias. Los asistentes tendrán la oportunidad de interactuar con los analistas expertos de Info-Tech, participar en sesiones interactivas y mesas redondas, y obtener un conocimiento crítico sobre el panorama de TI en rápida evolución. La conferencia también contará con una impresionante línea de oradores principales, talleres y eventos de redes diseñados para equipar a los asistentes con las herramientas para impulsar la transformación de TI exponencial. Se publicarán anuncios adicionales en las semanas previas a la conferencia.

    Para obtener los últimos detalles, visite el Info-Tech Live 2025 en Las Vegas página, y siga el grupo de investigación de información de información sobre LinkedIn y incógnita.

    Media pasa por información-Tech Live 2025 en Las Vegas

    Los profesionales de los medios, incluidos periodistas, podcasters e influencers, están invitados a asistir a Info-Tech Live 2025 para obtener acceso exclusivo a la investigación, el contenido y las entrevistas con los líderes de la industria. Para aquellos que no pueden asistir en persona, Info-Tech ofrece una opción de pase digital, proporcionando acceso a notas clave en vivo, sesiones seleccionadas y entrevistas virtuales exclusivas con oradores y analistas.

    Los profesionales de los medios que buscan solicitar pases en persona o digitales pueden contactar pr@infotech.com Para asegurar su lugar y cubrir los últimos avances en él para su público.

    Oportunidades de expositor

    Los expositores también están invitados a formar parte de Info-Tech Live y mostrar sus productos y servicios a un público altamente comprometido de tomadores de decisiones de TI. Para obtener más información sobre cómo convertirse en un expositor de información en vivo, comuníquese con events@infotech.com.

    Acerca del grupo de investigación de tecnología de información

    Info-Tech Research Group es una de las principales empresas de investigación y asesoramiento del mundo, que atiende con orgullo a más de 30,000 profesionales. La compañía produce una investigación imparcial y altamente relevante y brinda servicios de asesoramiento para ayudar a los líderes a tomar decisiones estratégicas, oportunas y bien informadas. Durante casi 30 años, Info-Tech se ha asociado estrechamente con los equipos para proporcionarles todo lo que necesitan, desde herramientas procesables hasta orientación de analistas, asegurando que brinden resultados medibles para sus organizaciones.

    Para obtener más información sobre las divisiones de Info-Tech, visite McLean & Company para obtener servicios de investigación y asesoramiento de recursos humanos y SoftWarReviews para obtener información sobre la compra de software.

    Los profesionales de los medios pueden registrarse para un acceso sin restricciones a la investigación a través de TI, recursos humanos y software y cientos de analistas de la industria a través del Programa de Insiders de Medios de la empresa. Para obtener acceso, contactar pr@infotech.com.

    Grupo de investigación de tecnología de información de origen

    Continue Reading

    Noticias

    Operai trae GPT-4.1 y 4.1 mini a Chatgpt-Lo que las empresas deben saber

    Published

    on

    Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder de la industria. Obtenga más información


    Operai está implementando GPT-4.1, su nuevo modelo de lenguaje grande (LLM) no inicial que equilibra el alto rendimiento con menor costo, para los usuarios de ChatGPT. La compañía está comenzando con sus suscriptores que pagan en ChatGPT Plus, Pro y Equipo, con el acceso a los usuarios de la empresa y la educación esperada en las próximas semanas.

    También está agregando GPT-4.1 Mini, que reemplaza a GPT-4O Mini como el valor predeterminado para todos los usuarios de ChatGPT, incluidos los de nivel gratuito. La versión “Mini” proporciona un parámetro a menor escala y, por lo tanto, una versión menos potente con estándares de seguridad similares.

    Ambos modelos están disponibles a través de la selección desplegable “Más modelos” en la esquina superior de la ventana de chat dentro de ChatGPT, dando a los usuarios flexibilidad para elegir entre modelos GPT-4.1, GPT-4.1 mini y razonamiento como O3, O4-Mini y O4-Mini-High.

    Inicialmente destinado a usar solo por el software de terceros y los desarrolladores de IA a través de la interfaz de programación de aplicaciones (API) de OpenAI, se agregó GPT-4.1 a ChatGPT siguiendo fuertes comentarios de los usuarios.

    El líder de investigación de la capacitación posterior de Operai, Michelle Pokrass, confirmó en X, el cambio fue impulsado por la demanda, escribiendo: “Inicialmente estábamos planeando mantener esta API de modelo solo, pero todos lo querían en Chatgpt 🙂 ¡feliz codificación!”

    El director de productos de Operai, Kevin Weil, publicó en X diciendo: “Lo construimos para los desarrolladores, por lo que es muy bueno para la codificación e instrucciones siguientes, ¡hágalo un intento!”

    Un modelo centrado en la empresa

    GPT-4.1 fue diseñado desde cero para la practicidad de grado empresarial.

    Lanzado en abril de 2025 junto con GPT-4.1 Mini y Nano, esta familia modelo priorizó las necesidades de los desarrolladores y los casos de uso de producción.

    GPT-4.1 ofrece una mejora de 21.4 puntos sobre GPT-4O en el punto de referencia de ingeniería de software verificado SWE-Bench, y una ganancia de 10.5 puntos en tareas de seguimiento de instrucciones en el punto de referencia MultiChallenge de Scale. También reduce la verbosidad en un 50% en comparación con otros modelos, un rasgo de los usuarios de la empresa elogió durante las pruebas tempranas.

    Contexto, velocidad y acceso al modelo

    GPT-4.1 admite el contexto estándar Windows para ChatGPT: 8,000 tokens para usuarios gratuitos, 32,000 tokens para usuarios más y 128,000 tokens para usuarios de Pro.

    Según el desarrollador Angel Bogado Publicing en X, estos límites coinciden con los utilizados por los modelos de CHATGPT anteriores, aunque los planes están en marcha para aumentar aún más el tamaño del contexto.

    Si bien las versiones API de GPT-4.1 pueden procesar hasta un millón de tokens, esta capacidad ampliada aún no está disponible en ChatGPT, aunque el soporte futuro se ha insinuado.

    Esta capacidad de contexto extendida permite a los usuarios de la API alimentar las bases de código enteras o grandes documentos legales y financieros en el modelo, útil para revisar contratos de documentos múltiples o analizar grandes archivos de registro.

    Operai ha reconocido cierta degradación del rendimiento con entradas extremadamente grandes, pero los casos de prueba empresarial sugieren un rendimiento sólido de hasta varios cientos de miles de tokens.

    Evaluaciones y seguridad

    Operai también ha lanzado un sitio web de Safety Evaluations Hub para brindar a los usuarios acceso a métricas clave de rendimiento en todos los modelos.

    GPT-4.1 muestra resultados sólidos en estas evaluaciones. En las pruebas de precisión de hecho, obtuvo 0.40 en el punto de referencia SimpleQA y 0.63 en Personqa, superando a varios predecesores.

    También obtuvo 0.99 en la medida “no insegura” de OpenAI en las pruebas de rechazo estándar, y 0.86 en indicaciones más desafiantes.

    Sin embargo, en la prueba de jailbreak Strongject, un punto de referencia académico para la seguridad en condiciones adversas, GPT-4.1 obtuvo 0.23, detrás de modelos como GPT-4O-Mini y O3.

    Dicho esto, obtuvo un fuerte 0.96 en indicaciones de jailbreak de origen humano, lo que indica una seguridad más robusta del mundo real bajo el uso típico.

    En la adhesión de instrucciones, GPT-4.1 sigue la jerarquía definida de OpenAI (sistema sobre desarrollador, desarrollador sobre mensajes de usuario) con una puntuación de 0.71 para resolver conflictos de mensajes del sistema frente a usuario. También funciona bien para proteger frases protegidas y evitar regalos de soluciones en escenarios de tutoría.

    Contextualización de GPT-4.1 contra predecesores

    El lanzamiento de GPT-4.1 se produce después del escrutinio alrededor de GPT-4.5, que debutó en febrero de 2025 como una vista previa de investigación. Ese modelo enfatizó un mejor aprendizaje sin supervisión, una base de conocimiento más rica y alucinaciones reducidas, que caían del 61.8% en GPT-4O al 37.1%. También mostró mejoras en los matices emocionales y la escritura de forma larga, pero muchos usuarios encontraron las mejoras sutiles.

    A pesar de estas ganancias, GPT-4.5 generó críticas por su alto precio, hasta $ 180 por millón de tokens de producción a través de API, y por un rendimiento decepcionante en matemáticas y puntos de referencia de codificación en relación con los modelos O-Series O de OpenAi. Las cifras de la industria señalaron que si bien GPT-4.5 era más fuerte en la conversación general y la generación de contenido, tuvo un rendimiento inferior en aplicaciones específicas del desarrollador.

    Por el contrario, GPT-4.1 se pretende como una alternativa más rápida y más enfocada. Si bien carece de la amplitud de conocimiento de GPT-4.5 y un modelado emocional extenso, está mejor sintonizado para la asistencia de codificación práctica y se adhiere de manera más confiable a las instrucciones del usuario.

    En la API de OpenAI, GPT-4.1 tiene un precio de $ 2.00 por millón de tokens de entrada, $ 0.50 por millón de tokens de entrada en caché y tokens de salida de $ 8.00 por millón.

    Para aquellos que buscan un saldo entre velocidad e inteligencia a un costo más bajo, GPT-4.1 Mini está disponible en $ 0.40 por millón de tokens de entrada, $ 0.10 por millón de tokens de entrada en caché y tokens de salida de $ 1.60 por millón.

    Los modelos Flash-Lite y Flash de Google están disponibles a partir de $ 0.075– $ 0.10 por millón de tokens de entrada y $ 0.30– $ 0.40 por millón de tokens de salida, menos de una décima parte del costo de las tasas base de GPT-4.1.

    Pero si bien GPT-4.1 tiene un precio más alto, ofrece puntos de referencia de ingeniería de software más fuertes y una instrucción más precisa después, lo que puede ser crítico para los escenarios de implementación empresarial que requieren confiabilidad sobre el costo. En última instancia, el GPT-4.1 de OpenAI ofrece una experiencia premium para el rendimiento de precisión y desarrollo, mientras que los modelos Gemini de Google atraen a empresas conscientes de costos que necesitan niveles de modelos flexibles y capacidades multimodales.

    Lo que significa para los tomadores de decisiones empresariales

    La introducción de GPT-4.1 aporta beneficios específicos a los equipos empresariales que administran la implementación de LLM, la orquestación y las operaciones de datos:

    • Ingenieros de IA Supervisando la implementación de LLM puede esperar una velocidad mejorada e instrucción de adherencia. Para los equipos que administran el ciclo de vida LLM completo, desde el modelo de ajuste hasta la resolución de problemas, GPT-4.1 ofrece un conjunto de herramientas más receptivo y eficiente. Es particularmente adecuado para equipos Lean bajo presión para enviar modelos de alto rendimiento rápidamente sin comprometer la seguridad o el cumplimiento.
    • La orquestación de IA conduce Centrado en el diseño de tuberías escalable apreciará la robustez de GPT-4.1 contra la mayoría de las fallas inducidas por el usuario y su fuerte rendimiento en las pruebas de jerarquía de mensajes. Esto facilita la integración en los sistemas de orquestación que priorizan la consistencia, la validación del modelo y la confiabilidad operativa.
    • Ingenieros de datos Responsable de mantener una alta calidad de datos e integrar nuevas herramientas se beneficiará de la tasa de alucinación más baja de GPT-4.1 y una mayor precisión objetiva. Su comportamiento de salida más predecible ayuda a construir flujos de trabajo de datos confiables, incluso cuando los recursos del equipo están limitados.
    • Profesionales de seguridad de TI La tarea de integrar la seguridad en las tuberías de DevOps puede encontrar valor en la resistencia de GPT-4.1 a jailbreaks comunes y su comportamiento de salida controlado. Si bien su puntaje académico de resistencia de jailbreak deja espacio para mejorar, el alto rendimiento del modelo contra las exploits de origen humano ayuda a apoyar la integración segura en herramientas internas.

    En estos roles, el posicionamiento de GPT-4.1 como un modelo optimizado para mayor claridad, cumplimiento y eficiencia de implementación lo convierte en una opción convincente para empresas medianas que buscan equilibrar el rendimiento con las demandas operativas.

    Un nuevo paso adelante

    Mientras que GPT-4.5 representaba un hito de escala en el desarrollo del modelo, GPT-4.1 se centra en la utilidad. No es el más caro o el más multimodal, pero ofrece ganancias significativas en áreas que importan para las empresas: precisión, eficiencia de implementación y costo.

    Este reposicionamiento refleja una tendencia de la industria más amplia, alejada de la construcción de los modelos más grandes a cualquier costo y hacia los modelos capaces más accesibles y adaptables. GPT-4.1 cumple con esa necesidad, ofreciendo una herramienta flexible y lista para la producción para equipos que intentan integrar la IA más profundamente en sus operaciones comerciales.

    A medida que OpenAI continúa evolucionando sus ofertas de modelos, GPT-4.1 representa un paso adelante en la democratización de IA avanzada para entornos empresariales. Para la capacidad de equilibrio de los tomadores de decisiones con el ROI, ofrece un camino más claro hacia el despliegue sin sacrificar el rendimiento o la seguridad.

    Continue Reading

    Trending