Noticias
Segundo cumpleaños de ChatGPT: ¿Cómo será la IA (y el mundo) dentro de otros dos años?
Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder en la industria. Más información
Han pasado poco más de dos años desde la primera aparición de ChatGPT el 30 de noviembre de 2022. En el momento de su lanzamiento, OpenAI vio a ChatGPT como un proyecto de demostración diseñado para aprender cómo las personas usarían la herramienta y el gran GPT 3.5 subyacente. modelo de lenguaje (LLM).
Un LLM es un modelo basado en la arquitectura transformadora introducida por primera vez por Google en 2017, que utiliza mecanismos de autoatención para procesar y generar texto similar a un humano en tareas como la comprensión del lenguaje natural. ¡Fue más que un proyecto de demostración exitoso! OpenAI quedó tan sorprendido como cualquiera por la rápida adopción de ChatGPT, que alcanzó los cien millones de usuarios en dos meses.
Aunque quizás no deberían haberse sorprendido tanto. El futurista Kevin Kelly, también cofundador de cableadoadvirtió en 2014 que “los planes de negocio de las próximas 10.000 nuevas empresas son fáciles de pronosticar: tome X y agregue IA. Esto es muy importante y ahora está aquí”.
Kelly dijo esto varios años antes de ChatGPT. Sin embargo, esto es exactamente lo que ha sucedido. Igualmente notable es su predicción en el mismo cableado artículo que: “Para 2024, el producto principal de Google no será la búsqueda sino la inteligencia artificial”. Se podría debatir si esto es cierto, pero podría serlo pronto. Gemini es el producto insignia de chat de IA de Google, pero la IA impregna su búsqueda y probablemente todos los demás productos, incluidos YouTube, TensorFlow y las funciones de IA en Google Workspace.
El bot escuchado en todo el mundo.
La precipitada avalancha de nuevas empresas de IA que Kelly previó realmente cobró impulso después del lanzamiento de ChatGPT. Podríamos llamarlo el momento del big bang de la IA o el robot escuchado en todo el mundo. E impulsó el campo de la IA generativa, la amplia categoría de LLM para texto y modelos de difusión para la creación de imágenes. Esto alcanzó la cima de la exageración, o lo que Gartner llama “el pico de las expectativas infladas” en 2023.
Es posible que el entusiasmo por 2023 haya disminuido, pero sólo un poco. Según algunas estimaciones, hay hasta 70.000 empresas de IA en todo el mundo, lo que representa un aumento del 100% desde 2017. Se trata de una verdadera explosión cámbrica de empresas que buscan usos novedosos para la tecnología de IA. La previsión de Kelly de 2014 sobre las nuevas empresas de IA resultó profética.
En todo caso, siguen fluyendo enormes inversiones de capital de riesgo hacia empresas emergentes que buscan aprovechar la IA. Los New York Times informó que los inversores invirtieron 27.100 millones de dólares en empresas emergentes de IA en EE. UU. solo en el segundo trimestre de 2024, “lo que representa casi la mitad de toda la financiación inicial de EE. UU. en ese período”. Statista agregó: “En los primeros nueve meses de 2024, las inversiones relacionadas con la IA representaron el 33% de las inversiones totales en empresas respaldadas por capital de riesgo con sede en los EE. UU. Eso representa un aumento del 14% en 2020 y podría aumentar aún más en los próximos años. ” El gran mercado potencial es un atractivo tanto para las empresas emergentes como para las empresas establecidas.
Una encuesta reciente del Instituto Reuters entre consumidores indicó que el uso individual de ChatGPT era bajo en seis países, incluidos EE. UU. y el Reino Unido. Solo el 1 % lo usaba a diario en Japón, aumentando al 2 % en Francia y el Reino Unido, y al 7 % en EE. UU. Esta lentitud La adopción podría atribuirse a varios factores, que van desde la falta de concienciación hasta las preocupaciones sobre la seguridad de la información personal. ¿Significa esto que se sobreestima el impacto de la IA? Difícilmente, ya que la mayoría de los encuestados esperaban que la IA genética tuviera un impacto significativo en todos los sectores de la sociedad en los próximos cinco años.
El sector empresarial cuenta una historia bastante diferente. Como informó VentureBeat, la firma de analistas de la industria GAI Insights estima que el 33% de las empresas tendrán aplicaciones de inteligencia artificial en producción el próximo año. Las empresas suelen tener casos de uso más claros, como mejorar el servicio al cliente, automatizar los flujos de trabajo y aumentar la toma de decisiones, lo que impulsa una adopción más rápida que entre los consumidores individuales. Por ejemplo, la industria de la salud está utilizando IA para capturar billetes y los servicios financieros están utilizando la tecnología para mejorar la detección de fraude. GAI informó además que la generación de IA es la principal prioridad presupuestaria para 2025 para los CIO y CTO.
¿Qué sigue? De la generación AI a los albores de la superinteligencia
El despliegue desigual de la IA genera dudas sobre lo que nos espera para su adopción en 2025 y más allá. Tanto el director ejecutivo de Anthropic, Dario Amodei, como el director ejecutivo de OpenAI, Sam Altman, sugieren que la inteligencia artificial general (AGI), o incluso la superinteligencia, podría aparecer en los próximos dos a diez años, remodelando potencialmente nuestro mundo. Se cree que la AGI es la capacidad de la IA para comprender, aprender y realizar cualquier tarea intelectual que pueda realizar un ser humano, emulando así las capacidades cognitivas humanas en una amplia gama de dominios.
Chispas de AGI en 2025
Según lo informado por VariedadAltman dijo que podríamos ver los primeros destellos de AGI ya en 2025. Probablemente estaba hablando de agentes de IA, en los que se puede asignar a un sistema de IA una tarea complicada y este utilizará de forma autónoma diferentes herramientas para completarla.
Por ejemplo, Anthropic introdujo recientemente una función de uso de computadoras que permite a los desarrolladores dirigir el chatbot Claude “para usar las computadoras como lo hacen las personas: mirando una pantalla, moviendo un cursor, haciendo clic en botones y escribiendo texto”. Esta característica permite a los desarrolladores delegar tareas a Claude, como programar reuniones, responder correos electrónicos o analizar datos, con el bot interactuando con las interfaces de la computadora como si fuera un usuario humano.
En una demostración, Anthropic mostró cómo Claude podría planificar de forma autónoma un viaje de un día interactuando con interfaces de computadora: una primera visión de cómo los agentes de IA pueden supervisar tareas complejas.
En septiembre, Salesforce dijo que “está marcando el comienzo de la tercera ola de la revolución de la IA, ayudando a las empresas a implementar agentes de IA junto con trabajadores humanos”. Ven a los agentes centrándose en tareas repetitivas y de menor valor, lo que libera a las personas para centrarse en prioridades más estratégicas. Estos agentes podrían permitir que los trabajadores humanos se centren en la innovación, la resolución de problemas complejos o la gestión de las relaciones con los clientes.
Con características como las capacidades de uso de computadoras de Anthropic y la integración de agentes de IA de Salesforce y otros, la aparición de agentes de IA se está convirtiendo en una de las innovaciones más esperadas en el campo. Según Gartner, el 33% de las aplicaciones de software empresarial incluirán IA agente para 2028, frente a menos del 1% en 2024, lo que permitirá que el 15% de las decisiones laborales diarias se tomen de forma autónoma.
Si bien las empresas pueden beneficiarse significativamente de la IA agente, el concepto de “inteligencia ambiental” sugiere una transformación aún más amplia, en la que las tecnologías interconectadas mejoran perfectamente la vida diaria.
En 2016, escribí en TechCrunch sobre la inteligencia ambiental, como una “interconexión digital para producir información y servicios que mejoren nuestras vidas. Esto es posible gracias a la combinación dinámica de plataformas informáticas móviles, nube y big data, redes neuronales y aprendizaje profundo que utilizan unidades de procesamiento de gráficos (GPU) para producir inteligencia artificial (IA)”.
En ese momento, dije que conectar estas tecnologías y cruzar los límites necesarios para brindar experiencias fluidas, transparentes y persistentes en contexto tomaría tiempo para lograrlo. Es justo decir que ocho años después, esta visión está a punto de hacerse realidad.
Los cinco niveles de AGI
Según la hoja de ruta de OpenAI, el viaje hacia AGI implica la progresión a través de sistemas cada vez más capaces, con agentes de IA (nivel 3 de 5) que marcan un salto significativo hacia la autonomía.
Altman afirmó que el impacto inicial de estos agentes será mínimo. Aunque eventualmente la AGI “será más intensa de lo que la gente piensa”. Esto sugiere que pronto deberíamos esperar cambios sustanciales que requerirán rápidos ajustes sociales para garantizar una integración justa y ética.
¿Cómo cambiarán los avances en AGI las industrias, las economías, la fuerza laboral y nuestra experiencia personal con la IA en los próximos años? Podemos suponer que el futuro a corto plazo impulsado por nuevos avances en la IA será a la vez emocionante y tumultuoso, y conducirá tanto a avances como a crisis.
Equilibrando avances y disrupciones
Los avances podrían abarcar el descubrimiento de fármacos mediante IA, la agricultura de precisión y robots humanoides prácticos. Si bien los avances prometen beneficios transformadores, el camino a seguir no está exento de riesgos. La rápida adopción de la IA también podría provocar perturbaciones importantes, en particular el desplazamiento de puestos de trabajo. Este desplazamiento podría ser grande, especialmente si la economía entra en recesión, cuando las empresas buscan reducir su nómina pero siguen siendo eficientes. Si esto ocurriera, es posible que se produzcan reacciones sociales contra la IA, incluidas protestas masivas.
A medida que la revolución de la IA avanza desde herramientas generativas hasta agentes autónomos y más, la humanidad se encuentra en la cúspide de una nueva era. ¿Estos avances elevarán el potencial humano o presentarán desafíos que aún no estamos preparados para enfrentar? Probablemente habrá ambas cosas. Con el tiempo, la IA no será solo parte de nuestras herramientas: se integrará perfectamente en el tejido de la vida misma, convirtiéndose en ambiente y remodelando la forma en que trabajamos, nos conectamos y experimentamos el mundo.
Gary Grossman es vicepresidente ejecutivo de práctica tecnológica en Edelman y líder global del Centro de Excelencia de IA de Edelman.
Tomadores de decisiones de datos
¡Bienvenido a la comunidad VentureBeat!
DataDecisionMakers es el lugar donde los expertos, incluidos los técnicos que trabajan con datos, pueden compartir conocimientos e innovación relacionados con los datos.
Si desea leer sobre ideas de vanguardia e información actualizada, mejores prácticas y el futuro de los datos y la tecnología de datos, únase a nosotros en DataDecisionMakers.
¡Incluso podrías considerar contribuir con un artículo propio!
Leer más de DataDecisionMakers
Noticias
Prueba de manejo del modelo Gemini-Exp-1206 de Google en análisis de datos y visualizaciones
Únase a nuestros boletines diarios y semanales para obtener las últimas actualizaciones y contenido exclusivo sobre la cobertura de IA líder en la industria. Más información
Uno de los últimos modelos experimentales de Google, Gemini-Exp-1206, muestra el potencial de aliviar uno de los aspectos más agotadores del trabajo de cualquier analista: lograr que sus datos y visualizaciones se sincronicen perfectamente y proporcionen una narrativa convincente, sin tener que trabajar toda la noche. .
Los analistas de inversiones, los banqueros junior y los miembros de equipos de consultoría que aspiran a puestos de socios asumen sus roles sabiendo que largas horas de trabajo, fines de semana y pasar toda la noche ocasionalmente podrían darles una ventaja interna en un ascenso.
Lo que consume gran parte de su tiempo es realizar análisis de datos avanzados y al mismo tiempo crear visualizaciones que refuercen una historia convincente. Lo que hace que esto sea más desafiante es que cada firma bancaria, fintech y consultora, como JP Morgan, McKinsey y PwC, tiene formatos y convenciones únicos para el análisis y visualización de datos.
VentureBeat entrevistó a miembros de equipos de proyectos internos cuyos empleadores habían contratado a estas empresas y las habían asignado al proyecto. Los empleados que trabajan en equipos dirigidos por consultores dijeron que producir imágenes que condensen y consoliden la enorme cantidad de datos es un desafío persistente. Uno dijo que era común que los equipos de consultores trabajaran durante la noche y hicieran un mínimo de tres o cuatro iteraciones de las visualizaciones de una presentación antes de decidirse por una y prepararla para las actualizaciones a nivel de tablero.
Un caso de uso convincente para probar el último modelo de Google
El proceso en el que confían los analistas para crear presentaciones que respalden una historia con visualizaciones y gráficos sólidos tiene tantos pasos manuales y repeticiones que resultó ser un caso de uso convincente para probar el último modelo de Google.
Al lanzar el modelo a principios de diciembre, Patrick Kane de Google escribió: “Ya sea que esté enfrentando desafíos complejos de codificación, resolviendo problemas matemáticos para proyectos escolares o personales, o brindando instrucciones detalladas de varios pasos para elaborar un plan de negocios personalizado, Gemini-Exp-1206 le ayudará a navegar tareas complejas con mayor facilidad”. Google notó el rendimiento mejorado del modelo en tareas más complejas, incluido el razonamiento matemático, la codificación y el seguimiento de una serie de instrucciones.
VentureBeat llevó el modelo Exp-1206 de Google a una prueba exhaustiva esta semana. Creamos y probamos más de 50 scripts de Python en un intento de automatizar e integrar análisis y visualizaciones intuitivas y fáciles de entender que pudieran simplificar los datos complejos que se analizan. Dado que los hiperescaladores dominan los ciclos de noticias actuales, nuestro objetivo específico era crear un análisis de un mercado tecnológico determinado y al mismo tiempo crear tablas de apoyo y gráficos avanzados.
A través de más de 50 iteraciones diferentes de scripts de Python verificados, nuestros hallazgos incluyeron:
- Cuanto mayor es la complejidad de una solicitud de código Python, más “piensa” el modelo e intenta anticipar el resultado deseado. Exp-1206 intenta anticipar lo que se necesita a partir de un mensaje complejo determinado y variará lo que produce incluso con el más mínimo cambio de matiz en un mensaje. Vimos esto en cómo el modelo alternaría entre formatos de tipos de tablas colocadas directamente encima del gráfico de araña del análisis de mercado de hiperescalador que creamos para la prueba.
- Obligar al modelo a intentar realizar análisis y visualización de datos complejos y producir un archivo Excel genera una hoja de cálculo con varias pestañas. Sin que nunca le pidieran una hoja de cálculo de Excel con varias pestañas, Exp-1206 creó una. El análisis tabular principal solicitado estaba en una pestaña, las visualizaciones en otra y una tabla auxiliar en la tercera.
- Decirle al modelo que repita los datos y recomiende las 10 visualizaciones que decida que mejor se ajustan a los datos ofrece resultados beneficiosos y reveladores. Con el objetivo de reducir el tiempo que supone tener que crear tres o cuatro iteraciones de presentaciones de diapositivas antes de una revisión por parte de la junta, obligamos al modelo a producir múltiples iteraciones conceptuales de imágenes. Estos podrían limpiarse e integrarse fácilmente en una presentación, ahorrando muchas horas de trabajo manual creando diagramas en diapositivas.
Impulsando a Exp-1206 hacia tareas complejas y en capas
El objetivo de VentureBeat era ver hasta dónde se podía llevar el modelo en términos de complejidad y tareas en capas. Su desempeño en la creación, ejecución, edición y ajuste de 50 scripts de Python diferentes mostró cuán rápido el modelo intenta captar matices en el código y reaccionar de inmediato. El modelo se flexiona y se adapta según el historial de indicaciones.
El resultado de ejecutar el código Python creado con Exp-1206 en Google Colab mostró que la granularidad matizada se extendía al sombreado y la translucidez de las capas en un gráfico de araña de ocho puntos que fue diseñado para mostrar cómo se comparan seis competidores hiperescaladores. Los ocho atributos que le pedimos a Exp-1206 que identificara en todos los hiperescaladores y que anclara el gráfico de araña se mantuvieron consistentes, mientras que las representaciones gráficas variaron.
Batalla de los hiperescaladores
Elegimos los siguientes hiperescaladores para comparar en nuestra prueba: Alibaba Cloud, Amazon Web Services (AWS), Digital Realty, Equinix, Google Cloud Platform (GCP), Huawei, IBM Cloud, Meta Platforms (Facebook), Microsoft Azure, NTT Global Data. Centros, Oracle Cloud y Tencent Cloud.
A continuación, escribimos un mensaje de 11 pasos de más de 450 palabras. El objetivo era ver qué tan bien Exp-1206 puede manejar la lógica secuencial y no perder su lugar en un proceso complejo de varios pasos. (Puede leer el mensaje en el apéndice al final de este artículo).
Luego enviamos el mensaje en Google AI Studio, seleccionando el modelo Gemini Experimental 1206, como se muestra en la siguiente figura.
A continuación, copiamos el código en Google Colab y lo guardamos en un cuaderno Jupyter (Comparación de Hyperscaler – Gemini Experimental 1206.ipynb), luego ejecutamos el script de Python. El script se ejecutó sin problemas y creó tres archivos (indicados con las flechas rojas en la parte superior izquierda).
Análisis comparativo de Hyperscaler y un gráfico, en menos de un minuto
La primera serie de instrucciones en el mensaje pedía a Exp-1206 que creara un script de Python que comparara 12 hiperescaladores diferentes por su nombre de producto, características y diferenciadores únicos y ubicaciones de centros de datos. A continuación se muestra cómo resultó el archivo de Excel que se solicitó en el script. Me llevó menos de un minuto formatear la hoja de cálculo para reducirla y ajustarla a las columnas.
La siguiente serie de comandos solicitó una tabla de los seis principales hiperescaladores comparados en la parte superior de una página y el gráfico de araña a continuación. Exp-1206 eligió por sí solo representar los datos en formato HTML, creando la siguiente página.
La secuencia final de comandos se centró en la creación de un gráfico de araña para comparar los seis hiperescaladores principales. Le asignamos a Exp-1206 la tarea de seleccionar los ocho criterios para la comparación y completar el gráfico. Esa serie de comandos se tradujo a Python y el modelo creó el archivo y lo proporcionó en la sesión de Google Colab.
Un modelo diseñado específicamente para ahorrar tiempo a los analistas
VentureBeat ha aprendido que en su trabajo diario, los analistas continúan creando, compartiendo y ajustando bibliotecas de indicaciones para modelos de IA específicos con el objetivo de optimizar los informes, el análisis y la visualización en todos sus equipos.
Los equipos asignados a proyectos de consultoría a gran escala deben considerar cómo modelos como Gemini-Exp-1206 pueden mejorar enormemente la productividad y aliviar la necesidad de semanas laborales de más de 60 horas y noches ocasionales en vela. Una serie de indicaciones automatizadas pueden realizar el trabajo exploratorio de observar las relaciones en los datos, lo que permite a los analistas producir imágenes con mucha mayor certeza sin tener que dedicar una cantidad excesiva de tiempo a llegar allí.
Apéndice:
Prueba rápida de Google Gemini Experimental 1206
Escriba un script de Python para analizar los siguientes hiperescaladores que han anunciado una presencia de centro de datos e infraestructura global para sus plataformas y cree una tabla comparándolos que capture las diferencias significativas en cada enfoque en presencia de centro de datos e infraestructura global.
Haga que la primera columna de la tabla sea el nombre de la empresa, la segunda columna sean los nombres de cada uno de los hiperescaladores de la empresa que tienen presencia de centro de datos e infraestructura global, la tercera columna sea lo que hace que sus hiperescaladores sean únicos y una inmersión profunda en los más diferenciados. características, y la cuarta columna son las ubicaciones de los centros de datos para cada hiperescalador a nivel de ciudad, estado y país. Incluya los 12 hiperescaladores en el archivo de Excel. No hagas web scraping. Genere un archivo de Excel del resultado y formatee el texto en el archivo de Excel para que no contenga corchetes ({}), comillas (‘), asteriscos dobles (**) ni ningún código HTML para mejorar la legibilidad. Nombra el archivo de Excel, Gemini_Experimental_1206_test.xlsx.
A continuación, cree una tabla de tres columnas de ancho y siete columnas de profundidad. La primera columna se titula Hiperescalador, la segunda Características únicas y diferenciadores y la tercera, Infraestructura y ubicaciones de centros de datos. Pon en negrita los títulos de las columnas y céntralos. Los títulos de los hiperescaladores también están en negrita. Verifique dos veces para asegurarse de que el texto dentro de cada celda de esta tabla se ajuste y no pase a la siguiente celda. Ajuste la altura de cada fila para asegurarse de que todo el texto quepa en la celda deseada. Esta tabla compara Amazon Web Services (AWS), Google Cloud Platform (GCP), IBM Cloud, Meta Platforms (Facebook), Microsoft Azure y Oracle Cloud. Centre la tabla en la parte superior de la página de resultados.
A continuación, tomemos Amazon Web Services (AWS), Google Cloud Platform (GCP), IBM Cloud, Meta Platforms (Facebook), Microsoft Azure y Oracle Cloud y defina los ocho aspectos más diferenciadores del grupo. Utilice esos ocho aspectos diferenciadores para crear un gráfico de araña que compare estos seis hiperescaladores. Cree un único gráfico de araña grande que muestre claramente las diferencias en estos seis hiperescaladores, utilizando diferentes colores para mejorar su legibilidad y la capacidad de ver los contornos o huellas de diferentes hiperescaladores. Asegúrese de titular el análisis, Lo que más diferencia a los hiperescaladores, diciembre de 2024. Asegúrese de que la leyenda sea completamente visible y no esté encima del gráfico.
Agregue el gráfico de la araña en la parte inferior de la página. Centre el gráfico de araña debajo de la tabla en la página de salida.
Estos son los hiperescaladores que se incluirán en el script Python: Alibaba Cloud, Amazon Web Services (AWS), Digital Realty, Equinix, Google Cloud Platform (GCP), Huawei, IBM Cloud, Meta Platforms (Facebook), Microsoft Azure, NTT Global Data. Centros, Oracle Cloud, Tencent Cloud.
Noticias
Implementación y evaluación de un modelo de enseñanza de pasantía quirúrgica optimizado utilizando ChatGPT | Educación Médica BMC
Los avances tecnológicos están haciendo avanzar significativamente la educación médica. Actualmente, el desarrollo del plan de estudios médico enfatiza la mejora de los métodos de enseñanza a través de la simulación médica, la discusión de la literatura y la investigación. Existe una creciente defensa de la integración de la inteligencia artificial y las pautas clínicas en la enseñanza para cultivar mejor el razonamiento clínico y las habilidades de pensamiento lógico de los estudiantes.
Múltiples estudios han demostrado los beneficios potenciales de ChatGPT en la educación médica. Los chatbots como ChatGPT pueden ser una herramienta poderosa para mejorar la alfabetización sanitaria, especialmente entre estudiantes y jóvenes estudiantes. [6]. En primer lugar, ChatGPT ofrece acceso rápido e inmediato a amplia información médica, lo que ayuda a los estudiantes de medicina novatos a analizar datos médicos complejos. [7]. En segundo lugar, al crear escenarios y estudios de casos, ChatGPT ayuda a los estudiantes a perfeccionar y mejorar sus habilidades de planificación de diagnóstico y tratamiento, mejorando así sus capacidades de razonamiento clínico y su preparación para situaciones clínicas del mundo real. [8]. En tercer lugar, ChatGPT puede respaldar las tareas académicas respondiendo preguntas y redactando resúmenes. Su capacidad para crear esquemas y revisiones de la literatura puede agilizar la investigación médica. Además, también facilita el resumen de publicaciones relevantes y destaca hallazgos importantes, lo que ayuda a los investigadores médicos a navegar por la gran cantidad de material disponible en línea. [9]. Finalmente, ChatGPT permite el aprendizaje personalizado para los estudiantes al actuar como tutor o asistente virtual, ayudándolos con las tareas y fomentando experiencias de aprendizaje interactivas. [10].
En este estudio, ChatGPT se utilizó en cuatro funciones clave en las fases de educación médica previa, en clase y posterior a la clase. Durante la fase de preparación previa a la clase, los estudiantes pudieron consultar ChatGPT sobre cualquier problema que encontraron, lo que facilitó una comprensión inicial de conceptos, terminología y casos médicos fundamentales. En un estudio, se pudo generar una serie de imágenes a partir de texto descriptivo utilizando un modelo de aprendizaje profundo basado en redes generativas adversarias. La herramienta se utiliza en el proceso narrativo visual para facilitar el aprendizaje mejorado por la tecnología y mejorar las habilidades de razonamiento lógico. [11]. Los modelos de aprendizaje profundo basados en redes generativas adversarias desempeñan un papel clave en la simulación de varios tipos de entornos de aprendizaje y ayudan a desarrollar habilidades prácticas en modelos de asistentes de enseñanza virtuales. Los resultados experimentales muestran que este modelo mejora el efecto de aprendizaje de los estudiantes y mejora su motivación y capacidad de aprendizaje. [12]. En el aula, se empleó ChatGPT para simular las interacciones con los pacientes, proporcionando una plataforma para que los estudiantes practiquen habilidades de diagnóstico y comunicación en un entorno seguro y controlado. En sus interacciones con ChatGPT, los estudiantes son libres de practicar habilidades de diagnóstico y comunicación sin los riesgos que podría representar un paciente real. Un diagnóstico falso o una falta de comunicación no tiene un impacto real en el paciente, lo que permite a los estudiantes aprender mediante prueba y error. ChatGPT está disponible y los estudiantes pueden practicar a su propio ritmo y necesidades de aprendizaje, sin depender de un tiempo y lugar específicos. Esta flexibilidad hace que el aprendizaje sea más eficiente y conveniente. ChatGPT puede simular una variedad de escenarios clínicos y características del paciente para brindar una experiencia interactiva diversa. Los estudiantes están expuestos a diferentes condiciones y antecedentes de pacientes, mejorando así su capacidad para afrontar situaciones complejas. Después de clase, los estudiantes pueden interactuar con ChatGPT individualmente o en grupos de estudio, discutiendo preguntas de práctica proporcionadas por la herramienta, abordando preguntas difíciles o desafiantes y explorando el material desde varias perspectivas. A lo largo del proceso interactivo, los estudiantes evaluaron continuamente su comprensión del material, identificaron sus debilidades y ajustaron sus estrategias de aprendizaje y áreas de enfoque de manera oportuna para enfocarse en áreas específicas para revisión y refuerzo, asegurando que se mantuvieran en el camino correcto. [13]. De manera similar, los instructores podrían utilizar ChatGPT para recopilar recursos didácticos y estudios de casos relevantes durante la fase de preparación de la lección. Al aprovechar ChatGPT, podrían mejorar la participación de los estudiantes en el aula y utilizar la herramienta después de clase para recopilar y analizar los comentarios de los estudiantes sobre el proceso de enseñanza. Además, los estudiantes podrían utilizar ChatGPT para resolver rápidamente cualquier confusión relacionada con el conocimiento profesional. Con la capacitación del modelo ChatGPT, los estudiantes de medicina y los médicos pueden mejorar su razonamiento clínico y sus habilidades de toma de decisiones, mejorando así el desempeño del análisis y diagnóstico de casos. Además, ChatGPT proporciona a los estudiantes de medicina una experiencia de aprendizaje personalizada y eficiente a través de conversaciones simuladas, tutorías inteligentes y preguntas y respuestas automatizadas, profundizando así la comprensión de los conocimientos médicos de los estudiantes. [14].
Los resultados de este estudio indican que las puntuaciones teóricas de los grupos de estudio fueron significativamente más altas que las de los grupos de control, lo que refleja mejores resultados de aprendizaje. No se observaron diferencias significativas en las puntuaciones entre los dos grupos de estudio ni entre los dos grupos de control. Esto sugiere que la aplicación de ChatGPT en los grupos de estudio resultó en una comprensión y dominio superiores del conocimiento teórico en comparación con los métodos de enseñanza tradicionales utilizados en los grupos de control.
Los resultados de satisfacción docente de este estudio indican que los estudiantes de los grupos de estudio que utilizaron ChatGPT informaron puntuaciones de satisfacción total significativamente más altas, así como mejores calificaciones en la organización del curso y los métodos de enseñanza, en comparación con los grupos de control. Las diferencias en la satisfacción con el contenido del curso y los instructores fueron relativamente menores, lo que sugiere que el uso de ChatGPT como ayuda didáctica, a través de su novedoso y atractivo formato interactivo de preguntas y respuestas, su fuerte interactividad y su enfoque estructurado, parece mejorar la participación de los estudiantes. y participación en el aprendizaje. Esto indica que ChatGPT puede fomentar eficazmente un mayor interés y promover resultados educativos. La diferencia más notable entre los métodos de enseñanza radica en la ejecución en el aula; La capacidad de ChatGPT para simular varios escenarios y realizar análisis de casos, combinada con el acceso a recursos didácticos adicionales, mejora significativamente las habilidades de aplicación clínica de los estudiantes de medicina.
La evaluación del estudio sobre el cumplimiento del aprendizaje abarcó cuatro aspectos. Los hallazgos indican que no hubo diferencias significativas entre los grupos en cuanto al establecimiento de planes de aprendizaje. Sin embargo, para los otros tres aspectos (preparación autónoma previa a la clase y revisión posterior a la clase, participación en la enseñanza en el aula y búsqueda de retroalimentación y asistencia), los grupos de estudio exhibieron calificaciones significativamente más altas en comparación con los grupos de control. En muchos estudios y análisis estadísticos, una “puntuación más alta” suele considerarse un resultado positivo, lo que significa que el grupo de estudio obtuvo mejores resultados en algo. Los indicadores de evaluación de este estudio son todos positivos y se puede considerar que una “puntuación más alta” indica un mejor desempeño del grupo de investigación, lo que es un resultado positivo. Esto sugiere que la incorporación de ChatGPT como ayuda didáctica mejora el cumplimiento del aprendizaje de los estudiantes al promover el aprendizaje activo, fomentar el aprendizaje basado en la investigación y mejorar su interés y capacidad para el aprendizaje autónomo.
Si bien las mejoras en el cumplimiento son evidentes, la profundización continua de la comprensión antes, durante y después de la clase también contribuye a mejorar el pensamiento lógico y las habilidades analíticas. En particular, el estudio encontró una tasa relativamente baja de preguntas y solicitudes de ayuda de los estudiantes, durante y después de clase. Las diferencias observadas entre los grupos de estudio y control pueden atribuirse a la capacidad de ChatGPT para ayudar a los estudiantes a superar la timidez y no juzgar los errores. La herramienta de inteligencia artificial ayuda a los estudiantes a superar las dudas, permitiéndoles hacer preguntas de forma libre y repetida sin temor a ser juzgados o interacciones negativas. Al generar materiales de aprendizaje basados en el estado de aprendizaje y las necesidades de cada estudiante, ChatGPT les permite adoptar un enfoque más autónomo del aprendizaje y tener una experiencia educativa adaptada a sus preferencias. Estas interacciones facilitan la aclaración oportuna, una comprensión más profunda y el dominio del material.
ChatGPT también puede adaptar planes y materiales de aprendizaje individualizados para cada estudiante para adaptarse a los diferentes estilos y habilidades de aprendizaje dentro del aula. Este enfoque personalizado fomenta un circuito de retroalimentación positiva, mejorando las capacidades de aprendizaje de los estudiantes.
La aplicación de ChatGPT en la educación médica sigue siendo un tema de considerable debate. Si bien ChatGPT ofrece funcionalidades innovadoras y ventajas potenciales, también plantea varias preocupaciones éticas y prácticas, el potencial de uso indebido, particularmente en los ámbitos de la educación y el mundo académico. [15]. Como chatbot, ChatGPT carece de la capacidad de pensar críticamente como un ser humano, lo que limita su capacidad para interpretar y analizar información médica más allá de sus algoritmos programados. No posee el juicio ni el discernimiento necesarios para los aspectos éticos o legales de la práctica médica y puede plantear riesgos relacionados con violaciones de datos y privacidad. [16, 17].
El auge de herramientas de inteligencia artificial como ChatGPT ha llevado a la deshonestidad académica, con informes de estudiantes que utilizan la tecnología para hacer trampa en sus trabajos de ensayo. [18]. Algunas investigaciones sugieren que ChatGPT puede no ser un recurso confiable para problemas complejos que requieren habilidades y conocimientos avanzados. [19]. Además, los académicos han estado preocupados por la confiabilidad de ChatGPT como fuente creíble de información. [20]. Según muchos educadores, ChatGPT puede ser utilizado fácilmente para hacer trampa por parte de estudiantes que toman cursos de comunicación y filosofía, pero es fácil de identificar. Una preocupación creciente es que los estudiantes eventualmente perderán la capacidad de generar ideas originales y no podrán presentar argumentos adecuados para demostrar un punto. [21]. La accesibilidad tecnológica es un desafío. El uso eficaz de ChatGPT depende de la conectividad de la red y la disponibilidad del dispositivo, lo que puede resultar problemático en diferentes regiones y entre poblaciones estudiantiles específicas. Se deben desarrollar políticas para utilizar ChatGPT en diferentes entornos técnicos. [22]. Una preocupación es la posible devaluación del aprendizaje cooperativo en la educación médica, particularmente en enfoques tradicionales como ABP, CBL y TBL. La colaboración y el trabajo en equipo son cruciales en estos enfoques, y ChatGPT puede reducir involuntariamente la importancia de las interacciones entre humanos. Mantener un equilibrio entre la tecnología y las relaciones es esencial para un aprendizaje eficaz. Si bien ChatGPT mejora el ABP mediante instrucción personalizada, los educadores deben enfatizar la importancia duradera del aprendizaje basado en el paciente y el trabajo en equipo. A pesar de las capacidades de simulación y los conocimientos teóricos de ChatGPT, no puede reemplazar la experiencia práctica obtenida a través de interacciones en el mundo real, especialmente en la educación médica. Reconocer las limitaciones de los modelos es esencial para evitar una dependencia excesiva del aprendizaje por simulación. Integrar perfectamente ChatGPT en los planes de estudio existentes es un desafío que requiere que los educadores inviertan tiempo en diseñar e integrar componentes impulsados por IA que se alineen con los objetivos generales de aprendizaje. [23]. Dadas estas consideraciones, es esencial utilizar ChatGPT con prudencia como herramienta auxiliar de aprendizaje, complementando en lugar de reemplazar los métodos educativos y las técnicas de investigación tradicionales, y siendo consciente de las limitaciones de ChatGPT.
Noticias
OpenAI de Musk y Warren chocan para dirigir el futuro de la gobernanza de la IA
Un doble enfrentamiento (Elon Musk versus OpenAI y Musk versus la senadora Elizabeth Warren (demócrata por Massachusetts)) pone de relieve cuestiones cruciales sobre la combinación de propósitos organizacionales y el equilibrio del poder público y privado.
Musk está demandando a OpenAI, que él cofundó, alegando que su reorganización de una entidad sin fines de lucro a una con fines de lucro traiciona su misión original de garantizar que la IA beneficie a la humanidad.
Mientras tanto, Warren ha expresado su preocupación por la posible superposición de roles de Musk como empresario tecnológico (que resulta ser propietario de la mayoría de X.AI Corp., un competidor de OpenAI) y futuro funcionario gubernamental. Warren instó al presidente electo Donald Trump en una carta del 16 de diciembre a aplicar estrictamente un escrutinio de conflictos de intereses a Musk.
La forma en que se desarrollen estas dos confrontaciones dará forma a nuestro futuro tecnológico.
‘Franken-Gorgon’ de OpenAI
La demanda de Musk apunta a la matriz sin fines de lucro, OpenAI Inc., y esencialmente a todos los demás involucrados en la creación de una subsidiaria con ganancias limitadas, OpenAI LP. El llamado modelo híbrido permitió a los inversores de la filial obtener un retorno de la inversión de hasta 100 veces. Cualquier beneficio restante fluyó hacia la matriz. Musk sostiene que este cambio prioriza las ganancias sobre el bien público, convirtiendo a OpenAI en lo que él llama un Frankenstein.
Musk modificó su denuncia en noviembre para incluir acusaciones de que OpenAI Inc. se estaba reorganizando para convertirse en una corporación con fines de lucro en toda regla. En palabras de Musk (o de sus abogados), OpenAI pasó “de una organización benéfica exenta de impuestos a una gorgona con fines de lucro y que paraliza el mercado por valor de 157 mil millones de dólares, y en sólo ocho años”.
Dado que no existe una ley anti-Franken-Gorgon, las afirmaciones de Musk son una mezcla de supuestas violaciones de la ley antimonopolio, la ley de fideicomisos caritativos, la ley de agencia, fraude e incluso extorsión. Aunque Musk cita las promesas que le hizo Altman, no plantea un reclamo por incumplimiento de contrato.
OpenAI respondió el 13 de diciembre que el modelo de beneficio limitado es una solución innovadora que le permite competir con otras empresas de tecnología sin dejar de ser fiel a su misión. También argumentó que Musk carece de legitimación activa para demandar.
El modelo OpenAI plantea dudas sobre la transparencia y la gobernanza. ¿Puede servir a dos amos (su misión y sus inversores) sin comprometer a uno por el otro? Nadie ha descubierto cómo hacer que este tipo de teoría de las partes interesadas funcione en la práctica. Un objetivo a menudo es consumido por el otro, razón por la cual no existe una forma legal convencional de estructurar una llamada entidad híbrida.
Confusión del modelo híbrido
El modelo híbrido de OpenAI se hace eco de la reciente aparición de corporaciones de beneficio público, que están diseñadas para perseguir tanto ganancias como fines públicos. A diferencia de las corporaciones tradicionales, las PBC están obligadas por ley a considerar el impacto de sus decisiones en la sociedad y el medio ambiente, no sólo en los accionistas.
Esta estructura proporciona un modelo potencial para que organizaciones como OpenAI alineen la innovación con la responsabilidad. “Potencial” es la palabra clave aquí, porque la ley del PBC no contempla rendimientos máximos sobre la inversión.
Si bien el modelo de beneficio limitado es innovador, subraya la necesidad de marcos legales más claros para regir las entidades híbridas. Los formuladores de políticas deberían explorar la posibilidad de adaptar los principios del PBC para abordar los desafíos únicos que plantean la IA y otras industrias de alto riesgo. Quizás algún día los modelos de beneficio limitado puedan convertirse en una forma estándar.
Dilema de doble rol
Warren ha cuestionado públicamente si el doble papel de Musk como empresario privado de IA y copresidente del propuesto Departamento de Eficiencia Gubernamental crearía conflictos de intereses. Ha pedido estándares éticos más estrictos, particularmente dada la influencia de Musk sobre las políticas que afectan directamente sus empresas. Básicamente, ella respondió a su queja de que OpenAI no es ético devolviéndole la acusación.
Pero que los multimillonarios asesoren o participen en el gobierno no es un fenómeno nuevo. Desde la defensa de políticas impulsadas por la filantropía de Andrew Carnegie en el siglo XIX hasta el papel de Warren Buffett en el asesoramiento de políticas financieras durante la crisis económica de 2008, los líderes empresariales ricos a menudo han dado forma a las políticas públicas. La participación de Musk es parte de una larga tradición de aprovechar la experiencia del sector privado para la gobernanza pública.
Dicho esto, hay mucho en juego en la era de la IA. Como asesor gubernamental y empresario con intereses creados en el desarrollo de la IA, Musk debe afrontar este doble papel con cuidado. La transparencia y la rendición de cuentas son esenciales para mantener la confianza pública, especialmente cuando los límites entre la influencia privada y la responsabilidad pública se vuelven borrosos.
Debido a que Musk se está moviendo hacia lo que equivale a una casa de cristal de la atención de los medios, parece advertir Warren, tal vez no debería tirar piedras.
El futuro de la gobernanza de la IA
La disputa entre Musk y OpenAI es más que una batalla legal: es un caso de prueba de cómo gobernamos las organizaciones impulsadas por una misión en la era de la IA.
Los modelos híbridos, como la estructura Franken-Gorgon de OpenAI, desafían las leyes corporativas y sin fines de lucro existentes, lo que refuerza la necesidad de juntas directivas fuertes e independientes, actualizaciones regulatorias y una conducta ética superior a la junta. Las entidades híbridas necesitan tales juntas para garantizar que la misión siga siendo la prioridad.
La matriz sin fines de lucro de OpenAI ha enfrentado críticas por no brindar una supervisión suficiente de su subsidiaria con fines de lucro, lo que destaca la necesidad de estructuras de gobernanza más claras. En la medida en que los miembros de la junta directiva de la empresa sean beneficiarios financieros de los esfuerzos con fines de lucro, se encuentran en una posición sesgada al tomar decisiones sobre la misión sin fines de lucro.
Los formuladores de políticas deben reconocer que las leyes actuales no fueron diseñadas para híbridos. Adaptar los principios del PBC o crear marcos específicos para modelos híbridos podría proporcionar la claridad y la responsabilidad necesarias en la industria de la IA.
La confianza es clave. La transparencia es fundamental. Organizaciones como OpenAI deben comunicar claramente sus objetivos y estructuras para mantener la confianza con los donantes, los inversores y el público. Sin transparencia, los híbridos corren el riesgo de erosionar la confianza de la que dependen para operar con eficacia.
A medida que evoluciona el panorama de la IA, las decisiones que tomemos ahora guiarán no solo el futuro de la tecnología sino también los valores que sustentan su desarrollo. La historia de OpenAI es un microcosmos de estos desafíos: un recordatorio de que equilibrar las ganancias y el propósito tiene que ver tanto con la gobernanza como con la visión.
El caso es Musk v. Altman, ND Cal., No. 4:24-cv-04722, respuesta a la moción de orden judicial preliminar de los demandantes 13/12/24.
Este artículo no refleja necesariamente la opinión de Bloomberg Industry Group, Inc., el editor de Bloomberg Law y Bloomberg Tax, ni de sus propietarios.
Información del autor
Anat Alon-Beck es profesora asociada de derecho en la Facultad de Derecho de la Universidad Case Western Reserve.
Seth Oranburg es profesor de la Facultad de Derecho de la Universidad de New Hampshire y director del Programa de Organizaciones, Negocios y Mercados del Instituto Liberal Clásico de la Universidad de Nueva York.
Escríbanos: Pautas para el autor
-
Startups7 meses ago
Remove.bg: La Revolución en la Edición de Imágenes que Debes Conocer
-
Recursos8 meses ago
Cómo Empezar con Popai.pro: Tu Espacio Personal de IA – Guía Completa, Instalación, Versiones y Precios
-
Recursos8 meses ago
Suno.com: La Revolución en la Creación Musical con Inteligencia Artificial
-
Recursos7 meses ago
Perplexity aplicado al Marketing Digital y Estrategias SEO
-
Estudiar IA7 meses ago
Curso de Inteligencia Artificial de UC Berkeley estratégico para negocios
-
Tutoriales8 meses ago
Cómo Comenzar a Utilizar ChatGPT: Una Guía Completa para Principiantes
-
Eventos8 meses ago
La nueva era de la inteligencia artificial por el Washington Post – Mayo 2024
-
Noticias6 meses ago
Dos periodistas octogenarios deman a ChatGPT por robar su trabajo