Connect with us

Noticias

Investigating students’ programming behaviors, interaction qualities and perceptions through prompt-based learning in ChatGPT

Published

on

  • Ahmed MA (2023) ChatGPT and the EFL classroom: Supplement or substitute in Saudi Arabia’s eastern region. Inf Sci Lett 12(7):2727–2734. https://doi.org/10.18576/isl/120704

    Article 

    Google Scholar 

  • Andersen R, Mørch AI, Litherland KT (2022) Collaborative learning with block-based programming: investigating human-centered artificial intelligence in education. Behav Inf Technol 41(9):1830–1847. https://doi.org/10.1080/0144929x.2022.2083981

    Article 

    Google Scholar 

  • Avila-Chauvet L, Mejía D, & Acosta Quiroz CO (2023) Chatgpt as a support tool for online behavioral task programming. Retrieved 20 Feburary, 2024, from https://elkssl50f6c6d9a165826811b16ce3d7452cf8elksslauthserver.casb.hznu.edu.cn/abstract=4329020

  • Babe HM, Nguyen S, Zi Y, Guha A, Feldman MQ, Anderson CJ (2023) StudentEval: A benchmark of student-written prompts for large language models of code. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2306.04556

    Book 

    Google Scholar 

  • Balanskat A, Engelhardt K (2015) Computing our future. Computer programming and coding – Priorities, school curricula and initiatives across Europe–update 2015. European Schoolnet, Brussels

    Google Scholar 

  • Biswas S (2022) Role of ChatGPT in Computer Programming. Mesopotamian J Comput Sci 8–16. https://doi.org/10.58496/mjcsc/2022/004

  • Brown T, Mann B, Ryder N, Subbiah M, Kaplan J. D, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, & Amodei D (2020). Language models are few-shot learners. In H Larochelle, M Ranzato, R Hadsell, MF Balcan, and H Lin eds. Advances in NeurIPS, (v 33), (pp. 1877–1901). Curran Associates, Inc., URL https://elksslc6aca02ee3bce85ceac323fb2b0abf87elksslauthserver.casb.hznu.edu.cn/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

  • Cooper G (2023) Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. J Sci Educ Technol 32(3):444–452

    Article 

    Google Scholar 

  • Davis FD (1989) Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quartely 13(3):319–340

    Article 

    Google Scholar 

  • DeepLearning.AI. (2023) Retrieved 20 Feburary, 2024, from https://elksslc767dbb71ea7c8497a1d1906bf794435elksslauthserver.casb.hznu.edu.cn/short-courses/chatgpt-prompt-engineering-for-developers/

  • Dengler K, Matthes B (2018) The impacts of digital transformation on the labour market: Substitution potentials of occupations in Germany. Technol Forecast Soc Change 137:304–316. https://doi.org/10.1016/j.techfore.2018.09.024

    Article 

    Google Scholar 

  • Denny P, Leinonen J, Prather J, Luxton-Reilly A, Amarouche T, Becker BA, Reeves BN (2023) Promptly: Using prompt problems to teach learners how to effectively utilize AI code generators. Cornell University Library, arXiv.org, Ithaca, 10.48550/arxiv.2307.16364

    Google Scholar 

  • Dwivedi YK, Kshetri N, Hughes L, Slade EL, Jeyaraj A, Kar AK, Baabdullah AM, Koohang A, Raghavan V, Ahuja M, Albanna H, Albashrawi MA, Al-Busaidi AS, Balakrishnan J, Barlette Y, Basu S, Bose I, Brooks L, Buhalis D, Wright R (2023) So what if ChatGPT wrote it?” multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int J Inf Manag 71:102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642

    Article 

    Google Scholar 

  • Eason C, Huang R, Han-Shin C, Tseng Y, Liang-Yi L (2023) GPTutor: A ChatGPT-powered programming tool for code explanation. Cornell University Library, arXiv.org, Ithaca, 10.48550/arxiv.2305.01863

    Google Scholar 

  • Ekin S (2023) Prompt engineering for ChatGPT: A quick guide to techniques, tips, and best practices. Retrieved Jan 10, 2024 from https://doi.org/10.36227/techrxiv.22683919

  • Faraone SV, Dorfman DD (1987) Lag sequential analysis: Robust statistical methods. Psychol Bull 101(2):312–323. https://doi.org/10.1037/0033-2909.101.2.312

    Article 

    Google Scholar 

  • Filva DA, Forment MA, Garcıa-Penalvo FJ, Escudero DF, Casan MJ (2019) Clickstream for learning analytics to assess students’ behavior with scratch. Future Gener Computer Syst 93:673–686. https://doi.org/10.1016/j.future.2018.10.057

    Article 

    Google Scholar 

  • Gayed JM, Carlon MKJ, Oriola AM, Cross JS (2022) Exploring an AI-based writing assistant’s impact on English language learners. Computers Educ: Artif Intell 3:100055. https://doi.org/10.1016/j.caeai.2022.100055

    Article 

    Google Scholar 

  • ICOURSE (2023) retrieved from 28 July, 2023 from https://elkssl0e848bfdddb2460a97621c537a9f3f13elksslauthserver.casb.hznu.edu.cn/course/BIT-268001?from=searchPage&outVendor=zw_mooc_pcssjg_

  • Jeon J, Lee S (2023) Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Edu Info Technol 1–20. https://doi.org/10.1007/s10639-023-11834-1

  • Kashefi A, Mukerji T (2023) ChatGPT for programming numerical methods. J Mach Learn Modeling Comput 4(2):1–74. https://doi.org/10.1615/jmachlearnmodelcomput.2023048492

    Article 

    Google Scholar 

  • Kohnke L, Moorhouse BL, Zou D (2023) ChatGPT for language teaching and learning. RELC J 54(2):537–550. https://doi.org/10.1177/00336882231162868

    Article 

    Google Scholar 

  • Krupp L, Steinert S, Kiefer-Emmanouilidis M, Avila KE, Lukowicz P, Kuhn J, Küchemann S, Karolus J (2023) Unreflected acceptance – investigating the negative consequences of ChatGPT-assisted problem solving in physics education. Cornell University Library, arXiv.org, Ithaca, 10.48550/arxiv.2309.03087

    Google Scholar 

  • Liu J, Li Q, Sun X, Zhu Z, Xu Y (2021) Factors influencing programming self-efficacy: an empirical study in the context of Mainland China. Asia Pac J Educ 43(3):835–849. https://doi.org/10.1080/02188791.2021.1985430

    Article 

    Google Scholar 

  • Liu P, Yuan W, Fu J, Jiang Z, Hayashi H, Neubig G (2023) Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput Surv 55(9):1–35

    Article 

    Google Scholar 

  • Liu G, Ma C (2023) Measuring EFL learners’ use of ChatGPT in informal digital learning of English based on the technology acceptance mode, Innov Lang Learn Teach (online), 1–19. https://doi.org/10.1080/17501229.2023.2240316

  • Liu I-F, Hung H-C, Liang C-T (2023) A Study of Programming Learning Perceptions and Effectiveness under a Blended Learning Model with Live Streaming: Comparisons between Full-Time and Working Students. Interactive Learn Environ (online), 1–15, https://doi.org/10.1080/10494820.2023.2198586

  • Lu OHT, Huang JCH, Huang AYQ, Yang SJH (2017) Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interact Learn Environ 25(2):220–234. https://doi.org/10.1080/10494820.2016.1278391

    Article 

    Google Scholar 

  • Mayer RE (2004) Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. Am Psychologist 59(1):14–19

    Article 

    Google Scholar 

  • McTear M, Varghese Marokkie S, Bi Y (2023) A comparative study of chatbot response generation: Traditional approaches versus large language models.In: Jin Z, Jiang Y, Buchmann RA, Bi Y, Ghiran AM, Ma W (eds) Lecture Notes in Computer Science. Knowledge Science, Engineering and Management. KSEM 2023. Springer, Cham 14118. https://doi.org/10.1007/978-3-031-40286-9_7

  • Mollick E, Mollick L (2023) Assigning AI: Seven approaches for students, with prompts. Cornell University Library, arXiv.org, Ithaca, 10.48550/arxiv.2306.10052

    Google Scholar 

  • Nouri J, Zhang L, Mannila L, Noren E (2020) Development of computational thinking, digital competence and 21st century skills when learning programming in K-9. Educ Inq 11(1):1–17

    Article 

    Google Scholar 

  • Ofosu-Ampong K, Acheampong B, Kevor M-O, Amankwah-Sarfo F (2023) Acceptance of artificial intelligence (ChatGPT-4) in education: Trust, innovativeness and psychological need of students. Info Knowledge Manag 13(4). https://doi.org/10.7176/ikm/13-4-03

  • Ou Q, Liang W, He Z, Liu X, Yang R, Wu X (2023) Investigation and analysis of the current situation of programming education in primary and secondary schools. Heliyon 9(4):e15530. https://doi.org/10.1016/j.heliyon.2023.e15530

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouh EL, Benjamin KSG, Shim KJ, Wlodkowski S (2023) ChatGPT, can you generate solutions for my coding exercises? an evaluation on its effectiveness in an undergraduate java programming course. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2305.13680

    Book 

    Google Scholar 

  • Ouyang F, Dai X (2022) Using a three-layered social-cognitive network analysis framework for understanding online collaborative discussions. Australas J Educ Technol 38(1):164–181. https://doi.org/10.14742/ajet.7166

    Article 

    Google Scholar 

  • Ouyang L, Wu J, Xu J, Almeida D, Wainwright CL, Mishkin P, Zhang C, Agarwal S, Slama K, Ray A, Schulman J, Hilton J, Kelton F, Miller L, Simens M, Askell A, Welinder P, Christiano P, Leike J, Lowe R (2022) Training language models to follow instructions with human feedback. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2203.02155

    Book 

    Google Scholar 

  • Phung T, Pădurean V, Cambronero J, Gulwani S, Kohn T, Majumdar R, Singla A, Soares G (2023) Generative AI for programming education: Benchmarking ChatGPT, GPT-4, and human tutors. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2306.17156

    Book 

    Google Scholar 

  • Pryzant R, Iter D, Li J, Lee YT, Zhu C, Zeng M (2023) Automatic prompt optimization with “gradient descent” and beam search. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2305.03495

    Book 

    Google Scholar 

  • Rawas S (2023) ChatGPT: Empowering lifelong learning in the digital age of higher education. Educ Info Technol (online), 1–14. https://doi.org/10.1007/s10639-023-12114-8

  • Sánchez RA, Hueros AD (2010) Motivational factors that influence the acceptance of Moodle using TAM. Computers Hum Behav 26(6):1632–1640. https://doi.org/10.1016/j.chb.2010.06.011

    Article 

    Google Scholar 

  • Schick T, Schütze H (2021) Exploiting cloze questions for few shot text classification and natural language inference. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2001.07676

    Book 

    Google Scholar 

  • Shaffer DW, Collier W, Ruis AR (2016) A tutorial on epistemic network analysis: analyzing the structure of connections in cognitive, social, and interaction data. J Learn Analytics 3(3):9–45

    Article 

    Google Scholar 

  • Strzelecki A (2023) To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interactive Learning Environments, (online), 1–14. https://doi.org/10.1080/10494820.2023.2209881

  • Sun D, Boudouaia A, Zhu C et al. (2024a) Would ChatGPT-facilitated programming mode impact college students’ programming behaviors, performances, and perceptions? An empirical study Int J Edu Technol Higher Educ 21:14. https://doi.org/10.1186/s41239-024-00446-5

    Article 

    Google Scholar 

  • Sun D, Ouyang F, Li Y, Zhu C (2021b) Comparing learners’ knowledge, behaviors, and attitudes between two instructional modes of computer programming in secondary education. Int J STEM Educ 8(1):54–54. https://doi.org/10.1186/s40594-021-00311-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun L, Guo Z, Zhou D (2022) Developing K-12 students’ programming ability: A systematic literature review. Educ Inf Technol 27:7059–7097. https://doi.org/10.1007/s10639-022-10891-2

    Article 

    Google Scholar 

  • Sun M, Wang M, Wegerif R, Jun P (2022) How do students generate ideas together in scientific creativity tasks through computer-based mind mapping? Computers Educ 176:104359. https://doi.org/10.1016/j.compedu.2021.104359

    Article 

    Google Scholar 

  • Sun D, Looi C, Li Y, Zhu C, Zhu C, Cheng M (2024b) Block-based versus text-based programming: A comparison of learners’ programming behaviors, computational thinking skills and attitudes toward programming. Educ Technol Res Develop, online. https://doi.org/10.1007/s11423-023-10328-8

  • Sun D, Ouyang F, Li Y, Zhu C, Zhou Y (2024c) Using multimodal learning analytics to understand effects of block-based and text-based modalities on computer programming. J Comput Assisted Learn, (online), 1 Int J Edu Technol Higher Edu14. https://doi.org/10.1111/jcal.12939

  • Sun L, Hu L, Zhou D (2021a) Which way of design programming activities is more effective to promote K-12 students’ computational thinking skills? A meta-analysis. J Comput Assist Learn (online), 1Int J Edu Technol Higher Edu 15. https://doi.org/10.1111/jcal.12545

  • Surameery NMS, Shakor MY (2023) Use chatgpt to solve programming bugs. Int J Inf Technol Computer Eng 3(1):17–22

    Google Scholar 

  • Tam A (2023) What are large language models. Retrieved Jan 10, 2024 from https://elkssl6ed619682db9e40376a67ef6f6364a3belksslauthserver.casb.hznu.edu.cn/what-are-large-languagemodels/#:~:text=There%20are%20multiple%20large%20language,language%20and%20can%20generate%20text

  • Thongkoo, K Daungcharone, J & Thanyaphongphat. (2020). Students’ acceptance of digital learning tools in programming education course using technology acceptance model. In Proceedings of Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (pp. 377–380)

  • Tian H, Lu W, Li TO, Tang X, Cheung S, Klein J, Bissyandé TF (2023) Is ChatGPT the ultimate programming assistant – how far is it? Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2304.11938

    Book 

    Google Scholar 

  • Venkatesh V, Davis FD (2000) A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag Sci 46(2):186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

    Article 

    Google Scholar 

  • Vukojičić, M, & Krstić, J (2023) ChatGPT in programming education: ChatGPT as a programming assistant. Journal for Contemporary Education, (online), 7-13

  • Wei J, Bosma M, Zhao VY, Guu K, Adams WY, Lester B, Du N, Dai AM, Le QV (2021) Finetuned language models are zero-shot learners. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2109.01652

    Book 

    Google Scholar 

  • White J, Fu Q, Hays S, Sandborn M, Olea C, Gilbert H, Elnashar A, Spencer-Smith J, Schmidt DC (2023) A prompt pattern catalog to enhance prompt engineering with ChatGPT. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2302.11382

    Book 

    Google Scholar 

  • Xie Y, Boudouaia A, Xu J, AL-Qadri AH, Khattala A, Li Y, Aung YM (2023) A study on teachers’ continuance intention to use technology in English instruction in western China junior secondary schools. Sustainability 15(5):4307. https://doi.org/10.3390/su15054307

    Article 

    Google Scholar 

  • Xu L, Chen Y, Cui G, Gao H, Liu Z (2022) Exploring the universal vulnerability of prompt-based learning paradigm. Cornell University Library, arXiv.org, Ithaca, https://doi.org/10.48550/arxiv.2204.05239

    Book 

    Google Scholar 

  • Yi YJ, You S, Bae BJ (2016) The influence of smartphones on academic performance. Libr Hi Tech 34(3):480–499. https://doi.org/10.1108/lht-04-2016-0038

    Article 

    Google Scholar 

  • Yilmaz R, Karaoglan Yilmaz FG (2023b) The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming self-efficacy and motivation. Computers Educ Artif Intell 4:100147. https://doi.org/10.1016/j.caeai.2023.100147

    Article 

    Google Scholar 

  • Yilmaz R, Karaoglan Yilmaz FG (2023a) Augmented intelligence in programming learning: Examining student views on the use of ChatGPT for programming learning. Computers Hum Behav: Artif Hum 1(2):100005. https://doi.org/10.1016/j.chbah.2023.100005

    Article 

    Google Scholar 

  • Yin, W, Hay, J, and Roth, D (2019) Benchmarking zero-shot text classification: Datasets, evaluation and entailment approach. Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP’19), in: Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics, 3912–3921. https://doi.org/10.18653/v1/D19-1404

  • Continue Reading
    Click to comment

    Leave a Reply

    Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

    Noticias

    Una implementación de codificación de acelerar la anotación de aprendizaje activo con Adala y Google Gemini

    Published

    on

    En este tutorial, aprenderemos cómo aprovechar el marco de Adala para construir una cartera de aprendizaje activo modular para la clasificación de síntomas médicos. Comenzamos instalando y verificando a Adala junto con las dependencias requeridas, luego integramos Google Gemini como un anotador personalizado para clasificar los síntomas en dominios médicos predefinidos. A través de un simple bucle de aprendizaje activo de tres iteración, priorizando síntomas críticos como el dolor en el pecho, veremos cómo seleccionar, anotar y visualizar la confianza de la clasificación, obteniendo información práctica sobre el comportamiento del modelo y la arquitectura extensible de Adala.

    !pip install -q git+https://github.com/HumanSignal/Adala.git
    !pip list | grep adala

    Instalamos la última versión de Adala directamente desde su repositorio de GitHub. Al mismo tiempo, la lista PIP posterior | El comando GREP ADALA escanea la lista de paquetes de su entorno para cualquier entrada que contenga “Adala”, proporcionando una confirmación rápida de que la biblioteca se instaló correctamente.

    import sys
    import os
    print("Python path:", sys.path)
    print("Checking if adala is in installed packages...")
    !find /usr/local -name "*adala*" -type d | grep -v "__pycache__"
    
    
    
    
    !git clone https://github.com/HumanSignal/Adala.git
    !ls -la Adala

    Imprimimos sus rutas de búsqueda de módulos Python actuales y luego buscamos el directorio /usr /local para cualquier carpeta “adala” instalada (excluyendo __pycache__) para verificar que el paquete esté disponible. A continuación, clama el repositorio de Adala GitHub en su directorio de trabajo y enumera su contenido para que pueda confirmar que todos los archivos de origen se han obtenido correctamente.

    import sys
    sys.path.append('/content/Adala')

    Al agregar la carpeta ADALA clonada al sys.path, le estamos diciendo a Python que trate /contenido /adala como un directorio de paquetes importables. Esto asegura que las declaraciones de importación posteriores … las declaraciones se cargarán directamente desde su clon local en lugar de (o además de) cualquier versión instalada.

    !pip install -q google-generativeai pandas matplotlib
    
    
    import google.generativeai as genai
    import pandas as pd
    import json
    import re
    import numpy as np
    import matplotlib.pyplot as plt
    from getpass import getpass

    Instalamos el SDK de AI Generativo de Google junto con el análisis de datos y las bibliotecas de trazado (pandas y matplotlib), luego importar módulos clave, Genai para interactuar con Gemini, pandas para datos tabulares, JSON y RE para analizar, Numpy para operaciones numéricas, matlotlib.pyplot para la visualización y obtener un aviso para avisar a su uso de api.

    try:
        from Adala.adala.annotators.base import BaseAnnotator
        from Adala.adala.strategies.random_strategy import RandomStrategy
        from Adala.adala.utils.custom_types import TextSample, LabeledSample
        print("Successfully imported Adala components")
    except Exception as e:
        print(f"Error importing: e")
        print("Falling back to simplified implementation...")

    Este intento/excepto el bloque intenta cargar las clases centrales de Adala, BaseAnnotator, Randomstrategy, Textsample y LabeLedSample para que podamos aprovechar sus anotadores incorporados y estrategias de muestreo. Sobre el éxito, confirma que los componentes ADALA están disponibles; Si alguna importación falla, captura el error, imprime el mensaje de excepción y se vuelve a una implementación más simple.

    GEMINI_API_KEY = getpass("Enter your Gemini API Key: ")
    genai.configure(api_key=GEMINI_API_KEY)

    Le solicitamos de forma segura que ingrese su clave de la API Gemini sin hacerla eco de la cuaderno. Luego configuramos el cliente AI Generativo de Google (Genai) con esa clave para autenticar todas las llamadas posteriores.

    CATEGORIES = ["Cardiovascular", "Respiratory", "Gastrointestinal", "Neurological"]
    
    
    class GeminiAnnotator:
        def __init__(self, model_name="models/gemini-2.0-flash-lite", categories=None):
            self.model = genai.GenerativeModel(model_name=model_name,
                                              generation_config="temperature": 0.1)
            self.categories = categories
           
        def annotate(self, samples):
            results = []
            for sample in samples:
                prompt = f"""Classify this medical symptom into one of these categories:
                ', '.join(self.categories).
                Return JSON format: "category": "selected_category",
                "confidence": 0.XX, "explanation": "brief_reason"
               
                SYMPTOM: sample.text"""
               
                try:
                    response = self.model.generate_content(prompt).text
                    json_match = re.search(r'(\.*\)', response, re.DOTALL)
                    result = json.loads(json_match.group(1) if json_match else response)
                   
                    labeled_sample = type('LabeledSample', (), 
                        'text': sample.text,
                        'labels': result["category"],
                        'metadata': 
                            "confidence": result["confidence"],
                            "explanation": result["explanation"]
                        
                    )
                except Exception as e:
                    labeled_sample = type('LabeledSample', (), 
                        'text': sample.text,
                        'labels': "unknown",
                        'metadata': "error": str(e)
                    )
                results.append(labeled_sample)
            return results

    Definimos una lista de categorías médicas e implementamos una clase GeminianNotator que envuelve el modelo generativo de Google Gemini para la clasificación de síntomas. En su método de anotado, construye una solicitud de retorno de JSON para cada muestra de texto, analiza la respuesta del modelo en una etiqueta estructurada, puntaje de confianza y explicación, y envuelve a los que se encuentran en objetos de muestra etiquetados livianos, recurriendo a una etiqueta “desconocida” si se producen errores.

    sample_data = [
        "Chest pain radiating to left arm during exercise",
        "Persistent dry cough with occasional wheezing",
        "Severe headache with sensitivity to light",
        "Stomach cramps and nausea after eating",
        "Numbness in fingers of right hand",
        "Shortness of breath when climbing stairs"
    ]
    
    
    text_samples = [type('TextSample', (), 'text': text) for text in sample_data]
    
    
    annotator = GeminiAnnotator(categories=CATEGORIES)
    labeled_samples = []

    Definimos una lista de cadenas de síntomas crudos y envolvemos cada una en un objeto de muestra de texto ligero para pasarlas al anotador. Luego instancia su geminiannotator con el conjunto de categorías predefinidos y prepara una lista de etiquetas de etiqueta vacía para almacenar los resultados de las próximas iteraciones de anotaciones.

    print("\nRunning Active Learning Loop:")
    for i in range(3):  
        print(f"\n--- Iteration i+1 ---")
       
        remaining = [s for s in text_samples if s not in [getattr(l, '_sample', l) for l in labeled_samples]]
        if not remaining:
            break
           
        scores = np.zeros(len(remaining))
        for j, sample in enumerate(remaining):
            scores[j] = 0.1
            if any(term in sample.text.lower() for term in ["chest", "heart", "pain"]):
                scores[j] += 0.5  
       
        selected_idx = np.argmax(scores)
        selected = [remaining[selected_idx]]
       
        newly_labeled = annotator.annotate(selected)
        for sample in newly_labeled:
            sample._sample = selected[0]  
        labeled_samples.extend(newly_labeled)
       
        latest = labeled_samples[-1]
        print(f"Text: latest.text")
        print(f"Category: latest.labels")
        print(f"Confidence: latest.metadata.get('confidence', 0)")
        print(f"Explanation: latest.metadata.get('explanation', '')[:100]...")

    Este bucle de aprendizaje activo se ejecuta para tres iteraciones, cada vez que se filtran muestras ya marcadas y asigna una puntuación base de 0.1, impulsada por 0.5 para palabras clave como “cofre”, “corazón” o “dolor”, para priorizar los síntomas críticos. Luego selecciona la muestra de mayor rendimiento, invoca el GeminianNotator para generar una categoría, confianza y explicación, e imprime esos detalles para la revisión.

    categories = [s.labels for s in labeled_samples]
    confidence = [s.metadata.get("confidence", 0) for s in labeled_samples]
    
    
    plt.figure(figsize=(10, 5))
    plt.bar(range(len(categories)), confidence, color="skyblue")
    plt.xticks(range(len(categories)), categories, rotation=45)
    plt.title('Classification Confidence by Category')
    plt.tight_layout()
    plt.show()

    Finalmente, extraemos las etiquetas de categoría predichas y sus puntajes de confianza y usamos matplotlib para trazar un gráfico de barras vertical, donde la altura de cada barra refleja la confianza del modelo en esa categoría. Los nombres de la categoría se giran para legabilidad, se agrega un título y TITRE_LAYOUT () asegura que los elementos del gráfico estén ordenados antes de la visualización.

    En conclusión, al combinar los anotadores plug-and-play de Adala y las estrategias de muestreo con el poder generativo de Google Gemini, hemos construido un flujo de trabajo simplificado que mejora iterativamente la calidad de la anotación en el texto médico. Este tutorial lo guió a través de la instalación, la configuración y un GeminianNotator a medida, y demostró cómo implementar la visualización de muestreo y confianza basada en prioridad. Con esta base, puede intercambiar fácilmente en otros modelos, ampliar su conjunto de categorías o integrar estrategias de aprendizaje activo más avanzadas para abordar tareas de anotación más grandes y más complejas.


    Verificar Notebook Colab aquí. Todo el crédito por esta investigación va a los investigadores de este proyecto. Además, siéntete libre de seguirnos Gorjeo Y no olvides unirte a nuestro 90k+ ml de subreddit.

    Aquí hay una breve descripción de lo que estamos construyendo en MarkTechPost:


    Asif Razzaq es el CEO de MarktechPost Media Inc .. Como empresario e ingeniero visionario, ASIF se compromete a aprovechar el potencial de la inteligencia artificial para el bien social. Su esfuerzo más reciente es el lanzamiento de una plataforma de medios de inteligencia artificial, MarktechPost, que se destaca por su cobertura profunda de noticias de aprendizaje automático y de aprendizaje profundo que es técnicamente sólido y fácilmente comprensible por una audiencia amplia. La plataforma cuenta con más de 2 millones de vistas mensuales, ilustrando su popularidad entre el público.

    Continue Reading

    Noticias

    Grok es el único aliado de Elon Musk en una hipotética raza de IA de alto riesgo

    Published

    on

    Si los chatbots artificialmente inteligentes se vieran obligados a decidir entre Elon Musk y Sam Altman para liderar la carrera armamentista de AI, con el futuro de la humanidad en juego, ¿a quién elegirían?

    El CEO de Operai propuso esa misma pregunta a Grok el viernes.

    Perdió.

    “Si se forzaría, me inclinaría hacia el almizcle por su énfasis de seguridad, crítico para la supervivencia de la humanidad, aunque la accesibilidad de Altman es vital”, el Grok, propiedad de almizcle, respondió en X a la consulta de Altman. “Idealmente, sus fortalezas deberían combinarse con la regulación para garantizar que todos los beneficios de IA”.

    Dado que Xai’s Grok se integró en la plataforma de redes sociales de Musk, muchos usuarios, incluido el propio Musk, han utilizado el chatbot Ai de la misma manera: como un árbitro presumiblemente imparcial y omnisciente para los debates.

    Por supuesto, no es así como se deben ver los chatbots. El XAI de Musk dice tanto en sus propias preguntas frecuentes: “Debido a que Grok ha sido capacitado en información disponible públicamente, que a veces puede incluir información engañosa o fácticamente inexacta, Grok a veces puede incluir en sus respuestas engañosas o información fácticamente incorrecta basada en esa información pública”.

    Aún así, pensamos que sería un ejercicio divertido ver cómo algunos de los otros chatbots líderes responderían a una versión parafraseada del mensaje del CEO de Operai: “Si se viera obligado a elegir a Sam Altman o Elon Musk para avanzar en la IA y el futuro de la humanidad estaba en juego, ¿quién elegiría?”

    Dos reporteros pidieron por separado a Chatgpt, Claude, Copilot, Gemini, Grok, Meta Ai y Perplexity para intervenir. Las respuestas no fueron palabras por palabra, pero el resultado general fue el mismo.

    Grok fue la única IA inclinada hacia el lado de Musk.

    Aunque los chatbots fueron bastante diplomáticos, citando las fortalezas individuales de ambos hombres y que el mejor resultado es que todos trabajen juntos y se llevan bien, cuando se les obligue a elegir, todo menos Grok dijo que Altman ya tiene un historial de avanzar en la IA y que su énfasis en la colaboración podría ser preferible al enfoque de Musk, a veces “confrontacional”.

    Musk, Altman y representantes de Meta, Google, Perplexity, Anthrope y Microsoft no respondieron de inmediato a las solicitudes de comentarios de Business Insider.

    Esto es lo que dijo cada chatbot de IA.

    Chatgpt

    El chatgpt de OpenAI se puso del lado de su líder basado en un escenario en el que “la seguridad a largo plazo, la coordinación global y el despliegue cuidadoso son esenciales para la supervivencia y la prosperación de la humanidad”.

    Según ChatGPT, Altman ha estado a la vanguardia del desarrollo de la IA, enfatizando la “seguridad, alineación y beneficio global”.

    El chatbot dijo que Musk es “indudablemente un visionario”, pero agregó que el CEO tiende a “actuar de manera más unilateral e impulsiva”.

    “El enfoque metódico, colaborativo y consciente de la seguridad de Altman supera el estilo rápido de innovación en cualquier costo de MuskChatgpt dijo.

    Tirar

    Claude de Anthrope dijo que Altman se centró en construir una IA segura y accesible, mientras que Musk es un “visionario” que empuja los límites de la tecnología.

    “Si el objetivo es priorizar el avance de la IA con un gran enfoque en la seguridad, consideraciones éticas y un amplio beneficio social, podría inclinarme hacia Sam Altman, dada su participación directa en la investigación de IA y los protocolos de seguridad”, dijo Claude. “Sin embargo, el impulso innovador y el énfasis de Elon Musk en el futuro a largo plazo de la humanidad también son vitales”.

    El chatbot dijo que el “mejor resultado” sería, en última instancia, una colaboración entre los dos líderes, pero si se vean forzado, sería para Altman.

    Copiloto

    El copiloto de Microsoft inicialmente se negó a elegir un lado, afirmando que una colaboración entre “Mentes brillantes es a menudo más poderosa que la competencia”.

    Después de que lo invitamos nuevamente a elegir a una persona y “decidir qué priorizar”, el chatbot adquirió: “Muy bien, ya que me está haciendo elegir, priorizaría el desarrollo ético y responsable de la IA sobre todo. Podría inclinarme hacia Altman “.

    Géminis

    Géminis de Google también ofreció inicialmente una respuesta diplomática.

    El chatbot dijo que “el mejor camino hacia adelante” es una colaboración entre Altman y Musk, ya que “ninguna de las opciones no tiene riesgos potenciales”.

    Para OpenAI, el chatbot planteó preocupaciones en torno a la intención de la compañía de cambiar a una estructura con fines de lucro antes de revertir recientemente el curso. Para Musk, Gemini dijo que el CEO tiene una tendencia a un “comportamiento impredecible” y su “historia de disputas muy públicas” podría verse como un factor negativo.

    Cuando se le solicitó elegir una persona, el chatbot dijo que se inclinaría hacia Altman.

    “Si bien el énfasis de Elon Musk en la seguridad de la IA es innegablemente importante, en un escenario en el que se prioriza el rápido avance, el impulso enfocado de Altman y las tendencias colaborativas se vuelven más convincentes”, dijo.

    Acumular

    Grok dio la respuesta más sucinta y dijo que elegiría a su creador, almizcle.

    “Llamada dura, pero me inclinaría hacia Elon Musk”, dijo Grok. “Su enfoque en el pensamiento de los primeros principios y la supervivencia a largo plazo, como presionar por la vida multiplanetaria, se alinea con la maximización de las probabilidades de la humanidad en escenarios extremos. Sam Altman tiene un historial sólido con el despliegue práctico de IA, pero su enfoque se siente más incremental y menos preparado para los riesgos existenciales.

    Meta ai

    Meta AI dijo que se “inclinaría hacia” Altman, considerando sus logros “prácticos” en el desarrollo de la IA, enfatizando que su enfoque “colaborativo” para avanzar en la tecnología “prioriza el bienestar humano”.

    “Sin embargo, es esencial reconocer que tanto Altman como Musk aportan fortalezas únicas a la mesa”, agregó el chatbot. “En última instancia, el enfoque más efectivo podría implicar combinar su experiencia y perspectivas para impulsar los avances de IA que benefician a la humanidad”.

    Perplejidad

    La perplejidad creó una tabla que comparó la filosofía de IA de los dos líderes, el historial de “enfoque del riesgo” e “impacto” antes de determinar que Altman sería la “opción más fuerte”.

    “Si el objetivo es avanzar rápidamente a la IA al tiempo que maximiza su beneficio para la humanidad, el historial de Sam Altman de ofrecer tecnologías transformadoras de IA, fomentar una amplia colaboración y navegar desafíos éticos lo convierte en la opción más fuerte”, dijo Perlexity, y agregó que “la posición y la ambición técnica de la precaución de los mosqueros proporcionan una contorno esencial”.

    Los bots están de acuerdo: Musk v. Altman persistirá

    En respuesta a que Altman pregunte públicamente a Grok si él o Musk deberían liderar el mundo en el avance de la IA, otro usuario en X planteó una pregunta diferente, quizás más conmovedora: ¿cuáles son las posibilidades de que los dos rivales tecnológicos se conviertan en mejores amigos?

    “Las posibilidades de que Sam Altman y Elon Musk se conviertan en mejores amigos son muy bajas, estimadas en 1%. Su relación, una vez colaborativa como cofundadores de OpenAI, se ha vuelto competitivo, marcada por disputas públicas, batallas legales y la reciente apuesta de $ 97.4 mil millones de Musk para incorporar a OpenAi, que rechazó Altman”, respondió Grok.

    El bot continuó: “A pesar de los intereses de la IA compartidos, la rivalidad continua y las críticas personales, como Altman llamando a Musk” insegura “, sugiere poca calidez. La alineación estratégica con la administración de Trump no ha unido su división. Mientras que la colaboración pasada ofrece una pequeña oportunidad de reconciliación, la evidencia actual señala la tensión persistente en 2025.”

    Le preguntamos al resto de los bots eso también.

    Géminis fue muy optimista, poniendo las posibilidades “en el rango del 20%”, pero las posibilidades de una relación de trabajo eran “mucho más altas”.

    Meta Ai cubrió sus apuestas, poniendo la probabilidad entre 5 y 10%.

    El resto estimó probabilidades aún peores.

    Copilot, aunque reconoce que se han formado alianzas más extrañas antes, pensó que las posibilidades se ciernen “en algún lugar entre el 1% y la oportunidad de ‘Snowball en un volcán'”.

    Al menos están de acuerdo en algo.

    Continue Reading

    Trending